JPS6039557A - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device

Info

Publication number
JPS6039557A
JPS6039557A JP14823883A JP14823883A JPS6039557A JP S6039557 A JPS6039557 A JP S6039557A JP 14823883 A JP14823883 A JP 14823883A JP 14823883 A JP14823883 A JP 14823883A JP S6039557 A JPS6039557 A JP S6039557A
Authority
JP
Japan
Prior art keywords
propagation time
probes
measured
measurement
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14823883A
Other languages
Japanese (ja)
Inventor
Kishio Arita
紀史雄 有田
Susumu Mitani
進 三谷
Hideo Sakai
酒井 英雄
Yoshitaka Koide
小出 美孝
Yoshiro Habuka
嘉郎 羽深
Haruji Sato
佐藤 春治
Kazuhiro Hajiki
枦木 和弘
Hiroshi Ichikawa
宏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP14823883A priority Critical patent/JPS6039557A/en
Publication of JPS6039557A publication Critical patent/JPS6039557A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Abstract

PURPOSE:To shorten a measurement time, and also to execute easily a measuring operation by installing in advance probes of a necessary number at a prescribed position on the outside circumference of an object to be measured, and executing a measurement by switching successively transmission and reception of these probes. CONSTITUTION:Probes 21a-28a, 21b-28b are made to contact by pressing to points P0-P7, P'0-P'7 in order shown in the figure, in the circumference of an object to be measured shown by a section 1. In switching devices 12-14, a contact switching is executed basing on signals G1-G3 from a switching control circuit 15. A signal C1 and a signal C2 are a receiving signal and a transmitting signal, respectively. By switching suitably the switching devices 12-14, a propagation time in the diameter opposed position of the object to be measured 1, a propagation time in a 90 deg. position, and a propagation time in 22.5 deg. position are measured, and a shape and a position of a defective part are detected basing on a ratio of this measured value and a reference propagation time measured value.

Description

【発明の詳細な説明】 この発明は超音波によって被測定物内部にお番ノる欠陥
部の形状および位置を診断Jる超音波診断装置の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an ultrasonic diagnostic apparatus that uses ultrasonic waves to diagnose the shape and position of a defect inside an object to be measured.

従来の被測定物内部を診断する装置においては超音波エ
コーを検出することにより、また、超音波CT装置にお
いては透過させた超音波の減衰定数分布や音速分布を検
出することにより欠陥部の診断を行なっており、このた
め、これらの装置においては、直進性のよい超音波、す
なわち高周波(例えば、I M l−1z以上)の超音
波を用いる必要があった。
Conventional devices for diagnosing the inside of a measured object can diagnose defects by detecting ultrasonic echoes, and ultrasonic CT devices can diagnose defects by detecting the attenuation constant distribution and sound velocity distribution of the transmitted ultrasound. Therefore, in these devices, it is necessary to use ultrasonic waves with good straightness, that is, ultrasonic waves of high frequency (for example, IM l-1z or higher).

しかしながら、高周波の超音波は波長が短いため被測定
物内での減衰が大きく、したがって大出力を必要どJ゛
る。さらに、たとえば木材やプラスチックなど超音波の
減衰がきわめて大きい素材が被測定物である場合には、
金属などの場合に比べて、より大きな出力を出す超音波
発生装置が必要となり、装置がきわめて高価なものとな
って、一般には普及lノにくいという欠点があった。
However, since high-frequency ultrasound has a short wavelength, it is highly attenuated within the object to be measured, and therefore requires a high output power. Furthermore, if the object to be measured is a material that has extremely high attenuation of ultrasonic waves, such as wood or plastic,
This requires an ultrasonic generator that outputs a larger output than when using metals, making the device extremely expensive and having the disadvantage that it is difficult to popularize it in general.

一方、比較的低周波の超音波(50K l−l z〜1
00 K Hz程度)を用いて超音波の直進性にはそれ
程の重きを置かず、欠陥部による伝播遅延を利用ずれば
、精度は多少犠牲にしなければならないが、高出力を必
要としないため経流的にきわめて有利である。この遅延
局間ど欠陥部の長さとの関係を実験的に予めめておぎ、
実際には遅延++I間を測定することにより欠陥部のあ
る部分の長さだけを実験式から推定する装置がある(l
ごとえば、ウッドテスターWT、D−II(永眉電子株
式会打)、コンクリート試験機(超盲波]二業株式会社
))。
On the other hand, relatively low frequency ultrasound (50Kl-lz~1
If you use the ultrasonic wave (approximately 0.00 KHz) and use the propagation delay caused by the defect without placing much emphasis on the straightness of the ultrasonic wave, you will have to sacrifice some accuracy, but it will save time because high output is not required. This is extremely advantageous in terms of flow. The relationship between this delay station and the length of the defective part is experimentally determined in advance.
In reality, there is a device that estimates only the length of the defective part from an experimental formula by measuring the delay between +I (l
For example, Wood Tester WT, D-II (Eibi Denshi Co., Ltd.), Concrete Tester (Super Blind Wave) Nigyo Co., Ltd.).

しかし、これらの装置が持っている機能だ【ノでは、被
測定物の表面からは見えない部分のどの位置にどのよう
な形をした欠陥部があるかが判断できないため、被測定
物横断断層面の欠陥部画像化が困難であり、したがって
、その後の補修や取挽えなどの措置にとっての有効な情
報とはなりにくいという欠点があった。
However, these devices have the function of It is difficult to image defects on the surface, and therefore, there is a drawback that it is difficult to provide effective information for subsequent repairs or recovery measures.

そこでこの発明の出願人は、先に、比較的低周波の超音
波を用いて欠陥部の形状および位置を共に検出すること
ができ、したがって、欠陥部の画像化を可能どりる用音
波診111i装置を出願した(N願昭58−71995
丹)。この装置を本社の内部腐朽の検出に適用しIC場
合を例にどって説明すると以1このとJ3りである。
Therefore, the applicant of the present invention has previously proposed a method for sonic diagnosis 111i that can detect both the shape and position of a defect using relatively low-frequency ultrasound, and thus enables imaging of the defect. Applied for the device (N patent application No. 58-71995)
Dan). This device is applied to the detection of internal decay at the head office, and the following describes the IC case as an example.

