JPS6039826A - Formation of semiconductor active layer - Google Patents

Formation of semiconductor active layer

Info

Publication number
JPS6039826A
JPS6039826A JP58147532A JP14753283A JPS6039826A JP S6039826 A JPS6039826 A JP S6039826A JP 58147532 A JP58147532 A JP 58147532A JP 14753283 A JP14753283 A JP 14753283A JP S6039826 A JPS6039826 A JP S6039826A
Authority
JP
Japan
Prior art keywords
heat treatment
film
layer
insulating film
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58147532A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Masaaki Kuzuhara
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58147532A priority Critical patent/JPS6039826A/en
Publication of JPS6039826A publication Critical patent/JPS6039826A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable to attain a high ion activation ratio when a semiconductor active layer is to be formed by a method wherein a silicon oxynitride film is adhered on one main surface of a compound semiconductor, and after crystal defects are formed previously by performing heat treatment, impurity ions are implanted. CONSTITUTION:A first insulating film 2 of silicon oxynitride (SiOxNy) film is adhered on a semiinsulating GaAs substrate 1, and when heat treatment is performed, Ga, which is one of the component elements of the semiinsulating GaAs substrate, diffuses through the SiOxNy during heat treatment, and hollow holes of Ga are left in the semiinsulating GaAs substrate. Then, after the insulating film 2 is removed, an Si ion implanted layer 3 is formed, and a second insulating film 4 of Si3N4 film is adhered. The Si3N4 film is grown according to the thermal decomposition method using reaction gas of SiH4-NH3. The Si3N4 film never pass Ga nor As during heat treatment. Then second heat treatment is performed to convert the Si ion implanted layer 2 into an N type GaAs layer 5.

Description

【発明の詳細な説明】 本発明は半導体活性層、くわしくはガリウム砒素活性層
をイオン注入法によシ形成する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a semiconductor active layer, particularly a gallium arsenide active layer, by ion implantation.

近年、半導体集積回路(ICと略す)の高速化を目的と
して、ガリウム砒素(GaAs と略−J−)を半導体
として用いた、いわゆるGaAsl0の開発が各所で活
発に行なわれている。かかるGaんSICの製作におい
ては、GaAsl0の基本素子である電界効果トランジ
スタ、ダイオード等の高性能化を計るために、低抵抗を
実現する高キャリア濃度層の形成方法の開発に大き力努
力が注がれている。従来、かかる高キャリア濃度層の形
成方法として、その均一性、制御性、量産的見地から、
イオン注入法が用いられている。一般に、イオン注入法
においては、注入した不純物を活性化するために熱処理
工程を必要とするが、注入した不純物が、かかる熱処理
工程において熱拡散を起し、イオン注入法の利点である
注入不純物分布の制御性を損うことになる。従って熱処
理工程中において熱拡散係数の小さな不純物を注入不純
物として選択する必要がある。例えば、イオン注入法に
よシ、n形GaAs層を形成する場合熱拡散係数の小さ
なシリコン(Si&と略カを用いることが多い。
In recent years, with the aim of increasing the speed of semiconductor integrated circuits (abbreviated as IC), so-called GaAsl0, which uses gallium arsenide (GaAs, abbreviated as -J-) as a semiconductor, has been actively developed in various places. In the production of such GaSIC, great efforts are being made to develop a method for forming a high carrier concentration layer that achieves low resistance in order to improve the performance of field effect transistors, diodes, etc., which are the basic elements of GaAsl0. It's broken. Conventionally, from the viewpoint of uniformity, controllability, and mass production, methods for forming such a high carrier concentration layer have been used.
An ion implantation method is used. Generally, the ion implantation method requires a heat treatment process to activate the implanted impurity, but the implanted impurity causes thermal diffusion during the heat treatment process, which is an advantage of the ion implantation method. This will impair controllability. Therefore, it is necessary to select an impurity with a small thermal diffusion coefficient as the implanted impurity during the heat treatment process. For example, when forming an n-type GaAs layer by ion implantation, silicon (Si&), which has a small thermal diffusion coefficient, is often used.

