JPS6040512B2 - Alkali metal sulfate electrolysis method and device - Google Patents

Alkali metal sulfate electrolysis method and device

Info

Publication number
JPS6040512B2
JPS6040512B2 JP54082405A JP8240579A JPS6040512B2 JP S6040512 B2 JPS6040512 B2 JP S6040512B2 JP 54082405 A JP54082405 A JP 54082405A JP 8240579 A JP8240579 A JP 8240579A JP S6040512 B2 JPS6040512 B2 JP S6040512B2
Authority
JP
Japan
Prior art keywords
anode
alkali metal
chamber
cathode
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54082405A
Other languages
Japanese (ja)
Other versions
JPS565985A (en
Inventor
一三 浜部
牟 告野
洵 福井
誠 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP54082405A priority Critical patent/JPS6040512B2/en
Publication of JPS565985A publication Critical patent/JPS565985A/en
Publication of JPS6040512B2 publication Critical patent/JPS6040512B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は例えば排煙脱硫プロセス等において副生するア
ルカリ金属硫酸塩の電解に関し、詳しくは陽極および陰
極の間を2ケ所に設けたカチオン交換膜で仕切りそれら
のカチオン交換腹に挟まれた中央室に不純物を含有する
アルカリ金属硫酸塩を導入することにより不純物アニオ
ンの陽極へのマィグレーションを阻止して不純物アニオ
ンによる陽極の損耗を防止する不純物含有アルカリ金属
硫酸塩の電解方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the electrolysis of alkali metal sulfates produced as by-products in, for example, flue gas desulfurization processes, and more specifically, the present invention relates to the electrolysis of alkali metal sulfates produced as by-products in flue gas desulfurization processes, etc. Specifically, the present invention relates to the electrolysis of alkali metal sulfates produced as by-products in flue gas desulfurization processes, etc. By introducing the alkali metal sulfate containing impurities into the central chamber sandwiched between the bellies, the migration of impurity anions to the anode is prevented, thereby preventing damage to the anode due to the impurity anions. The present invention relates to an electrolytic method and apparatus.

従来ソーダ系吸収剤を使用する排煙脱硫プロセスより副
生するアルカリ金属硫酸塩、例えば三硝を処理する方法
として、袴関昭49一114578に見られるような化
学的方法と特関昭50−809解に見られるような電解
的方法等がある。比較的高価な苛性アルカリの損耗を防
止し、有用な創生物を経済的に回収するため、あるいは
環境保全の見地からクローズドシステム化を進めるため
、前記プロセスより創生するアルカリ金属硫酸塩を処理
する方法として電解的方法が好ましい。従釆、排煙脱硫
プロセスで使用されているアルカリ金属硫酸塩の電解装
置はその外形が単一槽または多段槽の積層構造であるが
、使用電極が単一極または2極であるかに拘らず、陽極
と陰極とを隔てるイオン交換膜と隔膜は第1図および第
2図に示すような配列であった。
Conventional methods for treating alkali metal sulfates, such as trinitrate, which are produced as a by-product in the flue gas desulfurization process using soda-based absorbents, include chemical methods such as those found in Hakama Seki 49-114578 and Tokuseki 50- There are electrolytic methods as seen in the 809 solution. In order to prevent the loss of relatively expensive caustic alkali and economically recover useful products, or to promote closed systemization from the viewpoint of environmental conservation, the alkali metal sulfates produced by the above process are treated. An electrolytic method is preferred as the method. Accordingly, the alkali metal sulfate electrolysis equipment used in the flue gas desulfurization process has a single tank or multi-layered tank structure, but regardless of whether the electrode used is a single pole or two poles. First, the ion exchange membrane and diaphragm separating the anode and cathode were arranged as shown in FIGS. 1 and 2.

第1図は最も単純な電解槽で1箇所に設けたカチオン交
換膜3によってイオンの混合を防止している。
FIG. 1 shows the simplest electrolytic cell, in which a cation exchange membrane 3 provided at one location prevents mixing of ions.

