JPS6131999A - Volume-reducing solidifying treating process of radioactive waste liquor - Google Patents

Volume-reducing solidifying treating process of radioactive waste liquor

Info

Publication number
JPS6131999A
JPS6131999A JP15493584A JP15493584A JPS6131999A JP S6131999 A JPS6131999 A JP S6131999A JP 15493584 A JP15493584 A JP 15493584A JP 15493584 A JP15493584 A JP 15493584A JP S6131999 A JPS6131999 A JP S6131999A
Authority
JP
Japan
Prior art keywords
liquid
calcium
concentrated
waste liquid
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15493584A
Other languages
Japanese (ja)
Other versions
JPH0519679B2 (en
Inventor
真崎 龍雄
車田 則充
守 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Kyushu Electric Power Co Inc
Original Assignee
JGC Corp
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Kyushu Electric Power Co Inc filed Critical JGC Corp
Priority to JP15493584A priority Critical patent/JPS6131999A/en
Priority to GB08518117A priority patent/GB2163892B/en
Priority to FR8511236A priority patent/FR2568400B1/en
Publication of JPS6131999A publication Critical patent/JPS6131999A/en
Publication of JPH0519679B2 publication Critical patent/JPH0519679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 purpose of invention

【産業上の利用分野1 本発明は、ホウ素を含有する放射性廃液を減容固化処理
するプロセスの改良に関する。 【従来の技術】 原子力設備、とくにPWR型発電プラントから排出され
る放射性廃液は、ホウ素を主としてホウ酸の形態で含有
しており、その処理はセメント固化法によるのが適切で
ある。 それも近年はできるだけ高度の減容を行なうこ
とが要請されるので、廃液を蒸発濃縮して、なるべく多
くの固形分をセメントペーストに混入することが必要で
ある。 本発明者らは、この問題について研究し、その処理方法
について、すでにいくつかの発明を開示した。 その中の、特願昭57−120792号[放射性廃液の
処理プロセス」は、ホウ素を含有する廃液にカセイソー
ダを加えてl)H調整したのちに蒸発濃縮を行ない、濃
縮液に、可溶性のカルシウム化合物を加えて不溶性のホ
ウ酸カルシウムを析出させ、熟成して液のI)Hを12
以上に高めるとともに析出物の粒子を成長させ、固液分
離して析出物は濃縮固形分スラリーとして固化処理し、
一方pH12以上の分離液は、酸性の廃液の中和に循環
再利用することを特徴とする。 原子力発電所では、廃液の蒸発濃縮装置だけはづでに設
備を有している場合が多いので、既存の装置に大幅な改
修を加えずに使用したい。 上記のプロセスは、この蒸
発濃縮工程の運転条件に影響を与えるため、ホウ素を含
有する放射性廃液の処理法としては効果的であるにもか
かわらず、その採用に制約を受ける。
[Industrial Application Field 1] The present invention relates to an improvement in a process for volume reduction and solidification of radioactive waste liquid containing boron. BACKGROUND OF THE INVENTION Radioactive waste fluid discharged from nuclear power facilities, particularly PWR power plants, contains boron mainly in the form of boric acid, and it is appropriate to treat it by a cement solidification method. In recent years, it has become necessary to reduce the volume as much as possible, so it is necessary to evaporate and concentrate the waste liquid and mix as much solid content into the cement paste as possible. The present inventors have studied this problem and have already disclosed several inventions regarding its treatment method. Among them, Japanese Patent Application No. 57-120792 [Process for treatment of radioactive waste fluids] involves adding caustic soda to boron-containing waste fluids to adjust the H content, and then evaporating and concentrating the fluid to remove soluble calcium compounds. is added to precipitate insoluble calcium borate, and aged to reduce the I)H of the liquid to 12
At the same time, the precipitate particles are grown, solid-liquid separation is performed, and the precipitate is solidified as a concentrated solid slurry.