しかしながら、SiはGaサイトに入ってドナーとなり
、ASサイトに入ってアクセプタとなる不細物すなわち
両性不純物であるため、n形GaAs層のイオン注入法
による形成はイオン注入を行なう基体としてのGaAs
基板の結晶欠陥、例えばストイキオメトリ、微細な結晶
性の影響を受けるとともに、熱処理時における保護膜の
影響とシわけ熱処理時の保護膜とGaAsとの固相反応
もしくは各構成元素の、用互拡散ρ影響を受ける。従っ
て、Siイオン注入によりn形GaAs層を形成する場
合、熱処理中に8i0zとGaAsとの反応の程度をあ
らかじめ考慮しておき、あえて保護膜として8i02を
用いるか、あるいは、GaAsとの反応が非常に少ない
シリコンナイトライド(silN4と略す)を保護膜と
して用いることが多い。しかしながら、5i02保膿膜
を用いた場合には、GaAsの構成元素であるGaがG
 i 02中を拡散するために、熱処理中にG a A
 sのストイキオメトリが大きくくずれ、結晶性を損う
ためにかえって注入した8iの活性化を阻む要1となる
。一方、Si3N4保獲膜を用いた場合には、熱処理中
において、GaがSi3N4中に拡散することがないた
めに、注入されたSiがGaザイトを占拠する確率が小
さくなシ、注入したSiの活性化率が向上しない原因と
なっている。
However, since Si is an impurity, i.e., an amphoteric impurity, which enters the Ga site and becomes a donor and enters the AS site and becomes an acceptor, the formation of an n-type GaAs layer by ion implantation is difficult because Si is a GaAs substrate for ion implantation.
In addition to being affected by crystal defects in the substrate, such as stoichiometry and fine crystallinity, it is also affected by the effect of the protective film during heat treatment, the solid phase reaction between the protective film and GaAs during wrinkle heat treatment, or the interaction of each constituent element. Affected by diffusion ρ. Therefore, when forming an n-type GaAs layer by Si ion implantation, the degree of reaction between 8i0z and GaAs during heat treatment should be considered in advance, and 8i02 should be intentionally used as a protective film, or if the reaction with GaAs is extremely strong. Silicon nitride (abbreviated as silN4), which has a small amount of silicon, is often used as a protective film. However, when using the 5i02 purulent membrane, Ga, which is a constituent element of GaAs, is
During heat treatment, G a A
The stoichiometry of s is greatly disrupted, and this becomes the key point 1 that impedes the activation of 8i, which is implanted to impair crystallinity. On the other hand, when a Si3N4 retention film is used, Ga does not diffuse into Si3N4 during heat treatment, so the probability that the implanted Si occupies the Gasite is small. This is the reason why the activation rate does not improve.

本発明の目的は、イオン注入法により高い活性化率を達
成することができる半導体活性層形成方法を提供しよう
とすることにある。
An object of the present invention is to provide a method for forming a semiconductor active layer that can achieve a high activation rate using an ion implantation method.

本発明によれば化合物半導体基板に不純物をイオン注入
せしめた後、これを熱処理によって活性化せしめて半導
体活性層を形成する方法において、化合物半導体の一面
にシリコンオキシナイトライド膜を被着させて熱処理を
行ない、前記化合物半導体基板内にあらかじめ結晶欠陥
を形成した後前記不純物をイオン注入せしめ、これを熱
処理によって活性化せしめることを特徴とする半導体活
性層の形成方法が得られる。
According to the present invention, in a method of ion-implanting impurities into a compound semiconductor substrate and then activating it by heat treatment to form a semiconductor active layer, a silicon oxynitride film is deposited on one surface of the compound semiconductor and then heat-treated. A method for forming a semiconductor active layer is obtained, which comprises forming crystal defects in the compound semiconductor substrate in advance, then ion-implanting the impurity, and activating the impurity by heat treatment.

以下に本発明の一実施例を従来方法による例と対比させ
て説明する。第1図は本発明の一実施例を説明するため
の図で、第2図は従来例を説明するだめの図である。第
1図、第2図において、1は半絶縁性G a A S 
% 2は第1の絶縁膜、3はSiイオン注入層、4は第
2の絶縁膜、5はn形G a A s層、6は保護膜で
ある。、従来の方法は第1図(a)に示すように、まず
半絶縁性G a A s 1にSiイオンを注入しSi
イオン注入層3を作り次に、第2図(b)に示すように
Siイオン注入層3を覆って、例えば5i02もしくは
Si3N4なる保頴膜6を被着した後、第1図(C)に
示すように、例えば850℃ 15分の条件で熱処理を
行ないSiイオン注入層3をn形GaAs層5に変換す
る。
An embodiment of the present invention will be described below in comparison with an example using a conventional method. FIG. 1 is a diagram for explaining one embodiment of the present invention, and FIG. 2 is a diagram for explaining a conventional example. In Figs. 1 and 2, 1 is semi-insulating G a A S
% 2 is a first insulating film, 3 is a Si ion implantation layer, 4 is a second insulating film, 5 is an n-type GaAs layer, and 6 is a protective film. As shown in FIG. 1(a), the conventional method is to first implant Si ions into the semi-insulating GaAs 1.
After forming the ion implantation layer 3 and depositing a protective film 6 of, for example, 5i02 or Si3N4 to cover the Si ion implantation layer 3 as shown in FIG. 2(b), as shown in FIG. 1(C). As shown, the Si ion implanted layer 3 is converted into an n-type GaAs layer 5 by heat treatment at 850° C. for 15 minutes, for example.

