JPS60394A - Method of treating radioactive waste liquor - Google Patents

Method of treating radioactive waste liquor

Info

Publication number
JPS60394A
JPS60394A JP10763983A JP10763983A JPS60394A JP S60394 A JPS60394 A JP S60394A JP 10763983 A JP10763983 A JP 10763983A JP 10763983 A JP10763983 A JP 10763983A JP S60394 A JPS60394 A JP S60394A
Authority
JP
Japan
Prior art keywords
liquid
waste liquid
radioactive waste
water glass
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10763983A
Other languages
Japanese (ja)
Inventor
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10763983A priority Critical patent/JPS60394A/en
Publication of JPS60394A publication Critical patent/JPS60394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は放射性廃液の処理法に関する。[Detailed description of the invention] The present invention relates to a method for treating radioactive waste liquid.

(従来技術) 従来放射性廃液の処理法として凝集沈殿法、イオン交換
法、蒸発濃縮法がある。
(Prior Art) Conventional methods for treating radioactive waste include the coagulation-precipitation method, ion exchange method, and evaporation concentration method.

凝集沈殿法は廃液に凝集剤(アルミニウム塩、鉄塩など
)を添加し、水酸化物などの凝集フロックを形成させる
過程で放射性物質を捕捉し共沈殿させる方法である。こ
の方法は大量の低レベル放射性廃液を低コストで処理す
るのに適しているが、除染係数(処理前の放射能濃度/
処理後の放射能濃度)が102以下であるため高レベル
放射性廃液では使用できない。
The coagulation-precipitation method is a method in which a coagulant (aluminum salt, iron salt, etc.) is added to the waste liquid, and radioactive substances are captured and co-precipitated in the process of forming coagulated flocs such as hydroxide. This method is suitable for processing large amounts of low-level radioactive waste liquid at low cost, but it is important to note that the decontamination coefficient (radioactivity concentration before treatment /
Since the radioactivity concentration after treatment is less than 102, it cannot be used for high-level radioactive waste liquid.

イオン交換法は廃液中の主な放射性物質が陽イオンとし
て存在するので、これらをイオン交換樹脂によって牧着
除去する方法である。しかしイオン交換樹脂が高価であ
ることと、樹脂の劣化等の問題かめシ、低レベル放射性
廃液で繰シ返し使用することができる場合に限られる。
In the ion exchange method, the main radioactive substances in the waste liquid exist as cations, so these are removed by ion exchange resin. However, ion exchange resins are expensive, and there are problems such as resin deterioration, and this method is limited to cases where it can be used repeatedly with low-level radioactive waste liquid.

除染係数は102〜108程度であるが再生廃液の処理
も大きな問題がある。
Although the decontamination coefficient is about 102 to 108, there is also a big problem in processing the recycled waste liquid.

蒸発濃縮法は廃液から大量の水を蒸発分III l。The evaporative concentration method extracts a large amount of water from the waste liquid into evaporated water.

放射性物質を廃液中にそのまま残存させる方法である。This method allows radioactive substances to remain in the waste liquid.

この方法は上記二法では除去し件い非イオン性核種も水
から分離できるため除染係数が103〜107 と高く
、最も優れており、少量の高レベル放射性廃液の除染に
適するが処理コストが最も高くつくため、原子力発電所
などから大量に発生する低レベル−中レベル放射性廃液
の処理としては不適である。
This method has a high decontamination coefficient of 103 to 107 because it can separate nonionic nuclides from water that cannot be removed by the above two methods, and is the best method.It is suitable for decontaminating small amounts of high-level radioactive waste liquid, but the processing cost is high. Since it is the most expensive, it is not suitable for treating low- to medium-level radioactive waste fluids generated in large quantities from nuclear power plants.

(発明の目的) 本発明の目的は、原子力発電所、ラジオアイソトープを
取扱う施設、およびウランを取扱う施設から排出される
大量の低レベル〜中Vペル放射性廃液全従来法に較べ安
価な処理コストで処理しうる放射性廃液の処理方法を提
供することにある。
(Objective of the Invention) The object of the present invention is to treat large amounts of low-level to medium-V Pel radioactive waste discharged from nuclear power plants, radioisotope handling facilities, and uranium handling facilities at a lower cost than conventional methods. The object of the present invention is to provide a method for treating radioactive waste liquid that can be treated.

(発明の構成) 本発明の要旨は、放射性廃液に水ガラスおよび固化助剤
を添加したj型外濾過膜処理によシ濃縮し該放射性廃液
を処理するところにある。
(Structure of the Invention) The gist of the present invention is to treat a radioactive waste liquid by concentrating it through a J-type outer filtration membrane treatment in which water glass and a solidification aid are added.