第1図は、この水柱腐朽診断装置の構成を示すプロ・ツ
ク図である。この図において、符号1は被測定物(この
場合は木製電柱)の測定断面を示ず。
FIG. 1 is a diagram showing the configuration of this water column decay diagnosis device. In this figure, reference numeral 1 does not indicate a measurement cross section of the object to be measured (in this case, a wooden utility pole).

この測定所面1の外周部には、ランジュバン型振動子を
用いた超音波の送信用探触子2aと、受信用探触子2b
とが配置される。同期信号発生器3は超音波の伝播時間
を測定するための同期信号を発生ずる回路で、この同期
信号によって、前記探触子2aを駆動する送信器4ど、
基準クロック発生器5どが起動される。前記送信器4に
より駆動された探触子2aが発生ずる超音波は必ず測定
断面1の中心に向って放射されるようになっている。
On the outer periphery of this measuring station surface 1, there are an ultrasonic transmitting probe 2a using a Langevin type transducer and a receiving probe 2b.
and are placed. The synchronization signal generator 3 is a circuit that generates a synchronization signal for measuring the propagation time of ultrasonic waves. This synchronization signal is used to drive the probe 2a, such as the transmitter 4, etc.
The reference clock generator 5 is activated. The ultrasonic waves generated by the probe 2a driven by the transmitter 4 are always radiated toward the center of the measurement cross section 1.

一方、前記中心の方向から到達1−る超音波は探触子2
bにより受信されて受信器6へ供給されるようになって
いる。また、前記基準クロック発生器5が発生づ゛る基
準クロックは、カウンタ7によって、受信器6が超音波
の受信を検出するまでnl数きれる。しlζがって、こ
のカウンタ7は、超音波が前記測定断面1中を伝播する
に要した時間(伝播時間)に対応する計数値を出力する
。以上に説明した部分、すなわち符号Aで示す部分はこ
の発明における測定手段であり、公知技術である。前記
計数値すなわち伝播時間の測定値はマイクロコンピュー
タ8によって読み込まれるようになっている。このマイ
クロコンピュータ8には、後述する基準伝播時間to等
を記憶するRAM8aと、後述する各種演算を行なうた
めのプログラム等が記憶されたROM8bと、グラフィ
ックディスプレイ9またはプリンタ10を制御ll!1
′るための出ツノ制御部8C等が設けられる。グラフィ
ックディスプレイ9またはプリンタ10は、前記マイク
ロコンピュータ8によってめられた前記測定断面1にお
ける腐朽部の形状および位置等を画像化りるためのもの
であり、少なくともどららか一方が設けられる。
On the other hand, the ultrasonic waves arriving from the direction of the center are transmitted to the probe 2.
b and is supplied to the receiver 6. Further, the reference clock generated by the reference clock generator 5 is truncated by the number nl by the counter 7 until the receiver 6 detects reception of the ultrasonic wave. Therefore, this counter 7 outputs a count value corresponding to the time (propagation time) required for the ultrasonic wave to propagate through the measurement section 1. The part explained above, that is, the part indicated by the symbol A, is a measuring means in this invention and is a known technique. The count value, that is, the measurement value of the propagation time is read by the microcomputer 8. This microcomputer 8 includes a RAM 8a that stores a reference propagation time to, which will be described later, etc., a ROM 8b, which stores programs, etc. for performing various calculations, which will be described later, and controls a graphic display 9 or a printer 10! 1
A protrusion control section 8C and the like are provided for controlling the protrusion. At least one of the graphic display 9 and the printer 10 is provided to visualize the shape, position, etc. of the decayed part in the measurement section 1 determined by the microcomputer 8.

以下、この実施例における測定手順およびマイクロコン
ピュータ8の動作を第2図に示すフローチャートを参照
しながら説明1−る。
The measurement procedure and the operation of the microcomputer 8 in this embodiment will be explained below with reference to the flowchart shown in FIG.

(1)基準伝播時間toの測定 gt4を伝播時間とは、電柱の正常部分(欠陥がない部
分)の超音波伝播時間であり、この実施例においては電
柱の直径りを通過J゛る超音波伝播時間を基準伝播14
間1゜とじている。この基準伝播時間し。の測定は次の
様にして行われる。すなわち、電柱の比較的上部の外側
面の一点に、電柱の中心に向tプで超音波が放射される
ように送信探触子2aを当接し、この送信探触子2aと
電柱の中心を介して対向する位置に受信探触子2bを当
接し、これらの探触子2a、2部間の超音波伝播時間t
。を測定Jる。この測定結果は第2図のステップS1に
示づようにマイクロコンピュータ8内のRAM8aに記
憶される。なお、電柱の比較的1部において、この測定
を行う理由は、電柱は通常基部が腐朽し、上部が腐朽す
ることはまずないからである。
(1) Measurement of the reference propagation time gt4 The propagation time is the ultrasonic propagation time in a normal part of the utility pole (a part without defects), and in this example, the ultrasonic wave passing through the diameter of the utility pole is Propagation 14 based on propagation time
It is closed by 1°. This is the reference propagation time. The measurement is performed as follows. That is, the transmitting probe 2a is brought into contact with one point on the outer surface of the relatively upper part of the telephone pole so that the ultrasonic wave is emitted in a direction toward the center of the telephone pole, and the transmitting probe 2a and the center of the telephone pole are brought into contact with each other. The receiving probe 2b is brought into contact with the receiving probe 2b at a position facing each other through the probe 2a, and the ultrasonic propagation time t between the two parts is
. Measure. This measurement result is stored in the RAM 8a within the microcomputer 8, as shown in step S1 in FIG. The reason why this measurement is performed on a relatively small portion of a utility pole is that the base of a utility pole usually rots, and the top rarely rots.

(2)電柱の直径対向位置にJj kノる伝播時間比R
t1の測定 第3図は電柱を水平に切断した仮想上の測定断面1を丞
づ図であり、また、この図における符号Hは腐朽部(欠
陥部)である。なお、このル3朽部1」は実験のため人
工的に作っI計すのである。また、この図にJ3いて、
直線ノ0.−e+ ・・・・・・Jlは各々測定断面1
の中心点Qを通過りる直線であり、Uいに相隣り合う直
線と22.5°の角度をなしている。
(2) Propagation time ratio R of Jj k at the diametrically opposite position of the utility pole
Measurement of t1 FIG. 3 is a diagram showing a hypothetical measurement cross section 1 obtained by cutting a utility pole horizontally, and the reference numeral H in this figure indicates a decayed part (defect part). In addition, this part 3 was artificially created and measured for the purpose of experiment. Also, in this figure, there is J3,
Straight line 0. -e+...Jl is each measurement cross section 1
It is a straight line that passes through the center point Q of , and forms an angle of 22.5° with the adjacent straight lines.