これに対して本発明による方法は、先ず第2図(a)に
おいて、まず、半絶縁性GaAs1上にシリコンオキシ
ナイトライド(SiOxNyと略す)なる第1の絶縁膜
2を被着する。8i0xNyは通常モノシラン(SiH
4と略す)−アンモニア(N)I 3と略す)−酸素(
02と略す)の反応ガス系を用いて、熱分解法により6
50℃〜700℃の温度で半絶縁性G a A s上に
被着されるが、S i H4、NH3に対する02の流
量比を変えることによりSiOxNyのXの値を0から
2まで、一方yの値を百から0まで変化させ、SiOx
Nyの組成を制御することができる。次に、例えば80
0℃、20分の熱処理を行々うと、半絶縁性G a A
、sの構成元素の1つであるGaが熱処理中に8i0x
Nyを通して拡散し半絶縁性GaAs中にGaの空孔を
残す。このSiOxNyを通して出るGaO量は、主に
SiOxNyの中の酸素0の量すなわちXの景に依存し
、Xの値が大きい程Gaは放出され易くなる。従ってS
iOxNyの中のXを適尚に制御することによりGaの
空孔の量を制御しうる。実用的にはSiOxNyの組成
を測定評価しなくともSiOxNyの2つの特定の膜す
なわちSiO”2と8iaN4との屈折率の間にSiO
xNy の組成の屈、17j率は分布し、0が多いほど
5i02の屈折率1.45に近づき、Nが多い程Si3
N4の屈折率2.0に近づくため、8i0xNyの屈折
率をモニターとして用いることができる。
In contrast, in the method according to the present invention, first, as shown in FIG. 2(a), a first insulating film 2 made of silicon oxynitride (abbreviated as SiOxNy) is deposited on the semi-insulating GaAs 1. 8i0xNy is usually monosilane (SiH
4) - Ammonia (N) I 3) - Oxygen (
6 by the pyrolysis method using a reaction gas system (abbreviated as 02).
Deposited on semi-insulating GaAs at temperatures between 50 and 700 degrees Celsius, the value of X of SiOxNy can be varied from 0 to 2 while changing the value of By changing the value of from 100 to 0, SiOx
The composition of Ny can be controlled. Next, for example, 80
When heat treatment is performed at 0°C for 20 minutes, semi-insulating Ga A
, Ga, one of the constituent elements of s, becomes 8i0x during heat treatment.
Diffusion through the Ny leaving Ga vacancies in the semi-insulating GaAs. The amount of GaO released through this SiOxNy mainly depends on the amount of oxygen 0 in SiOxNy, that is, the aspect of X, and the larger the value of X, the easier Ga is released. Therefore, S
By appropriately controlling X in iOxNy, the amount of Ga vacancies can be controlled. Practically speaking, even if the composition of SiOxNy is not measured and evaluated, there is a difference between the refractive index of two specific films of SiOxNy, that is, SiO"2 and 8iaN4.
The refractive index of the composition of xNy is distributed, and the more 0 there is, the closer it is to the refractive index of 5i02, 1.45, and the more N, the more Si3
Since the refractive index of N4 approaches 2.0, the refractive index of 8i0xNy can be used as a monitor.

次に、第2図←)に示すように、第1の絶縁膜を通して
、もしくは、第1の絶縁膜を除去して後29Si+4オ
ン1150KeVのエネルギーでドーズ景7X1013
cm−2注入し、Siイオン注入層3を形成する。次に
第2図(C)に示すようにStイオン注入層をSi3N
4なる第2の絶縁膜を被着する。
Next, as shown in Fig. 2 ←), the dose profile 7X1013 is applied through the first insulating film or after removing the first insulating film, using 29Si+4 on with an energy of 1150 KeV.
cm-2 is implanted to form a Si ion implantation layer 3. Next, as shown in FIG. 2(C), the St ion implantation layer was replaced with Si3N.
A second insulating film No. 4 is deposited.

S二3N4はS 1H4−NH3の反応ガス系を用いて
熱分解法により650℃〜700℃の濁度で成長する。
S23N4 is grown at a turbidity of 650°C to 700°C by a thermal decomposition method using a reaction gas system of S1H4-NH3.