陽極側からは硫酸とアルカリ金属硫酸塩例えば苔硝混合
物が得られる。なお陰極室へは図示していないが苛性ア
ルカリを抜き出したあと水が補給される。
A mixture of sulfuric acid and an alkali metal sulfate, such as moss nitrate, is obtained from the anode side. Although not shown, water is replenished into the cathode chamber after the caustic alkali is extracted.

第2図は第1図の電解電流効率の改善を計ったものであ
る。
FIG. 2 shows an improvement in the electrolytic current efficiency of FIG. 1.

アルカリ金属硫酸塩の溶液は隔膜4を通じて、中央室1
7から陽極室15へ圧入され、陽極1で生成された水素
イオンの中央室17への逆流を抑制し、水素イオンの陰
極室16への混入を阻止して電流効率の改善が達成され
る。第1図および第2図において、2は陰極、6はアル
カリ金属硫酸塩液入口、7は陽極気液分離槽、8は陰極
気液分離槽、9は陽極液循環ポンプ、1川ま陰極液循環
ポンプ、11は陽極液戻し口、12は陰極液戻し口、1
3は陽極液抜出し口、14は陰極液抜出し口である。本
発明は前記のように、排煙脱硫装置に適用され、その、
副生苧硝の電解袋贋を提供するものであるが、例えば排
煙脱硫装置における創生アルカリ金属硫酸塩の電解装置
には一般の電解装置には見られない不純物混入の問題が
ある。
The alkali metal sulfate solution passes through the diaphragm 4 into the central chamber 1.
Hydrogen ions are press-fitted into the anode chamber 15 from the anode 1 and generated at the anode 1, and are prevented from flowing back into the central chamber 17, and hydrogen ions are prevented from entering the cathode chamber 16, thereby improving current efficiency. In Figures 1 and 2, 2 is the cathode, 6 is the alkali metal sulfate liquid inlet, 7 is the anode gas-liquid separation tank, 8 is the cathode gas-liquid separation tank, 9 is the anolyte circulation pump, and 1 is the catholyte liquid. Circulation pump, 11 is an anolyte return port, 12 is a catholyte return port, 1
3 is an anolyte outlet, and 14 is a catholyte outlet. As mentioned above, the present invention is applied to a flue gas desulfurization device, and has the following features:
Although the present invention provides electrolytic bag counterfeiting of by-product molasses, for example, an electrolytic device for generating alkali metal sulfate in a flue gas desulfurization device has a problem of contamination with impurities, which is not seen in general electrolytic devices.

従来この不純物の混入を防止するため副生アルカリ金属
硫酸塩、例えば茎硝の電解装置に各種の前処理装置を付
加することが行なわれている。
Conventionally, in order to prevent the contamination of these impurities, various pretreatment devices have been added to electrolysis devices for by-product alkali metal sulfates, such as sulfur.

しかし通常考え得られるすべての前処理を実施しても除
き得ない有害不純物が存在する。例えば排煙脱硫吸収塔
においては不可避的に吸収される窒素酸化物をその成因
とする硝酸根、あるいは原料アルカリ中に継続的に混入
される弗素または原料水中の塩素等がある。
However, there are harmful impurities that cannot be removed even with all conventional pretreatments. For example, in a flue gas desulfurization absorption tower, there are nitrate radicals caused by nitrogen oxides that are inevitably absorbed, fluorine that is continuously mixed into the raw alkali, or chlorine in the raw water.

これらの混入は徴量ではあるが前記のように環境保全の
見地から処理系のクロ−ズドシステム化を推進するとき
、これらの不純物が系内に蓄積し、電解装贋へ流入する
問題がある。
Although these contaminants may be detected, as mentioned above, when promoting closed processing systems from the viewpoint of environmental conservation, there is a problem that these impurities accumulate in the system and flow into the electrolytic equipment. .

