JPS6040224B2 - Abnormality detection device in synchronous communication control equipment - Google Patents

Abnormality detection device in synchronous communication control equipment

Info

Publication number
JPS6040224B2
JPS6040224B2 JP54073192A JP7319279A JPS6040224B2 JP S6040224 B2 JPS6040224 B2 JP S6040224B2 JP 54073192 A JP54073192 A JP 54073192A JP 7319279 A JP7319279 A JP 7319279A JP S6040224 B2 JPS6040224 B2 JP S6040224B2
Authority
JP
Japan
Prior art keywords
timing signal
output
abnormality detection
flip
flop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54073192A
Other languages
Japanese (ja)
Other versions
JPS55165054A (en
Inventor
雄司 貞国
正仁 日原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP54073192A priority Critical patent/JPS6040224B2/en
Publication of JPS55165054A publication Critical patent/JPS55165054A/en
Publication of JPS6040224B2 publication Critical patent/JPS6040224B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は、同期用変復調装置を使用してデータ通信を行
なう通信制御装置における異常検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an abnormality detection device in a communication control device that performs data communication using a synchronization modem device.

データ信号とタイミング信号を用いて信号ビットの組立
分解を行なう形式の同期式通信制御装置ではタイミング
信号が欠除すると送受信不能となる。
In a synchronous communication control device of the type that assembles and disassembles signal bits using a data signal and a timing signal, if the timing signal is missing, transmission and reception become impossible.

即ちこの方式では受信に際しては第1図に示すように受
信データRDおよび受信ェレメントタィミング信号RT
を各々の信号線から取り込み、タイミング信号RTの各
立下りで受信データRDを読んで、日,Lつまり1,0
データを出力し(受信データのビット組立て)、また送
信に際しては送信ェレメントタィミング信号STの各立
上りで送信データSDをモデムへ送り込むが、これらの
タイミング信号に異常が発生すると正常なデータ通信は
保証されない。特にこれらのタイミング信号が停止する
とビット組立またはビット分解回路が動作しないためデ
ータ送受信は行なわれず、回線ハング状態を招く。そこ
で従来の通信制御装置ではプログラムへ発する各文字処
理要求の時間を監視して、または変復調装置からのキャ
リャ断を検知して受信タイミング信号の停止を検出して
いた。
That is, in this method, upon reception, as shown in FIG.
from each signal line, read the received data RD at each falling edge of the timing signal RT, and read the received data RD at each falling edge of the timing signal RT.
Data is output (assembles bits of received data), and during transmission, transmit data SD is sent to the modem at each rising edge of the transmit element timing signal ST, but if an abnormality occurs in these timing signals, normal data communication cannot be guaranteed. Not done. In particular, when these timing signals stop, the bit assembly or bit disassembly circuit does not operate, so data is not transmitted or received, resulting in a line hang condition. Therefore, conventional communication control devices detect the stoppage of the reception timing signal by monitoring the time of each character processing request issued to the program or by detecting a carrier disconnection from the modulation/demodulation device.