本発明の更に好ましい構成としては、上記の如く限外漣
過膜処理により得られた濃縮液を■ 直ちに濃縮同化(
例えばアスファルト同化、ガラス固化、蒸発乾固など)
するか ■ 界面活性剤を添加して限外沖過膜を洗浄し得られた
液を泡沫分離した後に上記■と同様に濃縮固化する方法
がある。
In a more preferred configuration of the present invention, the concentrate obtained by the ultrafiltration membrane treatment as described above is immediately concentrated and assimilated (
(e.g. asphalt assimilation, vitrification, evaporation to dryness, etc.)
(2) There is a method in which a surfactant is added to wash the ultrafiltration membrane, the resulting liquid is separated into foam, and then concentrated and solidified in the same manner as in (2) above.

具体例I 以下図によって説明する。Specific Example I This will be explained below with reference to the drawings.

第1図において1は循環液槽、2は限外涙過装置、3は
泡沫分離装置、4は濃縮固化装置、5は循環液槽1から
限外濾過槽2へ液を供給するポンプ、6は放射性廃液、
7は水ガラス、8は固化助剤、9はpH調整剤、10は
界面活性剤11は限外p過装置2よシの透過液、12は
限外沖過装置2より循環液槽1へ送られる循環液、13
は循環液槽1より泡沫分〜1[装置6へ送られる濃縮液
、14は泡沫分離装置3により分離された泡沫(クロス
)であって濃縮固化装置4へ導かれる、15は泡沫分離
装置5によシ泡沫14′f!:分離した後の脱離液、1
6i1:泡沫分離装置へ供給される空気517は濃縮固
化された同化体、そして18は濃縮固化装置4より得ら
れる循環液槽1へ戻される復水を示している。
In FIG. 1, 1 is a circulating fluid tank, 2 is an ultrafiltration device, 3 is a foam separator, 4 is a concentration solidification device, 5 is a pump that supplies liquid from the circulating fluid tank 1 to the ultrafiltration tank 2, and 6 is radioactive waste liquid,
7 is water glass, 8 is a solidification aid, 9 is a pH adjuster, 10 is a surfactant, 11 is a permeated liquid from the ultrapolar filtration device 2, and 12 is sent from the ultrapure filtration device 2 to the circulating liquid tank 1. Circulating fluid sent, 13
14 is the foam (cross) separated by the foam separator 3 and guided to the concentration solidification device 4; 15 is the foam separator 5; Yoshi foam 14'f! : Desorbed liquid after separation, 1
6i1: Air 517 supplied to the foam separator is concentrated and solidified assimilate, and 18 represents condensate obtained from the concentration and solidification device 4 and returned to the circulating liquid tank 1.

(1) 原子力発電所、ラジオアイソトープを取り扱う
施設などの放射性廃液6全水ガラス7と混合しながら循
環液槽1に入れる。この廃液6には通常非揮発性核種(
58Co、 ”Co、 S9F@。
(1) Radioactive waste liquid 6 from nuclear power plants, facilities handling radioisotopes, etc. is mixed with whole water glass 7 and put into the circulating liquid tank 1. This waste liquid 6 usually contains non-volatile nuclides (
58Co, ”Co, S9F@.

54Mn など)が含まれているが水ガラス7のアルカ
リ作用によって放射性核種は次式(1)〜(3)のよう
に反応して不溶化される。
54Mn, etc.), but due to the alkaline action of the water glass 7, the radionuclides react as shown in the following formulas (1) to (3) and are insolubilized.

Na2O+H20−+ 2Na +20H−(1)60
0o”−+20H−−+ 60Co(OH)2↓ −−
−(2)”Fe” +30H−→”Fe(OH)3↓ 
・−(3)水ガラス7けJ工Sクイ酸ナトリウム1〜3
号(Na2O−nsi02 ・mH2O) として市販
されておシ、こ\ではケイ酸ゲル(nsi02・xH2
O)の生成が速い3号品(5to2/ Na2O−3,
15モル比)全使用することが好ましい。水ガラス7の
添加量は廃液6中の懸濁物量に対してSiO□ として
1〜20 wt%添加する。
Na2O+H20-+ 2Na +20H-(1)60
0o”−+20H−−+ 60Co(OH)2↓ −−
-(2)"Fe"+30H-→"Fe(OH)3↓
・-(3) Water glass 7 bottles J engineering S sodium citrate 1-3
It is commercially available as silicic acid gel (Na2O-nsi02 ・mH2O).
Product No. 3 (5to2/Na2O-3,
15 molar ratio) is preferably used. The amount of water glass 7 added is 1 to 20 wt% as SiO□ based on the amount of suspended matter in the waste liquid 6.

(2)循環液槽1で水ガラス7と混合された廃液6にさ
らに固化助剤8が添加混合される。固化助剤8として使
用できる薬剤は次のとおシ ゛である。
(2) A solidification aid 8 is further added to and mixed with the waste liquid 6 mixed with the water glass 7 in the circulating liquid tank 1. The following chemicals can be used as the solidification aid 8.