この(2)項の測定においては、まず、図に示す点Po
LJ′3J:びp l oにおいて送信探触子2a、受
信探触子2bを電柱外側に当接して点P。−p′0間の
超音波伝播時間[1−oを測定し、次いで・P+ −P
’ +間、P2−P′2間・・・・・・P7−P’ y
間の超音波伝播時間し1−1〜し1−7を順次測定覆る
。これら各伝JIl!115間じ −。〜t1−7は、
第2図のステップs2に承りようにマイクロコンピュー
タ8のRAM8aに記憶される。
In the measurement of this item (2), first, point Po shown in the figure
LJ'3J: At point P, the transmitting probe 2a and the receiving probe 2b are brought into contact with the outside of the telephone pole. -p′0 Ultrasonic propagation time [1-o is measured, then ・P+ −P
'+, P2-P'2...P7-P' y
The ultrasonic propagation time between 1-1 and 1-7 is measured sequentially. Each of these stories! 115 minutes -. ~t1-7 is
The data is stored in the RAM 8a of the microcomputer 8 in step s2 of FIG.

次に、第2図のステップs3に示ずように、マイクロコ
ンピュータ8は、これら各測定結果と、前述した基準伝
播時間し。との比(%)R[+ −。
Next, as shown in step s3 of FIG. 2, the microcomputer 8 calculates these measurement results and the reference propagation time described above. Ratio (%) R[+ −.

〜Rut−7を算出でる。この場合、直線)0゜Jl・
・・・・・が腐朽部Hを通過してぃな【ノれば(例えば
、直線、12.43等)、この伝播時間比Rj+は10
0%どなり、一方、腐朽部1」を通過している時は(例
えば、直線1o 、47等)、この伝播時間比Rt+が
100%を越える値となる。次に、マイクロコンピュー
タ8は、第2図のステップS4に示すように、100%
を越える伝播時間比RL1の値から腐朽部Hの長さfを
算出する。
~Rut-7 can be calculated. In this case, straight line) 0°Jl・
... does not pass through the decayed part H (for example, a straight line, 12.43, etc.), then this propagation time ratio Rj+ is 10
0%, and on the other hand, when passing through a decayed section 1 (for example, straight line 1o, 47, etc.), this propagation time ratio Rt+ exceeds 100%. Next, the microcomputer 8, as shown in step S4 of FIG.
The length f of the decayed part H is calculated from the value of the propagation time ratio RL1 exceeding .

この腐朽部1−1の長さfの算出は次の様にして行う。The length f of this decayed portion 1-1 is calculated as follows.

りなわら、予め人工的に種々の大きざの腐朽部を設け/
、−輪切り木材を用意し、これらの輪切り木材を使って
腐朽部(直径りど腐朽部の直径方向の長さfどの比J−
なわち腐朽長さ比RJ)と伝播時間比RIl+ との関
係を示す腐朽度曲線をめており1.イして、この腐朽度
曲線に基づいて腐朽部1」の長さ[を算出する。第4図
は腐朽度曲線の一例を示ザ図であり、この図にd3いて
たて軸は伝播時間比R(1、横軸は腐朽長さ比11であ
る。
However, decayed areas of various sizes were artificially prepared in advance.
-Prepare round-cut wood, and use these round-cut wood to calculate the ratio of the rotten part (diameter length f of the rotten part)
In other words, a decay degree curve showing the relationship between the decay length ratio RJ) and the propagation time ratio RIl+ is drawn.1. Then, calculate the length of "decayed part 1" based on this decay degree curve. FIG. 4 is a diagram showing an example of a decay degree curve, in which the vertical axis d3 is the propagation time ratio R (1), and the horizontal axis is the decay length ratio 11.

この腐朽度曲線は、 RJ=((R[+ 100)/1.3)””・・・・・
・・・・(1) なる式で近似される。
This decay curve is RJ=((R[+100)/1.3)""...
...(1) It is approximated by the following formula.

したがって、伝播時間比RE+が例えば200%の時は
、腐朽長さ比R,!どじで17%が得られ、この結果、
腐朽部1−1の長さfは、(電柱の直径D)×0.17
としてめられる。
Therefore, when the propagation time ratio RE+ is, for example, 200%, the decay length ratio R,! Doji obtained 17%, and as a result,
The length f of the rotten part 1-1 is (diameter D of utility pole) x 0.17
It is regarded as

(3)90°位置にお【ノる伝播11S間比Rt2の測
定 上述した(2)項の測定においては、腐朽部1−1が直
線J。、Jl・・・・・・上のどの位置にあるかが特定
できない。そこで、この(3)項の測定においでは、腐
朽部Hが直線P。Qと直線P4 Qとによって区画され
る第1象限にあるか、vA線[〕4Qど直線P’ o 
Qとによって区画される第2象限にあるか、直線P’、
Qど直線P’ 4 QとにJ、って区画される第3象限
にあるか、また(よ直線P’aQと直線PoQとによっ
て区画される第1象限にあるかを検出する。すなわ)5
、まず点Paに、超音波が中心点Qに向って放射される
ように送信探触子2aを当接し、また、点P4に受信探
触子2bを当接し、点PG−P4間の用音波伝111t
ffT間[2−1を測定Jる。そして、この伝播時間【
2−1は、第2図のステップS5に示すように、マイク
1」コンピュータ8に読み込まれる。次いで、マイクロ
コンビ1−タ8は、第2図のステップ86に示づよ1う
にこの測定結果を基準伝播時間toで割ることにより伝
播時間比RUz−+をめる。同様にして、点P4 P’
s間、点pl、pl、、点P’A Po間の伝播時間比
RE2−2〜Rj2−4を測定a3 J:びn出する。
(3) Measurement of the ratio Rt2 between propagation 11S at the 90° position In the measurement of item (2) mentioned above, the decayed part 1-1 is aligned with the straight line J. , Jl... It is not possible to specify where it is located on the top. Therefore, in the measurement of item (3), the decayed part H is a straight line P. Is it in the first quadrant divided by Q and straight line P4Q?
is in the second quadrant divided by Q, or the straight line P',
It is detected whether it is in the third quadrant divided by straight line P' 4 Q and J, or in the first quadrant divided by straight line P'aQ and straight line PoQ. )5
, First, the transmitting probe 2a is brought into contact with the point Pa so that the ultrasonic waves are radiated toward the center point Q, and the receiving probe 2b is brought into contact with the point P4, so that the transmitting probe 2a is brought into contact with the point sound wave 111t
Measure 2-1 between ffT. And this propagation time [
2-1 is read into the ``microphone 1'' computer 8 as shown in step S5 of FIG. Next, the microcombinator 8 calculates the propagation time ratio RUz-+ by dividing this measurement result by the reference propagation time to, as shown in step 86 of FIG. Similarly, point P4 P'
Measure the propagation time ratios RE2-2 to Rj2-4 between points pl, pl, and points P'A and Po.