即ち前者の場合は、タイミング信号によりビットを粗立
ててゆき、これが例えばバイト分の8ビットになるとプ
ログラムに対し文字処理要求を出すが、正常ならこの文
字処理要求の上がる時間間隔は所定時間内にあるが、タ
イミング信号異常によりビット組立てが予定通り進行し
ないと上記間隔が異常に長くなり、これを検出すればタ
イミング信号異常を知ることができる。また後者の場合
は、モデムからは通信制御装置CCSへキヤリヤディテ
クト信号CDを送っているがモデムが異常例えば電源断
になるとこのCD信号も消滅するから、このCD信号を
見ていることにより受信タイミング信号の欠除を知るこ
とができる。なおこの場合CCU内蔵のクロツクをタイ
ミング信号として用いビット組立てを続行してハングア
ップを避けることが考えられているが、タイミング信号
の切襖に際しずれが入り(該クロックと受信ェレメント
タィミング信号とは非同期であるから)ビットエラーを
起こす煩向がある。またこの方式ではタイミング信号の
切換えは自動的に行なわれてしまい、受信ェレメントタ
ィミング信号が正常なら(正常に変ると)切換えは行な
われず、このためビットエラーがあってもそれが何の原
因で生じたのか分らず、原因究明に多くの時間を要して
しまう。また前記の時間監視の方法ではプログラムに該
時間監視を行なう為の処理ステップを組込む必要があり
、時間監視動作に時間を要し、なおかつ通信速度には各
種あるのでその速度に応じて監視時間を変える必要があ
り、これを全てプログラムで制御するとなるとプログラ
ムが複雑になり過ぎるので通信速度に対応したタイマ値
の設定はハードウェアで行なうことになり、ハードウェ
ア量の増大を招く。また送信側ではキャリャ断の検出は
できないので専ら時間監視の方法に依っている。本発明
はタイミング信号の有無を直接的に検知し、タイミング
信号が喪失したらその旨を直ちにプログラムに通知する
That is, in the former case, the bits are coarsened by a timing signal, and when the number of bits reaches, for example, 8 bits, a character processing request is issued to the program. Normally, the time interval at which this character processing request is raised is within a predetermined time. However, if the bit assembly does not proceed as planned due to an abnormality in the timing signal, the above-mentioned interval becomes abnormally long, and if this is detected, the abnormality in the timing signal can be known. In the latter case, the modem sends a carrier detect signal CD to the communication control device CCS, but if the modem is abnormal, for example, the power is cut off, this CD signal will also disappear, so you can receive it by watching this CD signal. Missing timing signals can be detected. In this case, it is considered to continue bit assembly using the CCU's built-in clock as a timing signal to avoid hang-ups, but there is a discrepancy when the timing signal is cut (the clock and the receiving element timing signal are different). (because it is asynchronous) it tends to cause bit errors. In addition, in this method, the timing signal is automatically switched, and if the receiving element timing signal is normal (changes normally), switching is not performed, so even if there is a bit error, it does not matter what the cause is. It is unclear whether the problem occurred and it takes a lot of time to investigate the cause. In addition, in the above-mentioned time monitoring method, it is necessary to incorporate a processing step to perform the time monitoring into the program, and the time monitoring operation requires time. Furthermore, since there are various communication speeds, the monitoring time must be adjusted according to the speed. If all of this were to be controlled by a program, the program would become too complex, so the setting of the timer value corresponding to the communication speed would have to be done by hardware, which would lead to an increase in the amount of hardware. Furthermore, since it is not possible to detect carrier interruption on the transmitting side, the method relies exclusively on time monitoring. The present invention directly detects the presence or absence of a timing signal and immediately notifies the program if the timing signal is lost.

このようにすれば1バイトが構成される迄(実際には余
裕を持たせてそれ以上の時間)待つ必要はなく、その1
,2ビットの短時間でタイミング信号喪失を検知するこ
とができる。また送信側および受信側に利用でき、半二
重通信の場合には両者に共用できる。次に第2図に示す
実施例を参照してこれを詳細に説明する。第2図で1は
受信ェレメントまたは送信ェレメント各タイミング信号
2の異常検出用のクロックで、信号2の4倍以上の周波
数を持つ。
In this way, there is no need to wait until one byte is constructed (actually longer, with some extra time);
, 2 bits, it is possible to detect the timing signal loss in a short time. It can also be used on both the transmitting side and the receiving side, and can be shared by both in the case of half-duplex communication. Next, this will be explained in detail with reference to the embodiment shown in FIG. In FIG. 2, 1 is a clock for detecting an abnormality in each timing signal 2 of the receiving element or the transmitting element, and has a frequency four times or more that of the signal 2.