無機化合物としては亜硫酸(I(2so3) 、硫酸(
H2SO4) r 塩酸(mat ) 、硝酸(H)J
O3)+ホウN (F13BO3) + 炭e (Hz
OO3) 、リン′酸(H3P04) などの無機酸、
亜硫酸ナトリウム(Na2SOs ) r チオ硫酸ナ
トリウムCN &28203 )などの還元性無機酸塩
、硫酸アンモニウム((NH4)zsO< ) 、第1
リン酸ナトリウム(NaH2PO4)などの無機酸性塩
、−酸化炭素(co)、二酸化硫黄(so2)、硫化水
素(H2S)などの還元性ガス、硫化ナトリウム(Na
m5) などの硫化物、塩化カルシウム(OaC!t2
 ) r硫酸カルシラA (C!asO4)などのアル
カリ土類金属塩、アルミン酸ナトリウA (Na2A4
04) r硫酸アルミニウム(A4(So、)3)など
のアルミニウム塩2重炭酸ナトリウム(NaHCO2)
 などの炭酸アルカリ、水酸化亜鉛(Zn(OH)2 
)などの重金弯が使用できる。
Inorganic compounds include sulfite (I(2so3)) and sulfuric acid (
H2SO4) r Hydrochloric acid (mat), nitric acid (H)J
O3) + HouN (F13BO3) + Charcoal e (Hz
OO3), inorganic acids such as phosphoric acid (H3P04),
Reducing inorganic acid salts such as sodium sulfite (Na2SOs) r sodium thiosulfate CN &28203), ammonium sulfate ((NH4)zsO<),
Inorganic acid salts such as sodium phosphate (NaH2PO4), -reducing gases such as carbon oxide (CO), sulfur dioxide (SO2), hydrogen sulfide (H2S), sodium sulfide (Na
m5), calcium chloride (OaC!t2
) rAlkaline earth metal salts such as Calcilla sulfate A (C!asO4), sodium aluminate A (Na2A4
04) rAluminum salts such as aluminum sulfate (A4(So,)3), sodium bicarbonate (NaHCO2)
Alkali carbonates such as, zinc hydroxide (Zn(OH)2
) can be used.

有機化合物としては蟻酸(ITOOOH) 、シュウ酸
((OOOH)2 ) 、酢酸(0H3000H) な
どの有機酸、蟻酸ナトリウム(HOOONa ) 、酢
酸ナトリウム(0H300ONa )などの有機酸塩。
Examples of organic compounds include organic acids such as formic acid (ITOOOH), oxalic acid ((OOOH)2), and acetic acid (0H3000H), and organic acid salts such as sodium formate (HOOONa) and sodium acetate (0H300ONa).

ホルムアルデヒドなどのアルデヒド化合物。Aldehyde compounds such as formaldehyde.

単糖類、還元性少糖類が使用できる。Monosaccharides and reducing oligosaccharides can be used.

固化助剤8け水ガラス7のN A20 と反応当量とな
るように注入し、必要ならばpH旧整剤9で循環液槽1
のpH15〜9程度に再調整する。水ガラス7と上記放
射性核種の重金属、固化助剤8、pH調整剤9の複合反
応によシ、水ガラスのケイ酸が遊姉、シ、重合ケイ9 
(n5i02・XH20) を生成する。この反応機構
は複雑であるため明らかにされていないが、pH5〜9
で著しく短時間で生じ、上記重金属の一部と重合ケイ酸
が結合することが知られている。
Pour the solidification aid 8 into the water glass 7 so that it has a reaction equivalent of N A20, and if necessary, add the pH adjuster 9 to the circulating liquid tank 1.
Readjust the pH to about 15-9. Due to the complex reaction between the water glass 7, the heavy metal of the radionuclide, the solidification aid 8, and the pH adjuster 9, the silicic acid of the water glass becomes active, and the polymerized silicon 9
(n5i02・XH20) Generate. This reaction mechanism is complicated and has not been clarified, but at pH 5-9
It is known that some of the heavy metals mentioned above and polymerized silicic acid bond with each other in a very short time.

Na20−nsi02中mH2O−+ n5102・xH2O+yH20+ZNaOH+++(
4)このように混合芒れた液では約1〜5分間で粒状固
形物が形成され液が懸濁する。この粒状固形物には放射
性核種がほぼ100%含まれており、粒径はおよそ10
0mμ以上である。上記(4)式の重合ケイ酸は廃液中
の懸濁物質(不溶化した放射性核種を含む)同志の結合
剤として作用し、懸濁物質の粒子径を増大させる作用を
もつ。また重合ケイ酸は懸濁物質表面に被膜を形成する
作用をもつ。
mH2O-+ in Na20-nsi02 n5102 xH2O+yH20+ZNaOH+++(
4) In the liquid mixed in this way, granular solids are formed and the liquid becomes suspended in about 1 to 5 minutes. This granular solid contains almost 100% radionuclides and has a particle size of approximately 10
It is 0 mμ or more. The polymerized silicic acid of formula (4) acts as a binder for suspended substances (including insolubilized radionuclides) in the waste liquid, and has the effect of increasing the particle size of the suspended substances. Polymerized silicic acid also has the ability to form a film on the surface of suspended matter.