Si3N4は熱処理中にGaもAsも通すことはない。Si3N4 does not allow Ga or As to pass through during heat treatment.

次に第2図(d)に示すように、例えば850℃、15
分の条件で第2の熱処理を行々い、Siイオン注入層2
をn形GaAs GaA、s層5に変える。この時n形
GaAs層のキャリア濃度は注入されたSiがどの程度
活性化しているか、すなわちStがどの位Gaサイトを
占めているかに依る。従っ\ て前述したごとく、前もってGaの空孔を作っておくこ
とにより注入された8iが熱処理中に()aサイトラ占
める割合が増すと共に、この割合は主にGaの空孔の量
に比例すると共にそれにより制御されるので、基板の結
晶性の影響を受けることが少なくなる。本発明の効果は
形成されたn形GaAs1のキャリア濃度プロファイル
を調べること罠より示すことができる。第3図は、本発
明によるn形G a A s層と従来方法によるn形G
aAs層とのキャリア濃度プロファイルの比較を示した
ものであり、縦軸はキャリア濃度度を横軸は表面からの
深さを示し、破約は注入Siの濃度分布を示す。
Next, as shown in FIG. 2(d), for example, at 850°C, 15
A second heat treatment is performed under the conditions of
is changed to an n-type GaAs GaA, s layer 5. At this time, the carrier concentration of the n-type GaAs layer depends on how much the implanted Si is activated, that is, how many Ga sites are occupied by St. Therefore, as mentioned above, by creating Ga vacancies in advance, the ratio of the injected 8i to the ()a site increases during heat treatment, and this ratio is mainly proportional to the amount of Ga vacancies. Since the crystallinity of the substrate is controlled by this, it is less affected by the crystallinity of the substrate. The effects of the present invention can be demonstrated by examining the carrier concentration profile of the formed n-type GaAs1. FIG. 3 shows an n-type Ga As layer according to the present invention and an n-type Ga As layer according to the conventional method.
It shows a comparison of the carrier concentration profile with the aAs layer, where the vertical axis shows the carrier concentration, the horizontal axis shows the depth from the surface, and the breakdown shows the concentration distribution of implanted Si.

第3図に示すように、5i02保護膜を用いた従来方法
によるn形GaA、s層のキャリア濃度プロファイルA
は、表面側で活性化されておらず、これが熱処理中に多
叶のGaがS i 02膜を通して抜は出たことによる
結晶性の劣化によるものであることを顕著に示している
。第3図のキャリア濃度プロファイルB id S i
 3N 4保護膜を用いた従来方法に上るn JU G
a As層のものであり、キャリア6度プロファイルC
は注入前に前もってGa空孔を形成しておいた本発明(
(なるn形GaAs、Itf?のものである。第3図に
示すキャリア濃度プロファイルA1B10から判るよう
に、本発明になるn形G a A s層のキャリア旋度
プロファイルは、従来方法のものに比べて、ピークキャ
リア濃度で1〜3倍高くなっておシ、注入されたSiが
より多く活性化していることを示している。
As shown in Fig. 3, carrier concentration profile A of n-type GaA and s-layers obtained by the conventional method using a 5i02 protective film.
was not activated on the surface side, which clearly indicates that this is due to the deterioration of crystallinity due to the multilayered Ga being extracted through the SiO2 film during heat treatment. Carrier concentration profile B id S i in Figure 3
3N 4 Over conventional method using protective film n JU G
a As layer, carrier 6 degree profile C
In this invention, Ga vacancies were formed in advance before injection (
(N-type GaAs, Itf?) As can be seen from the carrier concentration profiles A1B10 shown in FIG. 3, the carrier rotation profile of the n-type GaAs layer according to the present invention is similar to that of the conventional method. In comparison, the peak carrier concentration was 1 to 3 times higher, indicating that more of the implanted Si was activated.

本発明の考え方は、GaAsに対してのみならず、イン
ジウムリン等信の化合物半導体に対しても十分に適用可
能なものである。
The concept of the present invention is fully applicable not only to GaAs but also to compound semiconductors such as indium phosphide.