タイミング信号2の周波数は通信速度により変るからク
ロックーの周波数は予想される最も高い通信速度に対す
る信号2の周波数の4倍以上とする。′3,4はフリッ
プフロップで、タイミング信号2またはフリツプフロツ
プ3のQ出力をクロツク1のタイミングで読み込む。5
は排他的オア(EOR)ゲートであり、フリツプフロツ
プ4のQ出力およびフリップフロップ3のQ出力を受け
、これらが不一致のとき1、一致するとき0の出力を生
じる。
Since the frequency of the timing signal 2 changes depending on the communication speed, the frequency of the clock should be at least four times the frequency of the signal 2 for the highest expected communication speed. Flip-flops '3 and 4 read the timing signal 2 or the Q output of the flip-flop 3 at the timing of the clock 1. 5
is an exclusive OR (EOR) gate which receives the Q output of flip-flop 4 and the Q output of flip-flop 3, and produces an output of 1 when they do not match and 0 when they match.

6はカゥンタであり、ク。6 is a counter and ku.

ック1を計数し、EOR5の“0”出力をパラレルイネ
ーブル端子PEに受けるときリセットされる。7は異常
検出フラグを上げるためのフリツプフロツプ、12はオ
アゲートである。
It counts 1 and is reset when the "0" output of EOR5 is received at the parallel enable terminal PE. 7 is a flip-flop for raising an abnormality detection flag, and 12 is an OR gate.

第3図を参照しながらこの回路の動作を説明すると、ク
ロック1およびタイミング信号2を第3図の1,2とす
ると、クロック1の立上りで信号講取りを行なうとして
フリップフロップ3のQ,Q出力は第3図の3,3、フ
リップフロップ4の出力は同図4となる。
The operation of this circuit will be explained with reference to FIG. 3. If clock 1 and timing signals 2 are 1 and 2 in FIG. The output is 3, 3 in FIG. 3, and the output of the flip-flop 4 is 4 in the same figure.