On the other hand, the separated liquid having a pH of 12 or higher is characterized in that it is recycled and reused for neutralizing the acidic waste liquid. Nuclear power plants often have equipment such as waste liquid evaporation concentration equipment, so it is desirable to use existing equipment without making any major modifications. The above process affects the operating conditions of this evaporation concentration step, and therefore, although it is effective as a treatment method for radioactive waste liquid containing boron, its adoption is limited.

【本発明が解決しようとする問題点1 本発明は、上述の問題点を解決し、原子力発電所の既設
の設備をほぼそのまま利用して、以後の処理工程に必要
な設備を追加することによって、さきの発明の利益を受
けつつ実施できる処理プロセスを提供するものである。 発明の構成 (問題点を解決するための手段] 本発明のホウ素を含有する放射性廃液の減容固化処理プ
ロセスは、廃液を蒸発濃縮し、濃縮液にカセイソーダお
よび可溶性のカルシウム化合物を加えて不溶性のホウ酸
カルシウムを析出させ、熟成して析出物の粒子を成長さ
せ、固液分離して、析出物は濃縮固形分スラリーとして
セメント固化処理し、分離液は蒸発濃縮を行なった上で
不溶性ホウ酸カルシウム析出工程に戻して循環再処理す
ることを特徴とする。 【作用】 このようにすれば、廃液の蒸発濃縮と不溶性カルシウム
化合物の析出以後の工程との、相互の関連をなくするこ
とができる。 ホウ酸を含有づ−る廃液の処理法として
の、さきの発明の利益は、そのまま維持される。 (実施例] 図面を参照して説明す・れば、第1図に示すように、ホ
ウ酸を含有する酸性の放射性廃液を蒸発濃縮する。 こ
の種の廃液中のホウ酸濃度は、ホウ素にして2.100
1111m前後が代表的であり、蒸発濃縮は少なくとも
25℃における飽和濃度以上、つまりホウ素含有量9.
oooppm以上、望ましくは21.OOOppm程度
となるように行なう。 ついで、濃縮液にカセイソーダ水溶液を加えて、pHを
7〜8に調整する。 このI)H調整は、次工程の不溶
性カルシウムの析出反応が、酸性域では著しく遅いので
、最初にアルカリ性領域で反応させるために行なうもの
であり、必要に応じてカセイソーダを加えて調整する。  しかし、過剰のナトリウムの投入は最終工程のセメン
ト固化処理において悪影響を与えるので、不溶性ホウ酸
カルシウム析出反応に必要な限度で、最少の量に止めた
い。 この観点から液のpHは7〜8が適切である。 
濃縮液のホウ素濃度21,000pI)mの条件におい
ては、Na /B (モル比、以下同じ)が0.2〜0
.3のときに、このpH値が得られる。 蒸発濃縮によ
り得られる復水は、循環再利用できる。 次に、pH調整しt= ?lI縮液に可溶性カルシウム
化合物を加え、不溶性のホウ酸カルシウムを析出させる
。 カルシウム化合物としては、系内に他のイオンが蓄積し
たり、蒸発濃縮による固形分が増大することを避けると
いう観点から、水酸化カルシウムまたは酸化カルシウム
を使用するとよい。 添加は、粉末、スラリー、水溶液のいずれの形態で行な
ってもよいが、酸化カルシウムは水との接触による急激
な発熱を避けるよう、配慮して用いるべきである。 不溶性塩の析出反応は、もちろん温度が高いほど速やか
に進み、40℃またはそれ以上が実用的である。 一方
、反応の結果ペースト状物が生成し、温度が高いとそれ
が硬くなって、操作上不利になる。 通常の装置で許容
できる限度は70℃程度であり、好ましい温度は60℃
以下である。 またこの工程は攪拌下で行なう必要があり、攪拌装置と
しては、上下に少なくとも2組の攪拌羽根を有し、回転
と同時に上下動をも行うタイプがとくに好適である。 不溶性塩の析出当初は、液はスラリー状であるが、析出
が進み量が増大してくるにつれて、ペースト状になる。  この変化がそれ以上進まなくなったら、液を析出温度
以下に冷却して、熟成を行なう。 攪拌は続行づること
が好ましいが、不可欠ではない。 熟成により、析出したホウ酸カルシウムの結晶が成長し
て大きな板状ないし柱状のものとなり、液はペースト状
から再びスラリー状となる。 また、液中のホウ素濃度
が低下するとともに、ナトリウム濃度は反応初期の濃度
まで回復する。 それに従って、液のpHは高くなる。  液のpHはできるだけ高くして、すなわち、液中のN
aの濃度をできるだけ高して、液をホウ酸カルシウム析
出工程のpH調整に利用したい。 熟成後の液中のNa9度は、ホウ酸カルシウム析出工程
において添加するカルシウム化合物の量と密接な関係が
あり、Ca /B (モル比、以下同じ)の値を大きく
゛す゛るに従い、ずなゎち、カルシウム化合物の添加量
を増加するに伴って上昇し、Ca /Bがある値になっ
たところで飽和する傾向をもつ。 この液中のNalA