この場合、腐朽部日がない第2、第3象限においては伝
播時間比R12−21RL2−sが92%となり、また
、腐朽部Hがある第1、第4象限においては、伝播時間
比RI2−+ 、RI2−4が92%を越える値となる
。’l’ 4にわら、マイクロコンピュータ8は、第2
図のステップS7に示づように伝播時間比RL2が92
%を越えるか否かによって腐朽部の有無を判断゛する。
In this case, the propagation time ratio R12-21RL2-s is 92% in the second and third quadrants where there are no decayed parts, and in the first and fourth quadrants where there are decayed parts H, the propagation time ratio RI2- +, RI2-4 becomes a value exceeding 92%. 'l' 4, the microcomputer 8
As shown in step S7 in the figure, the propagation time ratio RL2 is 92.
The presence or absence of decayed parts is determined by whether or not the percentage exceeds %.

なお、92%という値は腐朽部がない部を予め測定する
ことによりめられる。
Note that the value of 92% can be determined by preliminarily measuring areas with no decayed parts.

(4)22.5°位置における伝播時間比RLaの測定 この(4)項の測定においでは、腐朽部Hの電柱外周面
からの距l!1(深さ)d(第3図)を測定する。づな
わら、まず、前述した(2)項の測定によって得られた
各測定値の中で最大のものに対応づる直線Ja、ノド・
・・・・を検知づる。第3図に示J゛例にJsいては、
直FII47が検知されたとりる。
(4) Measurement of propagation time ratio RLa at 22.5° position In the measurement of item (4), the distance l! from the outer peripheral surface of the utility pole to the rotten part H! 1 (depth) d (Figure 3). First, the straight line Ja, the throat line, which corresponds to the maximum value among the measured values obtained in the above-mentioned section (2).
Detects... In the example shown in FIG.
Direct FII47 is detected.

次に、前述した(3)項の測定によって検出された象限
°(第1、第4象限)内において白線j7と測定断面1
の外周線とが交差覆る点P′7を得る。
Next, in the quadrant ° (first and fourth quadrants) detected by the measurement in item (3) above, the white line j7 and the measurement cross section 1 are
A point P'7 is obtained which intersects and overlaps the outer circumferential line of .

次に、この点P′7に、超音波が中心点Qへ向って放射
されるように送信探触子2aを当接し、また、受信探触
子2bを点P′7に隣り合う点1〕0または点P’ 6
 (22,5°位置)に当接1ノ、点p’ 71〕o間
または点P’7−P’6間の超音波伝播時間(3を測定
づる。マイクロコンピュータ8は、第2図のステップS
9に承りように、この測定結果を基準伝播時間[Oで割
ることにより、伝播時間比Rj3をめる。そして、マイ
クロ−1ンピユータ8は、第2図のステップ810に示
Jように、この伝播時間比Rt3から距Md@g?出す
る。すなわち、予め種々の腐朽部を設けた輪切り木材に
よって腐朽部の外周面からの距離dと22.5°位は間
の伝播時間比Riaとの関係を示づ特性曲線をめておく
。そして、この特性曲線に基づいて距ll1lIdを得
る。第5図はこの特性曲線の一例を示す図であり、この
図において、たて軸は伝播時間比Rj s 、横軸は外
周面からの距離dである。
Next, the transmitting probe 2a is brought into contact with this point P'7 so that the ultrasonic wave is radiated toward the center point Q, and the receiving probe 2b is brought into contact with the point 1 adjacent to the point P'7. ]0 or point P' 6
(22,5° position), the ultrasonic propagation time (3) is measured between points p'71]o or between points P'7 and P'6. Step S
9, the propagation time ratio Rj3 is calculated by dividing this measurement result by the reference propagation time [O. Then, the micro-1 amplifier 8 calculates the distance Md@g? from this propagation time ratio Rt3, as shown in step 810 in FIG. put out That is, a characteristic curve showing the relationship between the distance d from the outer circumferential surface of the rotten part and the propagation time ratio Ria between approximately 22.5 degrees is prepared by using sliced wood having various rotten parts in advance. Then, the distance ll1lId is obtained based on this characteristic curve. FIG. 5 is a diagram showing an example of this characteristic curve, in which the vertical axis represents the propagation time ratio Rj s and the horizontal axis represents the distance d from the outer peripheral surface.

この特性曲線は、 d =70/ (Rt 3−28) ・・・・・・(2
)なる式で近似される。
This characteristic curve is d = 70/ (Rt 3-28) (2
) is approximated by the formula.

したがって、伝播時間比が例えば60%の時は距離d=
1on+mが得られる。なお、水柱が正常の場合は22
.5°位置間の伝播時間比Rj3が略30%どなる。
Therefore, when the propagation time ratio is, for example, 60%, the distance d=
1on+m is obtained. In addition, if the water column is normal, 22
.. The propagation time ratio Rj3 between the 5° positions is about 30%.