本発明者等は上記の不純物が電解装置の陽極を意外に速
かに消耗させることを見出した。
The inventors have discovered that the above-mentioned impurities cause the anode of an electrolyzer to wear out unexpectedly quickly.

従来は、前記のような電解系のランニングコストの低下
のため電解効率の向上のみが計られ、電極特に陽極の消
極防止に関しては何等の対策もないま)今日に至ってい
る。本発明は不純物を含有するアルカリ金属硫酸塩の電
解装置の陽極の消耗防止を目的としたものであり、陽極
の消耗の原因の一つが硝酸線、弗素または塩素等の不純
物の混入にあることは前述した。
Conventionally, efforts have been made only to improve the electrolytic efficiency in order to reduce the running cost of the electrolytic system as described above, and to this day, no measures have been taken to prevent depolarization of the electrodes, especially the anodes. The purpose of the present invention is to prevent the wear of the anode of an electrolyzer for alkali metal sulfates containing impurities, and it is clear that one of the causes of the wear of the anode is the contamination of impurities such as nitric acid wire, fluorine, or chlorine. As mentioned above.

ところが不純物を含有する副生アルカリ金属硫酸塩の電
解装置の陽極は、耐食性等の関係から、通常の電解装置
におけるように、必らずしも酸素過電圧の低い陽極材料
を選択することが容易でない。従って酸素過電圧の高い
陽極を使用する酸化性雰囲気中に硝酸線、弗素または塩
素等が混入することによってますます酸化性、反応性が
大となり、陽極の消耗が激しくなる。
However, for the anode of an electrolyzer for electrolyzing by-product alkali metal sulfate containing impurities, it is not always easy to select an anode material with a low oxygen overvoltage as in a normal electrolyzer due to corrosion resistance. . Therefore, when nitric acid, fluorine, chlorine, etc. are mixed into the oxidizing atmosphere in which an anode with a high oxygen overvoltage is used, the oxidizing property and reactivity become even greater, and the anode becomes more worn out.

上記に鑑み、本発明は不純物を含有するアルカリ金属硫
酸塩の電解装置において陽極、陽極とカチオン交換膜で
隔てられた陽極室、カチオン交換隙間に存在する中央室
、カチオン交換膜と陰極とで隔てられた陰極室および陰
極を有する電解装置を使用し、不純物を含有するアルカ
リ金属硫酸塩を中央室に導入し、かつ陽極室に不純物を
含まない希硫酸を充填循環し、中央室より硫酸、または
酸性硫酸アルカリおよびアルカリ金属硫酸塩を抜出し、
陰極室より生成された苛性アルカリを抜出すようにする
方法ならびにその装置を提供するものである。
In view of the above, the present invention provides an electrolysis device for an alkali metal sulfate containing impurities, including an anode, an anode chamber separated from the anode by a cation exchange membrane, a central chamber existing in the cation exchange gap, and a central chamber separated from the cation exchange membrane and the cathode. Using an electrolyzer having a cathode chamber and cathode, an alkali metal sulfate containing impurities is introduced into the central chamber, and the anode chamber is filled with dilute sulfuric acid containing no impurities and circulated, and sulfuric acid or Extracts acidic alkali sulfates and alkali metal sulfates,
The present invention provides a method and apparatus for extracting caustic alkali produced from a cathode chamber.

その原理は第4図および下記反応式‘1},■,【3’
に示すように中央室からは硫酸または酸性アルカリ硫酸
塩およびアルカリ金属硫酸塩を、陰極室からは苛性アル
カリを取出す。
The principle is shown in Figure 4 and the following reaction formulas '1}, ■, [3'
As shown in the figure, sulfuric acid or acidic alkali sulfate and alkali metal sulfate are taken out from the central chamber, and caustic alkali is taken out from the cathode chamber.