度の観点から、添加するカルシルラム化合物の量を飽和
点のCa /Bの値以上とすることが望ましい。 飽和
点のCa/Bの値は、反応液のNa /B初期濃度によ
ってやや異なるが、前記した通常の濃縮液のpH調整範
囲においてはCa /B、=0.35〜0.45Fあり
、添加すべきカルシウム化合物の量は、少なくともCa
 /B=0.3以上が望ましい。 実際の操業に当って
は、廃液濃縮液のホウli濃度、カセイソーダの添加量
、および不溶性塩の生成と熟成の実際などを考慮して、
適当なCa /Bの値を見出し、カルシウム化合物を添
加すればよい。 熟成のすんだ液は、固液分離装置に送って、濃縮固形分
スラリーと分離液とに分ける。 分離装置は、常用の濾
過機、遠心分離機をスラリーに与える含水率に応じてえ
らぶ。 含水率は、減容比を高めるためには低い方がよ
いが、次の固化工程への移送および取扱いの難易、固化
体の物性などの点から、最適の値を設定する。 通常は
、固形分温度30〜80重ω%の範囲が適当である。 濃縮した固形分はセメントおよび水と混和し、セメント
固化処理づる。 その涛法は既知の技術により行なえば
よい。 セメントとしては、ポルトランドセメントが適
°切である。 セメント同化体中に封入する固形分の量
はく乾燥重量基準で)30〜70%が適当である。 一方、分離液は、濃縮して不溶性ホウ酸カルシウム析出
工程へ戻し、循環再処理を行なう。 分離液中には、廃
液濃縮液のI)H調整のために添加されたカセイソーダ
の大部分が含まれているので、分離液を循環再処理する
ことにより、以後添加するカセイソーダは、ロス分を補
充するに足りる良でよいことになる。 分離液の濃縮の
際に生じる復水は、再利用する。 この濃縮は、蒸発法
によっても、また逆浸透法によっても実施できる。 この工程は、すでに濃縮された分離液の濃縮処理を行な
うだけなので、その装置の規模は小型で足りる。
[Problem to be solved by the present invention 1] The present invention solves the above-mentioned problems by using the existing equipment of the nuclear power plant almost as is and adding the equipment necessary for the subsequent treatment process. , provides a treatment process that can be carried out while benefiting from the previous invention. Structure of the Invention (Means for Solving the Problems) The volume reduction and solidification treatment process for radioactive waste liquid containing boron of the present invention involves evaporating and concentrating the waste liquid, adding caustic soda and soluble calcium compounds to the concentrated liquid, and adding insoluble calcium compounds to the concentrated liquid. Calcium borate is precipitated, aged to grow precipitate particles, solid-liquid separated, the precipitate is solidified with cement as a concentrated solid slurry, and the separated liquid is evaporated and concentrated, then insoluble boric acid It is characterized in that it is returned to the calcium precipitation step for cyclical reprocessing. [Operation] By doing so, it is possible to eliminate the mutual connection between the evaporation concentration of the waste liquid and the steps after the precipitation of insoluble calcium compounds. The benefits of the previous invention as a method for treating waste liquid containing boric acid are maintained. (Example) As shown in FIG. Acidic radioactive waste liquid containing boric acid is evaporated and concentrated.The concentration of boric acid in this type of waste liquid is 2.100 in terms of boron.