(3)該懸濁液は循環液槽1から供給ポンプ5によって
限外濾過装置2に送液される。送液圧は0.5〜4 k
g7cm2程度である。限外濾過装置2は溶液中の塩類
、溶解した低分子物質を透過させ、懸濁物質、コロイド
および高分子物質は透過させない半透膜による濾過装置
4であって、半透膜の穴の太きでは1〜10mμ程度で
ある。
(3) The suspension is sent from the circulating liquid tank 1 to the ultrafiltration device 2 by the supply pump 5. Liquid feeding pressure is 0.5~4k
It is about g7cm2. The ultrafiltration device 2 is a filtration device 4 using a semipermeable membrane that allows salts in a solution and dissolved low-molecular substances to pass through, but does not allow suspended solids, colloids, and high-molecular substances to pass through. The diameter is about 1 to 10 mμ.

限外p過膜は廃液中又id (2)に記載のHUB濁物
質(不溶化した放射性核種ヲ含む)と水を分離する作用
をもつ。
The ultrapolar membrane has the function of separating water from the HUB turbid substances (including insolubilized radionuclides) described in id (2) in the waste liquid.

供給液は限外濾過装置2より一部が透過液11として流
出する。一方供給された液に含まれた懸濁物質5コロイ
ドなどは透過されず循環液12に含まれる。かくして循
環液槽1、供給ポンプ5、限外濾過膜2および循環液1
2の順に循環が続けられ、循環液槽1内の廃液に含まれ
た懸濁物質(放射性物質を含む)が濃縮される。それに
つれて透過液11に漏洩する放射性核種は徐々に増加す
るので、この濃縮操作は透過液中の放射能レベルが所定
値を越えない程度迄続けられる。この時の減容比(処理
前の廃液黄/処理後の;)′う数量)は通常50〜10
0程度である。
A portion of the feed liquid flows out of the ultrafiltration device 2 as a permeate 11 . On the other hand, suspended matter 5 colloids and the like contained in the supplied liquid are not permeated and are included in the circulating liquid 12. Thus, the circulating fluid tank 1, the supply pump 5, the ultrafiltration membrane 2, and the circulating fluid 1
The circulation continues in the order of 2, and the suspended matter (including radioactive substances) contained in the waste liquid in the circulating liquid tank 1 is concentrated. As the radionuclides leaking into the permeate 11 gradually increases, this concentration operation is continued until the radioactivity level in the permeate does not exceed a predetermined value. At this time, the volume reduction ratio (yellow waste liquid before treatment / quantity after treatment) is usually 50 to 10.
It is about 0.

(4) 既に放射性廃液6に洗剤が含まれているような
場合(例えば原子力発電所やR工取扱い施設の洗φM廃
水のように最初から界面活性剤を含むもの)では、限外
濾過により適当な減容比が得られると、濃縮液13中に
含まれる界面活性剤が次の泡沫分離装置で必要とする 
1値すなわち10 ppm以上になる場合があるので、
その場合には直ちに濃縮液13を泡沫分離装置3に送る
(4) In cases where the radioactive waste liquid 6 already contains a detergent (for example, it contains a surfactant from the beginning, such as washing φM waste water from nuclear power plants and facilities that handle R engineering), ultrafiltration can be used to properly remove the detergent. When a suitable volume reduction ratio is obtained, the surfactant contained in the concentrate 13 will be used in the next foam separation device
1 value, that is, 10 ppm or more,
In that case, the concentrated liquid 13 is immediately sent to the foam separator 3.

放射性廃液6に洗剤が含まれていないような場合や、濃
縮液15中に含まれる界面活性剤が10 ppmに達し
ないような場合は界面活性剤10?循項液槽1に注入し
循at続行する。界面活性剤10(たとえばDBSドデ
シルベンゼンスルホン酸ソーダなど)の注入量は濃縮液
16に対し10 ppm以上となるように添加する。
If the radioactive waste liquid 6 does not contain detergent or if the concentration of surfactant contained in the concentrated liquid 15 does not reach 10 ppm, use the surfactant 10? Inject into circulation fluid tank 1 and continue circulation. The surfactant 10 (for example, DBS sodium dodecylbenzenesulfonate) is added in an amount of 10 ppm or more to the concentrate 16.

界面活性剤10i加えることによ)5限外ヂ過膜而に付
着する懸濁物質を洗浄脱離式せる作用、起泡作用およO
・一部の放射性核種の吸着作用をもつ。また生成する重
合ケイ酸は界面活性剤のビルダーとしても作用する(ビ
ルダーとは、それ自身は界i1′7j活性をほとんど示
芒ないが、界面活性剤と併用することにょシその界面活
性力を強めるものをいう)。
By adding 10i of surfactant), the effect of cleaning and desorbing the suspended solids adhering to the ultraviolet membrane, the foaming effect, and the
・Has an adsorption effect on some radionuclides. The polymerized silicic acid produced also acts as a builder for surfactants (a builder by itself exhibits almost no i1'7j activity, but when used in combination with a surfactant, its surfactant power is enhanced). something that strengthens).

(5)その後濃縮液13を泡沫分離装置6に送る。(5) The concentrated liquid 13 is then sent to the foam separator 6.