陽極反応 比0‐左‐一1/幻2十2H+ {1
’(日はカチオン交換膜を通って中央室へ) 中央室反応 地S04→2W+S024十 【2
ー2日十十S04→比S04(Mはカチオン交換膜を通
って陰 極室へ) 陰極反応 2LO+次一比十幻H‐ ‘3’脚+
十幻H‐一肌H)なおMはアルカリ金属を示す 次に本発明のアルカリ金属硫酸塩の電解方法およびその
装置について、排煙脱硫プロセスによって創生する不純
物を含有する三硝の電解方法とその装置の例を用いて詳
細に説明する。
Anodic reaction ratio 0-left-1 1/phantom 22H+ {1
'(Sun passes through the cation exchange membrane to the central chamber) Central chamber reaction Earth S04 → 2W + S024 ten [2
-2nd Juju S04 → Ratio S04 (M passes through the cation exchange membrane to the cathode chamber) Cathode reaction 2LO + Next one ratio Jugen H - '3' leg +
Jugen H-Ichihada H) Note that M represents an alkali metal.Next, regarding the method and apparatus for electrolyzing alkali metal sulfates of the present invention, we will explain the method for electrolyzing trinitrates containing impurities created by the flue gas desulfurization process. This will be explained in detail using an example of the device.

第3図は本発明に使用される装置の一実施例を示す。FIG. 3 shows one embodiment of the apparatus used in the present invention.

第3図から明らかなように、本発明の最も特徴とすると
ころは、不純物を含有する創生葦硝の電解において第1
図に示すような三硝電解装置の陽極室がカチオン交換膜
で隔てられているところである。
As is clear from FIG. 3, the most distinctive feature of the present invention is that the first
The anode chamber of the trinitrate electrolyzer shown in the figure is separated by a cation exchange membrane.

カチオン交換膜が陰イオンに対して完全に不透過性でな
いため、徐々に陽極室へ不純物アニオンが流入蓄積し、
陽極が損耗されるのを防止するため、陽極室へ常時新し
く不純物を含まない希硫酸を供給し、不純物を含む硫酸
を抜出すようにしたことである。硫酸または酸性硫酸ソ
ーダおよび三硝を中央室22から苛性ソーダを陰極室1
6から抜出し、陽極室21はアニオンとして純粋なS戊
のみを含み、流入する葦硝に含まれる硝酸根、弗素、塩
素等の不純物は陽極室で蓄積されない。本発明に使用さ
れる陽極の材質はチタン、アルミニウムまたはその他の
複合材を基材とする白金被覆電極または白金と白金属の
金属の合金酸化物の被覆電極が望ましい。
Since the cation exchange membrane is not completely impermeable to anions, impurity anions gradually flow into the anode chamber and accumulate.
In order to prevent the anode from being worn out, fresh dilute sulfuric acid containing no impurities is constantly supplied to the anode chamber, and sulfuric acid containing impurities is drawn out. Sulfuric acid or acidic sodium sulfate and trinitrate are transferred from the central chamber 22 and caustic soda is transferred to the cathode chamber 1.
The anode chamber 21 contains only pure S as an anion, and impurities such as nitrate, fluorine, and chlorine contained in the flowing reed sulfate are not accumulated in the anode chamber. The material of the anode used in the present invention is preferably a platinum-coated electrode based on titanium, aluminum or other composite material, or an electrode coated with an alloy oxide of platinum and platinum metal.

廉価な鉛を基材として2%の銀、0.5〜1%のテルル
を含んだ合金材料も使用可能で、特に鉛電極は酸素過電
圧が低いため電解電圧を低くし、コスト低下が達成され
る利点がある。本発明に使用されるカチオン交換膜は通
常公知のものでよいが、イオンの選択性に優れ、鰭気抵
抗の少ない、破裂強度の高い耐食性に優れているものが
望ましく、例えばアメリカ、デュポン社製ナフィオン(
Nafion)等が好適である。
An alloy material containing 2% silver and 0.5 to 1% tellurium based on inexpensive lead can also be used.In particular, lead electrodes have a low oxygen overvoltage, so the electrolysis voltage can be lowered and costs can be reduced. It has the advantage of The cation exchange membrane used in the present invention may be of any known type, but it is preferable to use one that has excellent ion selectivity, low fin air resistance, high bursting strength, and excellent corrosion resistance; for example, one manufactured by DuPont, USA Nafion (
Nafion) etc. are suitable.