Typically, the concentration is around 1111 m, and evaporation concentration is at least above the saturation concentration at 25°C, that is, the boron content is 9.
oooppm or more, preferably 21. This is done so that the amount is approximately OOOppm. Then, a caustic soda aqueous solution is added to the concentrate to adjust the pH to 7-8. This I)H adjustment is carried out to first react in an alkaline region, since the precipitation reaction of insoluble calcium in the next step is extremely slow in an acidic region, and is adjusted by adding caustic soda as necessary. However, since adding too much sodium has an adverse effect on the cement solidification process in the final step, it is desirable to limit the amount to the minimum amount necessary for the precipitation reaction of insoluble calcium borate. From this point of view, the appropriate pH of the liquid is 7 to 8.
Under conditions where the boron concentration of the concentrated solution is 21,000 pI), the Na/B (molar ratio, the same hereinafter) is 0.2 to 0.
.. 3, this pH value is obtained. Condensate obtained by evaporation concentration can be recycled and reused. Next, adjust the pH to t=? A soluble calcium compound is added to the lI condensate to precipitate insoluble calcium borate. As the calcium compound, calcium hydroxide or calcium oxide is preferably used from the viewpoint of avoiding accumulation of other ions in the system and increase of solid content due to evaporation and concentration. Calcium oxide may be added in the form of powder, slurry, or aqueous solution, but calcium oxide should be used with care to avoid rapid heat generation due to contact with water. Naturally, the precipitation reaction of the insoluble salt proceeds more quickly at higher temperatures, and a temperature of 40° C. or higher is practical. On the other hand, as a result of the reaction, a paste-like material is produced, and if the temperature is high, it becomes hard, which is disadvantageous in operation. The permissible limit with normal equipment is about 70°C, and the preferred temperature is 60°C.
It is as follows. Furthermore, this step must be carried out under stirring, and a particularly suitable stirring device is one that has at least two sets of stirring blades, one above the other, and which simultaneously rotates and moves up and down. At the beginning of the precipitation of the insoluble salt, the liquid is in the form of a slurry, but as the precipitation progresses and the amount increases, it becomes paste-like. When this change no longer progresses, the liquid is cooled to below the precipitation temperature and ripened. Continued stirring is preferred, but not essential. Due to aging, the precipitated calcium borate crystals grow into large plate-like or columnar shapes, and the liquid changes from a paste-like state to a slurry-like state again. Moreover, as the boron concentration in the liquid decreases, the sodium concentration recovers to the concentration at the beginning of the reaction. Accordingly, the pH of the liquid increases. The pH of the liquid should be as high as possible, that is, the N in the liquid should be
We would like to increase the concentration of a as much as possible and use the solution for pH adjustment in the calcium borate precipitation process. The Na9 degree in the solution after aging is closely related to the amount of calcium compound added in the calcium borate precipitation process, and as the value of Ca / B (molar ratio, the same applies hereinafter) increases, , increases as the amount of calcium compound added increases, and tends to be saturated when Ca/B reaches a certain value. NalA in this solution
From the viewpoint of stability, it is desirable that the amount of the calcilram compound added be equal to or greater than the value of Ca/B at the saturation point. The value of Ca/B at the saturation point differs slightly depending on the initial Na/B concentration of the reaction solution, but in the pH adjustment range of the normal concentrated solution mentioned above, Ca/B = 0.35 to 0.45F, and the value of Ca/B is 0.35 to 0.45F. The amount of calcium compound to be used should be at least Ca
/B=0.3 or more is desirable. In actual operation, we take into account the concentration of porium in the waste liquid concentrate, the amount of caustic soda added, and the actual production and aging of insoluble salts.