泡沫分離装置3は濃縮液11を起泡させ気泡と液とに分
^Wでせる装置でらり、IFIIえU濃縮液13けその
中に含まれる界面活性剤10と装置3に吹きこまれた空
気16によって液面に多量の泡沫を発生し、気泡表面に
懸濁物質等を付着させることより、放射性核種分含む懸
濁物質を溶液と分離する。
The foam separator 3 is a device that foams the concentrated liquid 11 and separates it into bubbles and liquid. A large amount of foam is generated on the liquid surface by the air 16, and the suspended matter, etc., is attached to the surface of the bubbles, thereby separating the suspended matter containing radionuclides from the solution.

なお濃縮液13の界匍活性剤濃度が10ppm以上でな
ければ効果的に泡沫14は生じない。起泡させる方法と
しては空気吹き込みの他に表面気喘などの方法があり、
いずれの方法も使用できる。その際濃縮液13に含まれ
る放射性核柚を含む懸濁物質は気泡面に付着し、泡沫1
4が濃縮液13がら溶液と分離てれる。分離された溶液
は脱離液15として循環液槽1に戻される。この分離操
作の際濃縮液13の界面活性剤は、大部分がスカムに移
行し脱離液13にはほとんど含まれない。
Note that the foam 14 will not be effectively generated unless the concentration of the surfactant in the concentrated liquid 13 is 10 ppm or more. In addition to air blowing, there are other methods for foaming, such as surface aeration.
Either method can be used. At this time, the suspended matter containing the radioactive nuclear citron contained in the concentrated liquid 13 adheres to the surface of the bubbles, causing the bubbles 1
4 is separated from the solution from the concentrate 13. The separated solution is returned to the circulating liquid tank 1 as a desorbed liquid 15. During this separation operation, most of the surfactant in the concentrated liquid 13 is transferred to the scum and is hardly contained in the desorbed liquid 13.

(6)泡沫14は濃縮固化装置4によって固化され固化
体17としてドラム缶に充填保管される。その際泡沫1
4の中の水分は復水18として回収され、再度循環液槽
1に戻して処理する。濃縮固化装置4としてはアスファ
ルト固化、ガラス固化などの公知の手段を使用できる。
(6) The foam 14 is solidified by the concentration and solidification device 4, and is filled and stored in a drum as a solidified product 17. At that time, foam 1
The moisture in 4 is recovered as condensate 18 and returned to the circulating liquid tank 1 for treatment. As the concentration and solidification device 4, known means such as asphalt solidification and vitrification can be used.

即ちアスファルト固化の場合は泡沫14を蒸発乾固させ
るか、そのまま直ちに120〜160℃程度に加熱した
アスファルトと攪拌混合してアスファルト中に固形物を
固定するもので647、ガラス固化の場合は泡沫14を
蒸発乾固した後、ホウ砂(Na2 B2O,・1onz
o、)およびクイ砂(主にSin、) ’i加えて90
0〜1300℃に融解し徐々に除熱してガラス状の固形
物を得るものである。これらのアスファルト固化物、ガ
ラス固化物は放射性物質の廃棄するために極めて安全性
が高いことが知られている。
That is, in the case of asphalt solidification, the foam 14 is evaporated to dryness or immediately stirred and mixed with asphalt heated to about 120 to 160°C to fix solids in the asphalt647, and in the case of vitrification, the foam 14 is fixed in the asphalt. After evaporating to dryness, borax (Na2B2O, 1oz
o,) and Kui sand (mainly Sin,) 'i plus 90
A glass-like solid is obtained by melting at 0 to 1300°C and gradually removing heat. It is known that these asphalt solidified products and vitrified products are extremely safe because they dispose of radioactive materials.

具体例■ 第2図において1,2.4〜9,11〜13゜および1
7.18は第1図に示すものと同様である。
Specific example■ In Figure 2, 1, 2.4~9, 11~13° and 1
7.18 is similar to that shown in FIG.

1、 ウランを取扱うプラントの旋射性廃液6を水ガラ
ス7と混合しながら、循環液槽1に入れる。この廃液6
には通常ウラン化合物(UO2F。
1. Mix the turbulent waste liquid 6 from a plant that handles uranium with water glass 7 and put it into the circulating liquid tank 1. This waste liquid 6
It is usually a uranium compound (UO2F).

など)や副生成物としてのフッ化物(HFなど)が含ま
れている。次式(5)〜(7)のように水ガラスのアル
カリ作用によってウラン化合物を不溶化し、フッ化水素
(HF)’i固定する。
etc.) and fluoride (HF etc.) as a by-product. As shown in the following formulas (5) to (7), the uranium compound is insolubilized by the alkaline action of water glass and hydrogen fluoride (HF) is fixed.