また陽極室、中央室および陰極室の間隔はそれぞれ1〜
7柵、好ましくは2〜4帆で、スベースサまたはガスケ
ツトで腰体を支持する。本実施例は電解槽の外形構造が
単一または幾つかのの電解槽を値・並列とした重層構造
であっても差支えない。
Also, the spacing between the anode chamber, central chamber, and cathode chamber is 1 to 1.
7 rails, preferably 2 to 4 sails, supporting the lower body with subbases or gaskets. In this embodiment, the external structure of the electrolytic cell may be a single structure or a multilayered structure in which several electrolytic cells are arranged in parallel.

また本発明は上記排煙脱硫菱鷹よりの副生若硝、その他
のアルカリ金属硫酸塩のみならず、ピスコース法人造繊
維製造工程からの創生三硝、その他化学薬品製造工程か
らの畠。生三硝またはその他の不純物を含有するアルカ
リ金属硫酸塩の電解に使用できることは言うまでもない
。本発明の操業条件として、第3図の場合、陰極気液分
離槽8からは2.0〜2.州のNaOHが、中央室循環
ポンプ20の一部より0.9〜1.が日2S04または
NaHS04が得られた。この場合、陽極は白金被覆電
極、陰極はニッケル系を使用し、電解端子電圧5.W、
電流密度15〜17A′dm2、温度60〜6y0、入
口苧硝濃度1.7〜1.9hoそ′そ、陽極室循環用希
硫酸、2.0〜2.州であり、各室間隔は3〜5脚で電
解電流効率75%以上を得た。
In addition, the present invention applies not only to the by-product young salt from the above-mentioned flue gas desulfurization and other alkali metal sulfates, but also to Sosei Sannit from the piscose corporation fiber manufacturing process and other hatake from the chemical manufacturing process. It goes without saying that it can be used for the electrolysis of raw trinitrate or alkali metal sulfates containing other impurities. In the case of FIG. 3, the operating conditions of the present invention are 2.0 to 2. The state NaOH is 0.9 to 1. However, 2S04 or NaHS04 was obtained. In this case, the anode is a platinum-coated electrode, the cathode is a nickel-based electrode, and the electrolytic terminal voltage is 5. W,
Current density: 15-17A'dm2, temperature: 60-6y0, inlet molasses concentration: 1.7-1.9ho, dilute sulfuric acid for anode chamber circulation, 2.0-2. The electrolytic current efficiency was 75% or more with each chamber spaced between 3 and 5 legs.

陽極材質の消耗状況は良好であった。本発明と通常のイ
オン交換膜法との電極消耗度の比較をすると以下のよう
である。硝酸根100蛇pmを含む20%芝硝液を第2
図に示す従来型の電解槽で電気分解した場合、使用した
白金被覆陽極の白金消耗速度は1.96×10‐2の9
/AHであったのに対し、第3図に示される本発明によ
る電解槽を用いて電気分解した場合、白金の消耗速度は
0.182×10‐2の9′AHであった。
The consumption condition of the anode material was good. A comparison of the degree of electrode wear between the present invention and a conventional ion exchange membrane method is as follows. Add 20% turf nitrate solution containing 100 pm of nitrate root to the second layer.
When electrolyzed in the conventional electrolytic cell shown in the figure, the platinum consumption rate of the platinum-coated anode used was 1.96 x 10-2
/AH, whereas when electrolyzed using the electrolytic cell according to the invention shown in FIG. 3, the consumption rate of platinum was 9'AH of 0.182 x 10-2.