(5)腐朽部の形状および位置の決定 以上の各過程によって第3図に示す線分子+〜[5の長
さおよび距離dが算出される。そこで、マイクロコンピ
ュータ8は、第2図のステップS11に示すように線分
子1の中点Rと中心点Qとの間の長さrを算出し、半径
rを有し、中心点Qを中心と覆る円を描き、この円の円
周上に各線分子1〜f5の各中点があるとして線分[I
〜「5の位置(直線Jy 、Js・・・・・・上の位置
)を決定し、これらの線分の各両端の包絡線としてHル
朽部の形状を決定する(第2図のステップ512)。そ
して、マイクロコンピュータ8(、土、前記包絡線等を
前記グラフィクディスプレイ9、またはプリンタ10に
出力し画像化する(第2図のステップ513)。なお、
木1!if電社、樹木等の様に外周に治って腐朽部が発
生する場合は、上述した方法によって精度の高い近似が
可能となる3゜ 第6図は以上述べた(1)へ・(5)の過程によって第
3図に示す腐朽部11の位iFi a3よび形状を決定
し、この決定結果に基づいて腐朽部1」を画像化した図
であり、図から明らかなように画!!JIl+’ が腐
朽部1」とよい一致を示している。また、第7図は実際
に腐朽部H+が発生している本社の断面図、第8図は第
7図に示す水柱の腐朽δ];H1を上述した実施例の装
置によって検出し、画像化した図であり、この場合も画
像H’ +が腐朽部1−II とよい一致を示している
。このように上述した装置は実際の腐朽部検出に極めて
有効である。なお、腐朽部の1−1の電柱外周面からの
距1111d (第3図参照)の測定を省略して、腐朽
部の最外部を電柱外周面から一定の深さくたとえば外周
面から直径りの2%の位置)にさめておいてもよい。事
実、電柱の腐朽部は、外周面に近い所に多いことおよび
電柱の残存強度は低い方へ評価されることから安全側の
診断が可能であり、実用的である。そしてこの場合、第
(4〉項の22.5°位置の測定を省略することができ
る。
(5) Determining the shape and position of the decayed part The length and distance d of the line molecule + to [5 shown in FIG. 3 are calculated through each of the above steps. Therefore, the microcomputer 8 calculates the length r between the midpoint R and the center point Q of the line molecule 1 as shown in step S11 in FIG. Draw a circle that covers the line segment [I
〜Determine the position of 5 (the position on the straight lines Jy, Js...), and determine the shape of the Hru decayed part as the envelope at both ends of each of these line segments (steps in Figure 2). 512). Then, the microcomputer 8 outputs the envelope, etc. to the graphic display 9 or printer 10 and converts it into an image (step 513 in FIG. 2).
Tree 1! If the outer periphery of trees, etc. has healed and decayed parts, highly accurate approximations can be made using the method described above. The location and shape of the decayed part 11 shown in Fig. 3 are determined by the process of , and the decayed part 1 is imaged based on the determination results. ! JIl+' shows good agreement with "decayed part 1". In addition, Fig. 7 is a cross-sectional view of the head office where the decayed area H+ has actually occurred, and Fig. 8 is the decay δ of the water column shown in Fig. 7]; This figure also shows that the image H'+ matches well with the decayed part 1-II. As described above, the above-mentioned device is extremely effective in actually detecting decayed parts. In addition, omitting the measurement of the distance 1111d (see Figure 3) of the rotten part from the outer circumferential surface of the utility pole No. 1-1, the outermost part of the rotten part is placed at a certain depth from the outer circumferential surface of the utility pole, for example, by measuring the diameter from the outer circumferential surface. 2% position). In fact, since most of the rotten parts of utility poles are near the outer circumferential surface and the remaining strength of utility poles is evaluated toward the lower end, a diagnosis on the safe side is possible and practical. In this case, the measurement at the 22.5° position in item (4) can be omitted.

しかして、以上説明した従来の装置においては(1)基
準伝播時間の測定(1回) (2)直径対向位置の伝播時間の測定(8回)(3)9
o°位置の伝播時間の測定(4回)(/1)22.5位
置の伝播時間の測定(1回)と4段階の測定を行ってい
る。
Therefore, in the conventional device described above, (1) measurement of the reference propagation time (1 time), (2) measurement of the propagation time at diametrically opposed positions (8 times), (3) 9
Measurement of propagation time at o° position (4 times) (/1) Measurement of propagation time at 22.5 position (once) and 4-step measurements are performed.

すなわち〈1〉〜(4)までのすべての測定を行うと含
fi414回、(4)を省略して(1)〜(3)まで測
定でも131!1のill!l定動作が必要となる。し
かしながら、このように何度も探触子を被測定物に当接
して測定を行うことは、測定時[111が長くなる問題
を生じさけると共に、さらに、測定箇所が通常電柱等の
基部(地面の近く)にあり、測定者の姿勢が悪くなるた
め、測定者が疲れやづいという問題を生じさせる。
In other words, if all measurements from <1> to (4) are performed, the total number of ill! A constant motion is required. However, making measurements by repeatedly touching the probe to the object to be measured in this way will not only cause the problem of lengthening [111] at the time of measurement, but also cause the measurement point to be usually located at the base of a utility pole (ground surface). (near the area), which worsens the posture of the person taking the measurement, resulting in the problem of tiring the person taking the measurement.

そこでこの発明は、測定操作がしやり゛く、かつ短時間
で測定を行うことができる用音波診[9i装置を提供す
るもので、予め被測定物の外周上の所定位置に必要な数
だけの探触子を設置しでJ3き、これらの探触子の送信
、受信を順次切換えて測定を行うようにしたものである
Therefore, the present invention provides a sonic diagnostic device [9i] that allows easy measurement operations and can perform measurements in a short time. The probes are installed at J3, and measurements are made by sequentially switching between transmitting and receiving these probes.

以下、図面を参照しこの発明の一実施例について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第9図はこの発明の一実施例による超音波診断装置の要
部の構成を示すブロック図であり、この実施例にJ:る
装置は第9図に示1回路と、第1図に示す回路との組合
わせにより構成される。
FIG. 9 is a block diagram showing the configuration of essential parts of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. It is constructed by combining it with a circuit.

第9図に83いて、R号1は被測定物(この場合、木製
電柱)の測定断面、1v号21a〜28a、21b〜2
8bは各々探触子であり、こ、れらの探触子21a〜2
8a121b〜28bは各々、予め測定断面1の点P。
83 in FIG. 9, No. R 1 is the measurement cross section of the object to be measured (in this case, a wooden utility pole), No. 1v 21a to 28a, 21b to 2
8b are probes, and these probes 21a to 2
8a121b to 28b are each a point P on the measurement cross section 1 in advance.