Na2O+H20−+ 2NaOH−(5)2UO11
’2 +6NaOH−+ Na2U207↓+4]1a
?−1−3H20・・・(6) 、HF十NaOH−4NaF十H20・・・(7)水ガ
ラスは具体例Iと同様にケイ酸ナトリウム3号品(5i
O1/ Nano −115) f使用することが好ま
しい。水ガラスの添加量は廃液中の懸濁物質生成量に対
して5102 として10〜100 wtLf)添加す
る。具体例Iの場合とは異なシこの廃液中にはHFが存
在しているため、UO□F2とHFとの反応当量以上の
Na2Oを必要とするためである。
Na2O+H20-+ 2NaOH-(5)2UO11
'2 +6NaOH-+ Na2U207↓+4]1a
? -1-3H20...(6), HF+NaOH-4NaF+H20...(7) Water glass is sodium silicate No. 3 product (5i
O1/Nano-115) f is preferably used. The amount of water glass added is 5102 (10 to 100 wtLf) based on the amount of suspended solids produced in the waste liquid. This is because HF is present in this waste liquid, which is different from the case of Example I, and therefore Na2O is required in an amount greater than the reaction equivalent of UO□F2 and HF.

循環液槽1で水ガラス7と混合された廃液6にさらに固
化助剤8が添加混合される。固化助剤8として使用でき
る薬品は具体例■で記した化合物が使用できるが、同時
にフッ素(F−)を固定するためにはアルカリ土類金属
塩、アルミニウム塩全用いるのが好都合である。アルカ
リ土類金属塩はフッ化物と反応し不溶化する。
A solidification aid 8 is further added to and mixed with the waste liquid 6 mixed with the water glass 7 in the circulating liquid tank 1. As the chemicals that can be used as the solidification aid 8, the compounds described in Example 1 can be used, but in order to fix fluorine (F-) at the same time, it is convenient to use alkaline earth metal salts and aluminum salts. Alkaline earth metal salts react with fluoride and become insolubilized.

例えばアルカリ土類金属塩として塩化カルシウム(0a
Ot2)を用いると次式(8)のごとく反応する。
For example, calcium chloride (0a
When Ot2) is used, the reaction occurs as shown in the following formula (8).

0aO62+ 2NaF−4C!aF2↓+2NaC4
e + @ (8J固化助剤8の添加量は水ガラス7の
Na2Oと反応当量分とフッ素(F−)の反応当量分の
合削量とし、必要ならばpH調整剤9で循環液槽1のp
Hが5〜9程度になるように再調整する。
0aO62+ 2NaF-4C! aF2↓+2NaC4
e + @ (8J The amount of solidification aid 8 added is the combined amount of reaction equivalent of Na2O of water glass 7 and reaction equivalent of fluorine (F-), and if necessary, add pH adjuster 9 to circulating liquid tank 1. p of
Readjust so that H is about 5 to 9.

水ガラスと上記ウラン化合物、固化助剤、pH調整剤と
の複合反応によシ、水ガラスのケイ酸が遊離し、重合ケ
イ酸(ns1o2・XH,O)を生成する。これらの反
応機構は複雑であるため明らかにされていないが、pH
5〜9では該重合ケイ酸は著しく短時間のうちに生じ、
廃液中に含まれるr金属と重合ケイ酸が結合することが
知られている。
Due to the combined reaction of the water glass with the above-mentioned uranium compound, solidification aid, and pH adjuster, the silicic acid of the water glass is liberated to produce polymerized silicic acid (ns1o2.XH, O). These reaction mechanisms are complex and have not been clarified, but the pH
In Nos. 5 to 9, the polymerized silicic acid is formed in a significantly short time,
It is known that r-metal contained in waste liquid and polymerized silicic acid bond.

上記重合ケイ酸は廃液中のI酢濁物質(重ウラン酸ナト
リウム、フッ化カルシウム)同志の結合剤として作用し
、懸濁物質の粒子径を増大てせる作用をもつ。このよう
に混合された液では粒状の固形物が約1〜5分間で形成
され、液が懸濁する。この粒状固形物には放射性核種だ
けでなくフッ化カルシウム(0aF2 ) が#’z)
Ylo。
The polymerized silicic acid acts as a binder for the suspended substances (sodium biuranate, calcium fluoride) in the waste liquid, and has the effect of increasing the particle size of the suspended substances. In the thus mixed liquid, granular solids are formed in about 1 to 5 minutes and the liquid becomes suspended. This granular solid material contains not only radionuclides but also calcium fluoride (0aF2)
Ylo.

チ含まれており5粒子径はおよそ20mμ以上となる。5 particle diameters are approximately 20 mμ or more.

また重合ケイ酸は懸濁物質表面に扱膜に形成する。Polymerized silicic acid also forms a film on the surface of suspended matter.

次いで循環液槽1から供給ボンダ5によって限外濾過装
置2に送液して具体例Iと同様に、限外濾過膜によって
廃液中の上記懸濁物質と廃液を分離して濃縮し、減容化
を行なう。このときの減容比は通常200〜1000程
度である。
Next, the liquid is sent from the circulating liquid tank 1 to the ultrafiltration device 2 by the supply bonder 5, and as in Example I, the above-mentioned suspended matter in the waste liquid and the waste liquid are separated and concentrated by the ultrafiltration membrane, and the volume is reduced. . The volume reduction ratio at this time is usually about 200 to 1000.