また前記一実施例においては、イオン注入した不純物の
活性化のための熱処理を行なうために化合物半導体表面
をシリコンナイトライド膜でaつだ場合について示した
が、このシリコンナイトライド膜は必ずしも必要なく、
直接熱処理を行なういわゆるキャップレスアニールであ
ってもよい。
Furthermore, in the above embodiment, a case was shown in which the surface of the compound semiconductor was covered with a silicon nitride film in order to perform heat treatment to activate the ion-implanted impurities, but this silicon nitride film is not necessarily necessary. ,
So-called capless annealing in which direct heat treatment is performed may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は従来方法を説明するだめの図で
第2図(a)〜(d)は本発明の一実施例を説明するだ
めの図である。第3図は本発明と従来方法によるn形G
 a A s層のキャリア濃度プロファイルを示すもの
であり本発明の効果を示す。 1は半絶縁性GaAs、2は第1の絶縁膜、3はSi 
イオン注入層、4は第2の絶縁膜、5はn形G a A
 s層、6は保設膜である。
1(a) to 1(C) are diagrams for explaining the conventional method, and FIGS. 2(a) to 2(d) are diagrams for explaining one embodiment of the present invention. Figure 3 shows n-type G according to the present invention and the conventional method.
This figure shows the carrier concentration profile of the aAs layer and shows the effects of the present invention. 1 is semi-insulating GaAs, 2 is the first insulating film, 3 is Si
ion implantation layer, 4 a second insulating film, 5 an n-type Ga A
The s-layer 6 is a storage film.

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板に不純物をイオン注入せしめた後、こ
れを熱処理によって活性化せしめて半導体活性層を形成
する方法において、化合物半導体の一面にシリコンオキ
シナイド膜を被着させて熱処理を行い、前記化合物半導
体基板内にあらかじめ結晶欠陥を形成した後前記不純物
をイオン注入せしめ、これを熱処理によって活性化せし
めることを特徴とする半導体活性層の形成方法。
In a method of ion-implanting impurities into a compound semiconductor substrate and then activating it by heat treatment to form a semiconductor active layer, a silicon oxynide film is deposited on one surface of the compound semiconductor, heat treatment is performed, and the compound semiconductor is ion-implanted. 1. A method for forming a semiconductor active layer, which comprises forming crystal defects in a semiconductor substrate in advance, then ion-implanting the impurity, and activating the impurity by heat treatment.
JP58147532A 1983-08-12 1983-08-12 Formation of semiconductor active layer Pending JPS6039826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147532A JPS6039826A (en) 1983-08-12 1983-08-12 Formation of semiconductor active layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147532A JPS6039826A (en) 1983-08-12 1983-08-12 Formation of semiconductor active layer

Publications (1)

Publication Number Publication Date
JPS6039826A true JPS6039826A (en) 1985-03-01

Family

ID=15432436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147532A Pending JPS6039826A (en) 1983-08-12 1983-08-12 Formation of semiconductor active layer

Country Status (1)

Country Link
JP (1) JPS6039826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173083U (en) * 1981-04-24 1982-10-30
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173083U (en) * 1981-04-24 1982-10-30
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface

Similar Documents

Publication Publication Date Title
US6620709B2 (en) Fabrication of semiconductor materials and devices with controlled electrical conductivity
US4830983A (en) Method of enhanced introduction of impurity species into a semiconductor structure from a deposited source and application thereof
JP2006344937A (en) Method of fabricating low-defect strained epitaxial germanium film on silicon
KR100718823B1 (en) A silicon-germanium transistor and associated methods
EP0976149B1 (en) Method for limiting internal diffusion in a semiconductor device with composite si/sige gate
Vasudev et al. Chromium redistribution during thermal annealing of semi‐insulating GaAs as a function of encapsulant and implant fluence
US4597804A (en) Methods of forming denuded zone in wafer by intrinsic gettering and forming bipolar transistor therein
JPS618931A (en) Manufacture of semiconductor device
EP0060676B1 (en) A method for the production of a semiconductor device comprising annealing a silicon wafer
JPS6269666A (en) Ion implanting method
JPS6039826A (en) Formation of semiconductor active layer
US20170309484A1 (en) Carbon Vacancy Defect Reduction Method for SiC
De Souza et al. Annealing behavior of GaAs implanted with Si+ and SiF+ and rapid thermally annealed with plasma‐enhanced chemical vapor deposited silicon nitride cap
JPS6052580B2 (en) Manufacturing method for surface protective film in semiconductor devices
JPS6195515A (en) Forming of semiconductor active layer
JP2897636B2 (en) Oxidation method of silicon substrate
Murray et al. Influence of background doping and implant damage on the diffusion of implanted silicon in GaAs
JPH0513408A (en) Manufacture of semiconductor device
JPS6039825A (en) Formation of semiconductor active layer
JPH06101480B2 (en) Method for forming insulating layer of compound semiconductor
JPH05166817A (en) Annealing method of compound semiconductor device
JPS62277736A (en) Heat treatment method for compound semiconductor
JPH0533527B2 (en)
JPH03205820A (en) Manufacture of semiconductor device
JPH1187336A (en) Manufacture of semiconductor device