タイミング信号2の日,L切換点でフリップフロップ3
のQ出力とフリップフロツプ4のQ出力はいずれもHレ
ベルとなり、EOR5の出力は‘‘0”となってカウン
夕6をリセットする。カウンタ6のビット数はタイミン
グ信号2とクロックーの周波数比、本例では4、以上に
しておくとカウンタ6はオーバーフローする前にリセッ
トされてしまう。これに反してタイミング信号2が点線
で示すようにHレベルに固定されてしまうとフリツプフ
ロツプ3のQ出力はL、フリップフロップ4のQ出力は
H従ってEOR5の出力は“1”即ちリセットせずの状
態が4クロック以上継続して続き、カウンタ6はオーバ
ーフローする。タイミング信号2がLレベルに固定され
てしまった場合も同様であり、このタイミング信号がH
またはL‘こ固定されるということはタイミング信号の
停止に他ならないからこの3〜6の回路によりタイミン
グ信号2の有無を検出することができる。またこのタイ
ミング信号異常の検出時点はカゥンタ6のオーバーフロ
ーする迄の計数値の調整により調節でき、最も速くする
場合はクロック1の1ビットオーバ時点で検出出力を生
じることができ、これは従来の時間監視方式の1バイト
組立時間以上の時間経過で異常検出する方式に比べて格
段に速い。なおクロックーの周波数をタイミング信号2
のそれの4倍以上にするのは、クロックとタイミング信
号とは非同期であり、第3図の波形図からも予想できる
ようにタイミング信号2の端部で最大2クロック程度は
費してしまう(この間カウン夕はリセット)からである
。カウンタ6がオーバーフローするとその出力はワリッ
プフロップ7のクロック端子に入り、入力信号の“1”
を取込ませる。従ってこのフリップフロップ7のQ出力
は“1”となり、これが異常検出フラグ10となる。ま
たこのQ出力はオアゲート12を通って文字処理要求フ
ラグ11となり、プログラムに文字処理をするよう(こ
の場合は異常検出フラグ10を読取るよう)割込みをか
ける。この結果フラグ10が読取られると異常検出受付
信号8がフリツプフロツプ7に入り、これをリセットす
る。オアゲート12には信号9も入力し、これはタイミ
ング信号が正常な場合の文字処理要求となる。このタイ
ミング信号異常検出回路は全二重通信の場合は送信側、
受信側の各々に設けるが、半二重通信の場合は送受信が
異なる時間で行なわれるので、タイミング信号2の入力
回路にマルチプレクサを設けたりして送信用、受信用各
タイミング信号の異常検出に共用できる。
On the day of timing signal 2, flip-flop 3 is activated at the L switching point.
The Q output of the flip-flop 4 and the Q output of the flip-flop 4 both become H level, and the output of the EOR 5 becomes ``0'', resetting the counter 6. The number of bits of the counter 6 is determined by the frequency ratio of the timing signal 2 and the clock signal, and the frequency ratio of the timing signal 2 and the clock. In the example, if the value is 4 or more, the counter 6 will be reset before it overflows.On the other hand, if the timing signal 2 is fixed at the H level as shown by the dotted line, the Q output of the flip-flop 3 will be L, The Q output of the flip-flop 4 is H, so the output of the EOR 5 is "1", that is, the state of not being reset continues for more than 4 clocks, and the counter 6 overflows.If the timing signal 2 is fixed at the L level is the same, and this timing signal is H
Alternatively, since the fact that L' is fixed means that the timing signal is stopped, the presence or absence of the timing signal 2 can be detected by these 3 to 6 circuits. Furthermore, the timing signal abnormality detection point can be adjusted by adjusting the count value until the counter 6 overflows, and in the fastest case, the detection output can be generated at the point of 1 bit overflow of clock 1, which is different from the conventional timing signal. This is much faster than the monitoring method, which detects an abnormality after the time elapses to assemble one byte. Note that the frequency of the clock is set to timing signal 2.
The reason why the clock and timing signal are asynchronous is that the clock and timing signal are asynchronous, and as can be expected from the waveform diagram in Figure 3, a maximum of about 2 clocks are consumed at the end of timing signal 2 ( During this time, the counter is reset). When the counter 6 overflows, its output goes to the clock terminal of the wallip flop 7, and the input signal becomes "1".
Incorporate. Therefore, the Q output of this flip-flop 7 becomes "1", which becomes the abnormality detection flag 10. Further, this Q output passes through the OR gate 12 and becomes the character processing request flag 11, which interrupts the program to perform character processing (in this case, to read the abnormality detection flag 10). When the flag 10 is read as a result, an abnormality detection acceptance signal 8 is input to the flip-flop 7 and reset. A signal 9 is also input to the OR gate 12, which is a character processing request when the timing signal is normal. This timing signal abnormality detection circuit is used on the transmitting side in the case of full-duplex communication.
It is provided on each receiving side, but in the case of half-duplex communication, transmission and reception are performed at different times, so a multiplexer is provided in the input circuit of timing signal 2, and it is shared for abnormality detection of each timing signal for transmission and reception. can.