”−P’y 、P’ o 〜P’ 7に、図に示す順序
で当接される。なお、点P。〜P7゜P′o〜1)′7
の位置は各々第3図に示す位置と同じである。狩812
〜14は各々切換制御回路15からの信号01〜G3に
基づいて接点切換えが行われる切換器であり、切換器1
2においては、信号G1に基づいて端子12A−128
,12G−12Dが各々接続され、あるいは、pπ子1
2A−12D、12(、−12Bが各々接続される。ま
た、切換器13においては、信号G2に基づいて、共通
端子1]1ど端′F−13Aへ一13Hのいずれかとが
接続され、切換器14においては、信号03に基づいて
共通端子141と端子14.A〜141−1のいずれか
どが接続される。そして、切換器13の共通端子131
に得られる信号C+が第1図に示J受イ言器6へ供給さ
れ、第1図に示づ一送信器4の出力が信号C2として切
換器14の共通端子14Iへ供給され、また、切換器(
211回路15へは、マイクロコンピュータ8から制御
11信号CGが供給されると共に、基準クロック発生器
5から基準クロックOLが供給される。
"-P'y, P'o ~ P'7 are brought into contact in the order shown in the figure. Note that the point P.~P7゜P'o~1)'7
The positions of each are the same as those shown in FIG. Hunt 812
- 14 are switching devices in which contact switching is performed based on signals 01 to G3 from the switching control circuit 15, respectively, and switching device 1
2, terminals 12A-128 are connected based on signal G1.
, 12G-12D are connected respectively, or pπ child 1
2A-12D, 12(, -12B are connected respectively. Also, in the switch 13, based on the signal G2, the common terminal 1]1 is connected to either end 'F-13A to -13H, In the switch 14, the common terminal 141 is connected to any one of the terminals 14.A to 141-1 based on the signal 03.
The signal C+ obtained at 1 is supplied to the receiver 6 shown in FIG. 1, the output of the transmitter 4 shown in FIG. Switch (
The 211 circuit 15 is supplied with the control 11 signal CG from the microcomputer 8 and the reference clock OL from the reference clock generator 5.

次に、第9図に承り切換器12〜14にお【プる切換動
作を、前述した第(1)−(4,)項の各測定の場合に
ついてu2明覆る。なお、この切換動作は、第1図に示
すマイクロコンピュータ8の制御のもとに行われる。づ
°なわち、マイクロゴ」ンピュータ8はROM8b内に
予め記憶されている制御手順を読み取り、この読み取っ
た結果に従って切換i1i制御開制御5へ制御18号C
Cを順次出ノJ ”J’ Z> a切換制御回路15は
この制御信号CCに基づいて、切換器12〜1/IにJ
3ける接点切換えを制御づ゛る信号G1〜G3を順次出
力する。
Next, referring to FIG. 9, the switching operations applied to the switching devices 12 to 14 will be explained for each of the measurements in items (1) to (4,) described above. Note that this switching operation is performed under the control of the microcomputer 8 shown in FIG. That is, the microcomputer 8 reads the control procedure stored in advance in the ROM 8b, and according to the read result, switches the control number 18C to the switching i1i control open control 5.
Based on this control signal CC, the switching control circuit 15 sequentially outputs J ``J'Z>a to the switches 12 to 1/I.
It sequentially outputs signals G1 to G3 that control the switching of the three contacts.

(1)基準伝播時間1oの測定 この場合、切換器12の端子12A−12B。(1) Measurement of reference propagation time 1o In this case, terminals 12A-12B of switch 12.

12C−12Dが各々接続され、また、切換器13の共
通端子13iと端子13A、切換器14の共通端子1 
’1. Iど端子14Aが各々接続される。
12C to 12D are connected to each other, and the common terminal 13i and terminal 13A of the switch 13 and the common terminal 1 of the switch 14 are connected to each other.
'1. The terminals 14A and 14A are connected to each other.

これにより、送信器4が探触子211)に、受信器6が
探触子21aに各々接続される。測定者は、探触子21
a、21bを各々電柱の上部に当接して測定を行う。
Thereby, the transmitter 4 is connected to the probe 211), and the receiver 6 is connected to the probe 21a. The person measuring the probe 21
A and 21b are respectively brought into contact with the upper part of the utility pole to make measurements.

(2)電柱の直径対向位置におCノる伝播時間比R℃1
の測定 この場合、まず、切換器12の端子12A−12B、1
2C−120が各々接続され、また、切換器13の共通
端子131と端子13A、切換器14の共通端子14 
Iと端子14Aが各々接続される。これにより、送信器
4と探触子21b1受イ5器6ど探触子21aが各々接
続され、探触子21a、21m間の伝播時間の測定が行
われる。次に、切換器13の共通端子131と端子13
B、切換端子14の共通端子141と端子14Bが各々
接続される。これにより、送信器4と探触子22a、受
信器6と探触子22bが各々接続され、探触子22a 
、22m間の伝播時間の測定が行われる。以下、切−換
器13の共通端子131と端子13B〜13H1切換器
14の共通端子14Iと端子148〜14Hが順次接続
され、これにJ、す、探触子23a −23b 、24
a −24b 、−−−−・・28a−28b間の伝播
時間が順次測定される。
(2) Propagation time ratio R℃1 at a position opposite to the diameter of the utility pole
In this case, first, the terminals 12A-12B, 1 of the switching device 12 are
2C-120 are connected to each other, and the common terminal 131 and terminal 13A of the switch 13 and the common terminal 14 of the switch 14 are connected to each other.
I and terminal 14A are respectively connected. As a result, the transmitter 4 and the probes 21b, 5, 6, and 21a are connected, and the propagation time between the probes 21a and 21m is measured. Next, the common terminal 131 of the switch 13 and the terminal 13
B, the common terminal 141 of the switching terminal 14 and the terminal 14B are respectively connected. As a result, the transmitter 4 and the probe 22a are connected, and the receiver 6 and the probe 22b are connected, respectively, and the probe 22a
, 22 m. Hereinafter, the common terminal 131 of the switch 13 and the terminals 13B to 13H1, the common terminal 14I of the switch 14, and the terminals 148 to 14H are sequentially connected to the J, S, probes 23a to 23b, 24.
a −24b , . . . The propagation time between 28a and 28b is sequentially measured.