この場合の電流密度は17.松ノdm2であり、前者の
1年当りの白金の消耗量は12.54″に対して後者の
それは1.16仏であり1/10以下の消耗量であるこ
とが確認された。本発明の効果を纏めると次の通りであ
る。(ィ} 排煙脱硫プロセスの創生苧硝の電解装置に
おいて陽極への不純物混入の排除によって陽極の消耗を
防止し、排煙脱硫プロセスのク。
The current density in this case is 17. Matsuno DM2, and the amount of platinum consumed per year in the former is 12.54", while that in the latter is 1.16", which is less than 1/10 of the amount consumed.The present invention The effects of this can be summarized as follows: (a) Creation of flue gas desulfurization process In the ramie electrolyzer, the anode is prevented from being consumed by eliminating impurities in the anode, and the flue gas desulfurization process is improved.

ズドシステム化を容易にし、ランニングコスト、メイン
テナンス(補修)頻度を減少させることができる。{o
)従釆耐食性の面から使用が困難であった鉛ベースの廉
価な陽極を使用し、この酸素過電圧の低いこととあわせ
て電解電圧を低くし、コストを低減することが可能であ
る。
This makes it easy to create a fixed system, and reduces running costs and maintenance (repair) frequency. {o
) It is possible to use an inexpensive lead-based anode, which has been difficult to use due to its corrosion resistance, and to lower the electrolytic voltage in conjunction with its low oxygen overvoltage, thereby reducing costs.

し一 比較的簡単な電解槽の構造によって、アルカリ金
属硫酸塩の経済的な電解方法およびその装置が確立され
た。
An economical method and device for electrolyzing alkali metal sulfates has been established using a relatively simple structure of an electrolytic cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のアルカリ金属硫酸塩の電解
装置、第3図は本発明の不純物を含有するアルカリ金属
硫酸塩の電解装鷹の一実施例、第4図は本発明の原理を
説明する概略図を示す。 1・・・陽極、2・・・陰極、3・・・カチオン交換膜
、4・・・隔膜、6・・・アルカリ金属硫酸塩液投入口
、7・・・陽極気液分離槽、8・・・陰極気液分離槽、
9・・・陽極液循環ポンプ、10・・・陰極液循環ポン
プ、11・・・陽極液戻し口、12・・・陰極液戻し口
、13…陽極液抜出し口、14・・・陰極液抜出し口、
15,21・・・陽極室、16・・・陰極室、17,2
2・・・中央室、20・・・中央室循環ポンプ、24・
・・電解生成物抜出しロ。 第1図 第2図 第3図 第4図
Figures 1 and 2 are conventional electrolyzers for alkali metal sulfates, Figure 3 is an embodiment of the electrolyzer for alkali metal sulfates containing impurities according to the present invention, and Figure 4 is the principle of the present invention. A schematic diagram illustrating this is shown. DESCRIPTION OF SYMBOLS 1... Anode, 2... Cathode, 3... Cation exchange membrane, 4... Diaphragm, 6... Alkali metal sulfate liquid inlet, 7... Anode gas-liquid separation tank, 8...・・Cathode gas-liquid separation tank,
9... Anolyte circulation pump, 10... Cathode solution circulation pump, 11... Anolyte return port, 12... Cathode solution return port, 13... Anolyte extraction port, 14... Cathode solution extraction mouth,
15,21... Anode chamber, 16... Cathode chamber, 17,2
2... Central chamber, 20... Central chamber circulation pump, 24.
...Extraction of electrolytic products. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 陽極、陽極とカチオン交換膜とで隔てられた陽極室
、一対のカチオン交換膜で隔てられた中央室、カチオン
交換膜と陰極とで隔てられた陰極室および陰極より構成
された電解装置を使用し、不純物を含有するアルカリ金
属硫酸塩溶液を中央室より導入し、陽極室に不純物を含
まない希硫酸を充填循環し、中央室より硫酸または酸性
硫酸アルカリおよびアルカリ金属硫酸塩を抜出し、陰極
室より苛性アルカリを抜出すことを特徴とする不純物含
有アルカリ金属硫酸塩の電解方法。 2 不純物に含有するアルカリ金属硫酸塩の電解装置に
おいて、陽極、陽極とカチオン交換膜とで隔てられた陽
極室、一対のカチオン交換膜で隔てられた中央室、カチ
オン交換膜と陰極とで隔てられた陰極室および陰極によ
つて構成され、中央室に不純物を含有するアルカリ金属
硫酸塩溶液の導入口、および生成した硫酸または酸性硫
酸アルカリおよびアルカリ金属硫酸塩の取出口、陽極室
に希硫酸循環装置、陰極室に苛性アルカリ取出口を備え
たことを特徴とする不純物含有アルカリ金属硫酸塩の電
解装置。
[Scope of Claims] 1 Consists of an anode, an anode chamber separated by an anode and a cation exchange membrane, a central chamber separated by a pair of cation exchange membranes, a cathode chamber separated by a cation exchange membrane and a cathode, and a cathode. Using an electrolyzer, an alkali metal sulfate solution containing impurities is introduced from the central chamber, and the anode chamber is filled with dilute sulfuric acid containing no impurities and circulated. A method for electrolyzing impurity-containing alkali metal sulfates, which is characterized by extracting salt and extracting caustic alkali from a cathode chamber. 2. In an electrolyzer for alkali metal sulfate contained in impurities, an anode, an anode chamber separated by an anode and a cation exchange membrane, a central chamber separated by a pair of cation exchange membranes, and a cation exchange membrane separated by a cathode. The central chamber has an inlet for an alkali metal sulfate solution containing impurities, an outlet for the generated sulfuric acid or acidic sulfuric acid alkali and alkali metal sulfate, and a dilute sulfuric acid circulation in the anode chamber. An electrolyzer for an alkali metal sulfate containing impurities, characterized in that the cathode chamber is equipped with a caustic alkali outlet.
JP54082405A 1979-06-28 1979-06-28 Alkali metal sulfate electrolysis method and device Expired JPS6040512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54082405A JPS6040512B2 (en) 1979-06-28 1979-06-28 Alkali metal sulfate electrolysis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54082405A JPS6040512B2 (en) 1979-06-28 1979-06-28 Alkali metal sulfate electrolysis method and device