水ガラスから遊離した重合ケイ酸は液中の懸濁物質を分
散させる作用があるため、膜表面に懸濁物質の沈着を防
止する作用がある。
Polymerized silicic acid liberated from water glass has the effect of dispersing suspended substances in the liquid, and therefore has the effect of preventing the deposition of suspended substances on the membrane surface.

適当な減容比が得られると娘縮液13を濃縮固化装置4
に送る。濃縮固化装置4には具体例Iと同様に公知の手
段を使用することができる。
When an appropriate volume reduction ratio is obtained, the daughter condensate 13 is transferred to the concentrating and solidifying device 4.
send to As in Example I, known means can be used for the concentration and solidification device 4.

なおウラン化合物を回収したい場合には濃縮液13を綴
縮固化装置4で単に蒸発乾固させた後、° 公知の手段
即ち硝52 (HNO3) で溶解させればよい。
If it is desired to recover the uranium compound, the concentrated liquid 13 may be simply evaporated to dryness using the condensation solidification device 4, and then dissolved using known means, ie, nitric acid 52 (HNO3).

実施例 本発明の実施例1として60 (3oを含む廃液につい
て具体例1と同様に処理し、実施例2としてはウラン化
合物を含む廃液について具体例■の方法と同様に処理し
た。処理条件、得られた減容比、除染係数を表1に示す
。さらに比較例としてウラン化合物(UF)を含む実施
例2と同じ廃液について従来の限外沢過法により処理し
た条件及び結果も表1に示す。
Example As Example 1 of the present invention, a waste liquid containing 60 (3o) was treated in the same manner as in Example 1, and as Example 2, a waste liquid containing a uranium compound was treated in the same manner as in Example (2). Treatment conditions, The obtained volume reduction ratio and decontamination coefficient are shown in Table 1. Furthermore, as a comparative example, the conditions and results of treating the same waste liquid as in Example 2 containing uranium compounds (UF) by the conventional ultrafiltration method are also shown in Table 1. Shown below.

さらに実施例1で得られた処理液について、アスファル
ト固化またはガラス同化を行った。
Further, the treatment liquid obtained in Example 1 was subjected to asphalt solidification or glass assimilation.

同化条件および得られた固化物の状態について表2に示
す。
Table 2 shows the assimilation conditions and the state of the obtained solidified product.

表 1 (注〕 限外濾過供給圧力は2.5 kg/crn2゜
透過速度 ’O1/m2−Hr 表 2 (発明の効果) (1) 放射性核種全不溶化して重合ケイN2により限
外濾過膜を透過せしめない粒径迄粗大化するため、単な
る限外濾過装置ル1tにくらべて限外濾過膜での濃縮分
離が効率良く行なえ除染係数を著しく高められる。
Table 1 (Note) The ultrafiltration supply pressure is 2.5 kg/crn2° and the permeation rate 'O1/m2-Hr. Since the particles are coarsened to a particle size that does not allow them to pass through, the ultrafiltration membrane can perform concentration and separation more efficiently than a simple ultrafiltration device 1 ton, and the decontamination coefficient can be significantly increased.

(2)界面活性剤と水ガラスから生じる重合ケイ酸との
相互作用によって限外濾過装置よりはとんどの放射性核
種?脱離させ5重合ケイ酸は懸濁物質に液中に分散させ
て該物質の膜表面沈着を防ぎ、界面活性剤は膜の洗浄及
び該物質の脱離作用をもって膜の寿命を延ばし、さらに
膜の繰シ返し使用を可能ならしめる。
(2) Most radionuclides than ultrafiltration devices due to the interaction between surfactants and polymerized silicic acid produced from water glass? The 5-polymerized silicic acid is dispersed in the suspended substance in the liquid to prevent the substance from being deposited on the membrane surface, and the surfactant has the effect of cleaning the membrane and desorbing the substance, extending the life of the membrane, and further improving the membrane surface. to enable repeated use.

(3)界面活性剤が一部の放射性核種に吸着することに
より除染係数を高められる。
(3) The decontamination coefficient can be increased by the surfactant adsorbing some radionuclides.

(4) 界面活性剤と水ガラスから生じる重合ケイ酸の
相互作用によって起゛泡力が著しく高められる。そのた
め液中の放射性核種全効率良く泡沫分離することができ
る。
(4) Foaming power is significantly enhanced by the interaction between the surfactant and the polymerized silicic acid produced from water glass. Therefore, the radionuclides in the liquid can be separated into bubbles with high efficiency.

(5) 泡沫分離することによシ液量を著しく減容化で
きる。
(5) By separating the foam, the amount of liquid can be significantly reduced.

(6) アスファルトによって濃縮固化する場合は重合
ケイ酸に榎れた懸濁物質はアスファルトに容易に固着す
るためアスファルト固化速度が大きい。
(6) When concentrating and solidifying with asphalt, the asphalt solidification rate is high because the suspended solids absorbed by the polymerized silicic acid easily stick to the asphalt.