(3)90°位置に83ける伝播時間比R12の測定 この場合、まず、切換器12の端子12Δ−12B、1
2G−120が各々接続され、よlこ、切換器13の共
通端子131ど<、iii子13Δ、切換器14の共通
端子14Iど端そ14. Eが各々接続される。これに
より、送信器4ど探触子25a1受信器6ど探触子21
aどが接続され、探触子218.25a間の伝播時間の
測定が行われる。次に、切換器12〜14において、1
2A−12D、12B−12C,131−,13Δ、1
41−14Eの各接続が行われ、探触子25a、2Ib
間の伝播時間が測定され、次いで、12Δ−1213,
120−12D、131’−13E、141−14Aの
各接続が行われ、探触子21b、25m間の伝播時間が
測定され、次いで、12△−12D、12B−12G、
’131−13E、 11!I J−14Aの各接続が
行われ、探触子21a、25m間の伝播時間の測定が行
われる。
(3) Measurement of propagation time ratio R12 at 90° position 83 In this case, first, terminals 12Δ-12B, 1
2G-120 are connected to each other, the common terminal 131 of the switch 13 is connected to the common terminal 13Δ, the common terminal 14I of the switch 14 is connected to the common terminal 14. E are connected to each other. As a result, the transmitter 4 probe 25a1 receiver 6 probe 21
The probes 218 and 25a are connected, and the propagation time between the probes 218 and 25a is measured. Next, in the switching devices 12 to 14, the 1
2A-12D, 12B-12C, 131-, 13Δ, 1
41-14E are connected, and the probes 25a, 2Ib
The propagation time between 12Δ−1213,
120-12D, 131'-13E, 141-14A are connected, the propagation time between the probes 21b and 25m is measured, and then 12Δ-12D, 12B-12G,
'131-13E, 11! Each connection of IJ-14A is made, and the propagation time between the probes 21a and 25m is measured.

(4)22.5°位置にお1プる伝播時間比RL3の測
定 例えば、点[〕′7およびP。間の伝播時間を測定覆る
場合は、切換器13の共通端子13Iと端子131ヨ、
切換器14の共通端子141と端子14Dが各々接続さ
れ、これにより、送信器4と探触子24a1受信器6と
探触子25bが各々接続される。また、点P’ 7と1
16間の伝播時間を測定Jる揚台は、13m−130,
141−140が各々接続される。なお、第9図に示す
実施例にa3いては、送信器4のみに接続される探触子
22a〜28aJ5よび受信器6のみに接続される探触
−J’22b〜28bが各々交互に配置されてa3す、
また、探触子21a、21bが各々送信器4、受信器6
に共に接続可能であり、したがって、いずれの相隣り合
う探触子間の伝播時間の測定も可能である。
(4) Measurement of propagation time ratio RL3 at 22.5° position, for example, points []'7 and P. When measuring the propagation time between the common terminal 13I and terminal 131 of the switch 13,
The common terminal 141 and the terminal 14D of the switch 14 are connected, respectively, and thereby the transmitter 4, the probe 24a1, the receiver 6, and the probe 25b are respectively connected. Also, points P' 7 and 1
The platform used to measure the propagation time between 16 meters and 13 meters is 130 meters.
141-140 are connected respectively. In the embodiment shown in FIG. 9, in a3, the probes 22a to 28aJ5 connected only to the transmitter 4 and the probes J'22b to 28b connected only to the receiver 6 are arranged alternately. Been a3,
Further, the probes 21a and 21b are respectively a transmitter 4 and a receiver 6.
can be connected together, thus making it possible to measure the propagation time between any adjacent probes.

なJ3、上jホしic実施例においては、切換器12〜
14を各々コンピュータ制御の下に自動的に切換えるよ
うにしたが、各切換器12・〜14を各々手動によって
切換えるようにしてもよい。また、水柱が壁などに近接
して建設されている場合に番よすべでの探触子を配置で
きない1.このような場合、切換器13及び切換器14
の端子の接続をはずし、1相の探触子を直接送イg器4
、受信器6に接続できるようにして従来と同様に手動に
にる診断が行えるようにしておいてもよい。
In the J3 and above IC embodiments, the switch 12~
Although each switch 14 is automatically switched under computer control, each switch 12 to 14 may be switched manually. In addition, if the water column is built close to a wall, etc., the probe cannot be placed at any point.1. In such a case, the switch 13 and the switch 14
Connect the 1-phase probe directly to the transmitter 4.
, the receiver 6 may be connected so that manual diagnosis can be performed in the same manner as in the past.

以上説明したように、この発明によれば、予め複数の探
触子を被測定物の外周に当接しておき、これらの探触子
を順次選択的に送信器J3よび受信器に接続して超音波
伝播時間の測定を行うよにしたので、測定操作が容易に
なり、したがっで1測定者の疲労を少なくすることがで
きるとハに、測定時間を大幅に短縮することが可能にな
る。
As explained above, according to the present invention, a plurality of probes are brought into contact with the outer periphery of the object to be measured in advance, and these probes are sequentially and selectively connected to the transmitter J3 and the receiver. Since the ultrasonic propagation time is measured, the measurement operation becomes easy, and the fatigue of the operator can be reduced, which makes it possible to significantly shorten the measurement time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の前提となる超盲波診断装置の構成例
を示ずブロック図、第2図は同8囮による測定手順およ
び同装置におけるマイク1コ]ンビュータ8の動作を説
明−4るためのフローチャート、第3図はモデル腐朽部
を設けた電柱の測定断面図、第4図は腐朽長さ比RJと
伝播時間比R(+との関係を示す特性図、第5図は距離
dと伝播時間比RU3との関係を示す特性図、第6図は
同装置にJ、る第3図の腐朽部の表示画像例、第7図は
腐朽本社の一例の断面図、第8図は同腐朽本社の同装置
による表示画像例、第9図は本発明の一実施例にJ:る
超音波診断装置の要部の構成を示づブロック図である。 1・・・・・・測定断面、4・・・・・・送信器、6・
・・・・・受信器、8・・・・・・マイクロコンピュー
タ、9・・・・・・グラフィックディスプレイ、10・
・・・・・プリンタ、12〜14・・・・・・切換器、
21a〜28a、22a〜28a・・・・・・探触子。 出願人 日本電信電話公社 第1図 館2図 <+ /i 第3図 第6図 4
Fig. 1 is a block diagram showing an example of the configuration of the ultra-blind wave diagnostic device that is the premise of this invention, and Fig. 2 explains the measurement procedure using the same 8 decoys and the operation of the microphone 1 computer 8 in the device. Fig. 3 is a measured cross-sectional view of a utility pole with a model rotten section, Fig. 4 is a characteristic diagram showing the relationship between the decayed length ratio RJ and the propagation time ratio R (+), and Fig. 5 is the distance A characteristic diagram showing the relationship between d and the propagation time ratio RU3, Fig. 6 is an example of a display image of the decayed part of Fig. 3 that is attached to the same device, Fig. 7 is a cross-sectional view of an example of the decayed main office, Fig. 8 9 is an example of an image displayed by the same device at the same decaying headquarters, and FIG. 9 is a block diagram showing the configuration of the main parts of the ultrasonic diagnostic device according to an embodiment of the present invention. 1. Measurement cross section, 4... Transmitter, 6.
...Receiver, 8...Microcomputer, 9...Graphic display, 10.
...Printer, 12-14...Switcher,
21a to 28a, 22a to 28a... probes. Applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Library Figure 2 <+ /i Figure 3 Figure 6 Figure 4