A calcium compound may be added after finding an appropriate Ca/B value. The matured liquid is sent to a solid-liquid separator and separated into a concentrated solid slurry and a separated liquid. Separation equipment is selected depending on the moisture content of the slurry, such as a conventional filter or a centrifugal separator. Although it is better for the water content to be low in order to increase the volume reduction ratio, the optimum value is set from the viewpoints of ease of transfer and handling to the next solidification step, physical properties of the solidified material, etc. Usually, a solid content temperature range of 30 to 80% by weight is appropriate. The concentrated solids are mixed with cement and water and undergo a cement solidification process. The combing method may be performed using a known technique. Portland cement is suitable as cement. A suitable amount of solids to be encapsulated in the cement assimilate is 30 to 70% (based on dry weight). On the other hand, the separated liquid is concentrated and returned to the insoluble calcium borate precipitation step for cyclic reprocessing. The separated liquid contains most of the caustic soda that was added to adjust the I)H of the waste liquid concentrate, so by circulating and reprocessing the separated liquid, the caustic soda added thereafter will be able to reduce the loss. It will be good enough to replenish. The condensate generated during concentration of the separated liquid is reused. This concentration can be carried out either by evaporation or by reverse osmosis. In this step, since the already concentrated separated liquid is simply concentrated, the scale of the apparatus can be small.

【実施例】【Example】

ホウII!(H3BO3)を水に溶解し、ホウ素を含む
模擬濃縮廃液を用意した。 これにカゼイソーダを加え
てpH調整し、874度21.0OOpl]m 、 N
a /B (−tel/比)=0.2617)I整廃液
11 3 を atこ 。 この調整廃液に、水酸化カルシウム粉末を、Ca /B
=0.5 (モル比)となるように添加し、液を均一に
撹拌しながら60℃に保持し、液がペースト状に変化し
たのち、40℃以下に冷却して熟成して、濃度13.6
%のホウ酸カルシウムのスラリーを得た。 これを吸引
濾過して固液分離し、分離液は強制循環型蒸発濃縮器で
約10倍に濃縮した。 濃縮分離液は、8111度20
,500ppm SNa /B (モル比)、=26.
2である。 これを、上記の21.000ppmのホウ素を含む模擬
濃縮廃液11II3に加えた。 この混合液に水酸化カルシウム粉末を前記と同量添加し
て同様に析出させ、熟成してホウ酸カルシウムスラリー
を得た。 スラリーの濃度は137%で、前記の模擬濃
縮廃液、から向接得たものと同じ性状であった。 以下、同様にして分離液を濃縮し、不溶性ホウ酸カルシ
ウム析出工程に循環させる再処理をくりかえすことがで
きた。 一方、上記の固液分離して得た濃縮固形分100重量部
にポル1〜ランドセメント33重量部および水11重量
部を加えて混練し、容器に充填して硬化させ、固化体を
得た。 室温で28日間養生した後の固化体の密度は、
1 、8 Kg/cm3であった。 別に、JISに定
める方法に従って試験片を作成し、3力月養生後に圧縮
強度を測定したところ、213Kg/cm2であった。 発明の効果 本発明の処理プロセスによれば、廃液の蒸発濃縮工程以
後に生じる分離液は、同化処理に至るまでひとつの系内
で循環再処理するので、これより上流の蒸発濃縮工程に
影響を与えない。 従って、既設の蒸発濃縮工程を有す
る原子力発電所において本発明処理プロセスを実施する
には、不溶性のカルシウム化合物を析出させる工程以後
の工程のだめの設備をつくれば足りる。 これは、設備
費の効率がよいばかりでなく、両者を独立に運転できる
ことを意味し、さらに、中和操作が省略されるので、操
業が簡単になる。 また、本発明の処理プロセスでは、
カセイソーダの添加量がわずかですみ、薬剤の使用量が
節減されるのみならず、処理すべき廃棄物の発生量が減
少する。 また、セメント固化処理工程にナトリウムイ
オンがほとんど移行しないので、セメント固化体中に封
入されるナトリウムイオンの間が極度に減少し、固化体
の物性が良好となる。
Hou II! (H3BO3) was dissolved in water to prepare a simulated concentrated waste liquid containing boron. Add casei soda to this to adjust the pH, 874 degrees 21.0 OOpl] m, N
a /B (-tel/ratio) = 0.2617) Attach the waste liquid 11 3 . Calcium hydroxide powder is added to this adjusted waste liquid, Ca / B
= 0.5 (molar ratio), the liquid was kept at 60°C while stirring uniformly, and after the liquid turned into a paste, it was cooled to below 40°C and aged to obtain a concentration of 13. .6