Publications (2)

Publication Number Publication Date
JPS565985A JPS565985A (en) 1981-01-22
JPS6040512B2 true JPS6040512B2 (en) 1985-09-11

Family

ID=13773675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54082405A Expired JPS6040512B2 (en) 1979-06-28 1979-06-28 Alkali metal sulfate electrolysis method and device

Country Status (1)

Country Link
JP (1) JPS6040512B2 (en)

Also Published As

Publication number Publication date
JPS565985A (en) 1981-01-22

Similar Documents

Publication Publication Date Title
US4416747A (en) Process for the synthetic production of ozone by electrolysis and use thereof
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
CN110616438B (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
JP2003531300A (en) Electrolysis cell and electrolysis method
JPH04191387A (en) Electrolytic ozone generating method and device
US4279712A (en) Method for electrolyzing hydrochloric acid
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
US4279711A (en) Aqueous electrowinning of metals
US4357224A (en) Energy efficient electrolyzer for the production of hydrogen
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH10291808A (en) Production method of aqueous hydrogen peroxide and device therefor
US5225054A (en) Method for the recovery of cyanide from solutions
JPS6040512B2 (en) Alkali metal sulfate electrolysis method and device
FI82486B (en) SELECTIVE AVLAEGSNANDE AV KLOR UR KLORDIOXID OCH KLOR INNEHAOLLANDE LOESNINGAR.
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
JPS622036B2 (en)
JP3304221B2 (en) Method for removing chlorate from aqueous alkali chloride solution
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JP2000351622A (en) Production of titanium (iii) sulfate
Hine et al. FLOWSHEET AND REACTION SEQUENCE A proposed flowsheet is illustrated in Fig. 1. Concentrated and
JP4062917B2 (en) Method for producing sodium hydroxide
JPH09217185A (en) Three-chamber based electrolytic cell