(7) 重合ケイ酸は非膨潤ゲルであるため、アスファ
ルト中に固定てれた微量の水分を吸収しても膨潤せず、
固化したアスファルトに亀裂を生ぜしめないため放射性
核種の浸出を防止し、安全性を高める。
(7) Polymerized silicic acid is a non-swelling gel, so it does not swell even if it absorbs a small amount of water fixed in asphalt.
Since it does not cause cracks in the solidified asphalt, it prevents the leaching of radionuclides and increases safety.

(3) ガラス固化による場合は重合ケイ酸がガラス成
分と同一組成であるためガラス同化が極めて容易で、必
要なケイ砂の添加量が少なくて済む。
(3) In the case of vitrification, since polymerized silicic acid has the same composition as the glass component, glass assimilation is extremely easy, and the amount of silica sand required to be added is small.

(9) ウラン化合物およびフッ素を不溶化して重合ケ
イ酸により限外濾過膜を透過せしめない粒径迄粗大化す
るため、単なる膜分離にくらべて限外濾過膜での濃縮分
離が効率良く行なえ、除染係数を著しく高められる。
(9) Since uranium compounds and fluorine are insolubilized and the polymerized silicic acid coarsens them to a particle size that does not allow them to pass through an ultrafiltration membrane, concentration and separation using an ultrafiltration membrane can be performed more efficiently than simple membrane separation. The decontamination coefficient can be significantly increased.

上記のように本発明の方法によれば単に廃液を限外沖過
するのにくらべて、著しく除染係数を高めることができ
かつ処理コストはより安価である。大量の低レベル−中
レベル放射性廃液の処理法として、本発明は蒸発濃縮法
にくらべて経済的で、凝集沈殿法よりも除染係数の高い
方法である。
As described above, according to the method of the present invention, the decontamination coefficient can be significantly increased and the processing cost is lower than when simply passing the waste liquid through the limit. As a method for treating a large amount of low-to-medium level radioactive waste liquid, the present invention is more economical than the evaporative concentration method and has a higher decontamination coefficient than the coagulation-precipitation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の方法を示すフローシート
である。 役代理人 内 1) 明 復代理人 萩 原 亮 −
1 and 2 are flow sheets illustrating the method of the present invention. Acting agent 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 放射性廃液に水ガラスおよび固化助剤を添加し限外濾過
することを特徴とする放射性廃液の処理法。
A method for treating radioactive waste liquid, which is characterized by adding water glass and a solidification aid to the radioactive waste liquid and subjecting it to ultrafiltration.
JP10763983A 1983-06-17 1983-06-17 Method of treating radioactive waste liquor Pending JPS60394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10763983A JPS60394A (en) 1983-06-17 1983-06-17 Method of treating radioactive waste liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10763983A JPS60394A (en) 1983-06-17 1983-06-17 Method of treating radioactive waste liquor

Publications (1)

Publication Number Publication Date
JPS60394A true JPS60394A (en) 1985-01-05

Family

ID=14464286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763983A Pending JPS60394A (en) 1983-06-17 1983-06-17 Method of treating radioactive waste liquor

Country Status (1)

Country Link
JP (1) JPS60394A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617681A (en) * 1979-07-25 1981-02-19 Hitachi Plant Eng & Constr Co Ltd Waste water purifying method
JPS57172298A (en) * 1981-04-16 1982-10-23 Mitsubishi Metal Corp Radioactive liquid waste processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617681A (en) * 1979-07-25 1981-02-19 Hitachi Plant Eng & Constr Co Ltd Waste water purifying method
JPS57172298A (en) * 1981-04-16 1982-10-23 Mitsubishi Metal Corp Radioactive liquid waste processing method

Similar Documents

Publication Publication Date Title
JPS6341439B2 (en)
JPS60394A (en) Method of treating radioactive waste liquor
JPS5912400A (en) Radioactive liquid waste treating process
JPS6334999B2 (en)
JP3119538B2 (en) Decontamination method for radioactive waste resin
AU2002249752B2 (en) Gypsum decontamination process
JPS60395A (en) Method of treating radioactive waste liquor
AU2002249752A1 (en) Gypsum decontamination process
RU2066493C1 (en) Method of atomic power stations liquid radioactive wastes treatment
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
US3553126A (en) Method of removal of molybdate ions from water
JPH06130188A (en) Processing method for radioactive waste liquid
KR100576919B1 (en) Method for reducing radioactive waste matter in the decontamination of radioactive contaminated soil
JPS5815016B2 (en) How to clean ion exchange resin
JPS60219598A (en) Method and device for removing chlorine ion in radioactive waste liquor
JPS62161097A (en) Method of processing waste liquor containing radioactive nuclear specy
JPS6131999A (en) Volume-reducing solidifying treating process of radioactive waste liquor
JPS59279B2 (en) Electrodialysis treatment method for an aqueous salt solution in which gypsum is dissolved
JP3058854B2 (en) Radioactive waste treatment method
US2502120A (en) Removal of silicon compounds from water
JPH0363439B2 (en)
JP3058855B2 (en) Treatment of radioactive liquid waste
US5081159A (en) Method for separating ion exchange resins using amine salt solutions and composition formed therein
JPS59197898A (en) Method of processing liquid waste containing uranium
JPH0221559B2 (en)