以上の説明から明らかなように本発明によればプログラ
ムには格別の負担はかけないからその処理ステップ、処
理時間の軽減が図られ、またハ−ドウェア量を削減でき
、しかもタイミング信号の異常が直ちに発見でき、きめ
細かなサービスができる。
As is clear from the above explanation, according to the present invention, since no particular burden is placed on the program, the processing steps and processing time can be reduced, the amount of hardware can be reduced, and anomalies in timing signals can be avoided. It can be found immediately and provides detailed service.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタイミング信号の説明図、第2図は本発明の実
施例を示すブロック図、第3図は動作説明用の波形図で
ある。 図面で、3と4,5、および6は異常検出回路のフリッ
プフロップ、論理ゲート、およびカウンタ、7は割込み
信号発生用のフリップフロツプである。 第1図 第2図 第3図
FIG. 1 is an explanatory diagram of timing signals, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a waveform diagram for explaining the operation. In the drawing, 3, 4, 5, and 6 are flip-flops, logic gates, and counters of an abnormality detection circuit, and 7 is a flip-flop for generating an interrupt signal. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 送信または受信各エレメントタイミング信号の4倍
以上の周波数を持つクロツクで動作し、該タイミング信
号の周期的変化で出力を生じるフリツプフロツプおよび
論理ゲートと、該クロツクを計数し、前記出力でリセツ
トされ、前記タイミング信号が周期的変化を停止したと
きオーバーフローするカウンタからなる異常検出回路と
、 該カウンタのオーバーフロー出力でセツトされるフ
リツプフロツプを備え、該出力を受けるときプログラム
割込み信号を発生する割込み信号発生回路とを備えるこ
とを特徴とした同期方式の通信制御装置における異常検
出装置。
1. A flip-flop and a logic gate that operate with a clock having a frequency four times or more higher than that of each transmitting or receiving element timing signal and that generates an output based on periodic changes in the timing signal, and that count the clock and are reset by the output, an abnormality detection circuit comprising a counter that overflows when the timing signal stops changing periodically; and an interrupt signal generation circuit that includes a flip-flop that is set by the overflow output of the counter and generates a program interrupt signal when receiving the output. An abnormality detection device in a synchronous communication control device, characterized by comprising:
JP54073192A 1979-06-11 1979-06-11 Abnormality detection device in synchronous communication control equipment Expired JPS6040224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54073192A JPS6040224B2 (en) 1979-06-11 1979-06-11 Abnormality detection device in synchronous communication control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54073192A JPS6040224B2 (en) 1979-06-11 1979-06-11 Abnormality detection device in synchronous communication control equipment

Publications (2)

Publication Number Publication Date
JPS55165054A JPS55165054A (en) 1980-12-23
JPS6040224B2 true JPS6040224B2 (en) 1985-09-10

Family

ID=13511021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54073192A Expired JPS6040224B2 (en) 1979-06-11 1979-06-11 Abnormality detection device in synchronous communication control equipment

Country Status (1)

Country Link
JP (1) JPS6040224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271427U (en) * 1988-11-16 1990-05-31
JPH0414020U (en) * 1990-05-08 1992-02-04

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136155A (en) * 1982-02-06 1983-08-13 Ricoh Co Ltd Failure detection system of modem system in facsimile device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271427U (en) * 1988-11-16 1990-05-31
JPH0414020U (en) * 1990-05-08 1992-02-04

Also Published As

Publication number Publication date
JPS55165054A (en) 1980-12-23

Similar Documents

Publication Publication Date Title
US7657691B2 (en) Simplified universal serial bus (USB) hub architecture
JPH07177130A (en) Error count circuit
JPH0612906B2 (en) How to communicate data
EP0090019B1 (en) Multiple source clock encoded communications error detection circuit
US4811277A (en) Communication interface
US5642391A (en) Method and apparatus for monitoring channel performance on a channel using alternate mark inversion protocols
JPS6040224B2 (en) Abnormality detection device in synchronous communication control equipment
GB2080076A (en) Improvements in or relating to timing circuits for pcm reception
CN109525350B (en) Module synchronization control method based on asynchronous serial port synchronization source
JPS6239581B2 (en)
JP2573210B2 (en) Communications system
KR100286536B1 (en) Arbitration apparatus of transrmission for multidrop communication system
JP3436593B2 (en) Data communication device
JPH02295325A (en) Data monitoring device
KR100229967B1 (en) A majority voting detection method using undersampling
JP2736820B2 (en) Data communication device interface circuit
JP2970690B2 (en) Synchronous control circuit
JPH0153541B2 (en)
JP3114433B2 (en) Communication terminal device
JP2002094512A (en) Fault detection method and interface unit and cell switch unit
JPH0624395B2 (en) Data communication device
JPH0137891B2 (en)
JPS5941623B2 (en) Line monitoring method
JPS6059415A (en) Clock-off detecting circuit
JPS6072355A (en) On-line off-line detecting system