Claims (1)

【特許請求の範囲】 (a)予め、被測定物の測定断面の中心を通る複数の直
線の両端に当接され、前記測定断面の中心に向番プで超
音波を送信し、または、前記測定断面の中心方向からの
超音波を受信する複数の探触子と、 (b)送イに器と、 (C)受信器と、 (d >前記送信器および受信器を、前記複数の探触子
の内の2個の探触子に選択的に接続する切換手段と、 (e )前記被測定物の欠陥のない部分を超音波が伝播
するのに要づる基準伝播時間を記憶する記憶手段と、 (f)前記各直線上の一対の探触子の一方を送イに用ど
じ、他方を受信用と1ノでその送受信間の伝播時間を測
定し、かつ複数組の探触子対について測定した伝播時間
と、前記基準伝播時間とから前記測定断面における前記
複数本の6線に沿った方向の欠陥部の長さを算出づる演
騨手段と、(g)前記測定断面を複数個の象限に分割し
、前記外周上に配置し1=複数個の探触子の中から複数
個の象限に区切った領域内の2個の探触子を選択し、一
方を送信用、他方を受信用として伝播部間を測定し、こ
の測定を各象限について順次切換えて行い、この結果得
られた各伝播時間と、前記基準伝播時間とから前記欠陥
部が存在する象限を判定する判定手段と、 (if)前記演綽手段および判定手段の結果に基づいて
、前記測定断面におりる前記欠陥部の形状J3よび位置
を算出して表示づる手段とを具備した超音波診断装置。
[Scope of Claims] (a) Ultrasonic waves are transmitted in advance to the center of the measurement cross section by contacting both ends of a plurality of straight lines passing through the center of the measurement cross section of the object to be measured, or a plurality of probes that receive ultrasonic waves from the center direction of the measurement cross section; (b) a transmitter; (C) a receiver; (d) the transmitter and receiver are connected to the plurality of probes; (e) a memory for storing a reference propagation time required for the ultrasonic wave to propagate through a defect-free portion of the object to be measured; (f) one of the pair of probes on each straight line is used for transmission and the other for reception, and the propagation time between transmission and reception is measured at 1, and a plurality of sets of probes; (g) calculating means for calculating the length of the defective portion in the direction along the plurality of six lines in the measurement cross section from the propagation time measured for the pair and the reference propagation time; 1 = Select two probes within the area divided into multiple quadrants from among the multiple probes, one for transmission and the other. determining means for measuring between the propagation parts for reception, performing this measurement by switching sequentially for each quadrant, and determining the quadrant in which the defective part exists from each propagation time obtained as a result and the reference propagation time. (if) means for calculating and displaying the shape J3 and position of the defective portion in the measurement cross section based on the results of the calculation means and the determination means.
JP14823883A 1983-08-13 1983-08-13 Ultrasonic diagnostic device Pending JPS6039557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14823883A JPS6039557A (en) 1983-08-13 1983-08-13 Ultrasonic diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14823883A JPS6039557A (en) 1983-08-13 1983-08-13 Ultrasonic diagnostic device

Publications (1)

Publication Number Publication Date
JPS6039557A true JPS6039557A (en) 1985-03-01

Family

ID=15448330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14823883A Pending JPS6039557A (en) 1983-08-13 1983-08-13 Ultrasonic diagnostic device

Country Status (1)

Country Link
JP (1) JPS6039557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291962A (en) * 1989-05-02 1990-12-03 Jgc Corp Compressive-strength measuring apparatus of waste body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291962A (en) * 1989-05-02 1990-12-03 Jgc Corp Compressive-strength measuring apparatus of waste body

Similar Documents

Publication Publication Date Title
JP3585841B2 (en) Fluid temperature measuring method and apparatus
JPS59197853A (en) Ultrasonic diagnostic device
JPS6039557A (en) Ultrasonic diagnostic device
JP3406511B2 (en) Abnormal location detector
JPH08271488A (en) Method for evaluating quality of frpm pipe
JPH0148504B2 (en)
JPH0373846A (en) Instrument for measuring ultarsonic wave
JPH0387655A (en) Ultrasonic wave transfer speed measuring method in concrete plate
JPH0376708B2 (en)
JP2001337077A (en) Device for non-destructively inspecting exfoliation in concrete structure
JPS6013257A (en) Ultrasonic diagnosis
JP2577110B2 (en) Street accuracy measuring device and street accuracy measuring method at construction site
JPS61200468A (en) Ultrasonic diagnostic apparatus
JPS61172055A (en) Apparatus for inspecting interior of piping
JPH0444952B2 (en)
JPS60165546A (en) Ultrasonic diagnosis device
JPH11201948A (en) Angle beam method and its waveform display method
JP3250070B2 (en) Ultrasonic anemometer
KR20050061976A (en) Nondestructive inspection type supersound sensing system
JPH0222695Y2 (en)
JPS5421372A (en) Measuring apparatus of bead cut shapes of inside surface of pipes
JPH0687015B2 (en) Method and apparatus for measuring concrete plate thickness
Nielsen et al. Sound Power Determination of Household Appliances on the Production Line
JPH02198356A (en) Apparatus and method for evaluating bonding of composite steel plate by using ultrasonic wave
JPH0933318A (en) Ultrasonic liquid level measuring method