% calcium borate slurry was obtained. This was subjected to suction filtration to separate solid and liquid, and the separated liquid was concentrated approximately 10 times using a forced circulation type evaporative concentrator. Concentrated separated liquid is 8111 degrees 20
, 500ppm SNa/B (molar ratio), =26.
It is 2. This was added to the simulated concentrated waste solution 11II3 containing 21.000 ppm boron. The same amount of calcium hydroxide powder as above was added to this mixed solution, precipitated in the same manner, and aged to obtain a calcium borate slurry. The concentration of the slurry was 137%, and the properties were the same as those obtained directly from the simulated concentrated waste liquid described above. Thereafter, it was possible to repeat the reprocessing in which the separated liquid was similarly concentrated and circulated to the insoluble calcium borate precipitation step. On the other hand, 33 parts by weight of Pol 1 to Land Cement and 11 parts by weight of water were added to 100 parts by weight of the concentrated solid content obtained by the above solid-liquid separation and kneaded, and the mixture was filled into a container and hardened to obtain a solidified product. . The density of the solidified material after curing for 28 days at room temperature is
It was 1.8 Kg/cm3. Separately, a test piece was prepared according to the method specified in JIS, and the compressive strength was measured after curing for 3 months and found to be 213 Kg/cm2. Effects of the Invention According to the treatment process of the present invention, the separated liquid generated after the waste liquid evaporation concentration process is recycled and reprocessed in one system up to the assimilation process, so that the evaporation concentration process upstream from this is not affected. I won't give it. Therefore, in order to carry out the treatment process of the present invention in a nuclear power plant that has an existing evaporation concentration process, it is sufficient to construct equipment for the process after the process of precipitating the insoluble calcium compound. This is not only efficient in terms of equipment costs, but also means that both can be operated independently, and furthermore, the neutralization operation is omitted, which simplifies the operation. Furthermore, in the treatment process of the present invention,
Only a small amount of caustic soda is added, which not only reduces the amount of chemicals used, but also reduces the amount of waste to be disposed of. Furthermore, since almost no sodium ions are transferred to the cement solidification process, the amount of sodium ions encapsulated in the cement solidified body is extremely reduced, and the physical properties of the solidified body are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の放射性廃液の減容固化処理プロセスを
示すブ[Jツクダイアグラムである。 特許出願人   九州電力株式会社 同     日揮株式会社
The drawing is a block diagram showing the volume reduction and solidification treatment process of radioactive waste liquid according to the present invention. Patent applicant Kyushu Electric Power Co., Ltd. JGC Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)ホウ素を含有する放射性廃液を減容固化処理する
プロセスにおいて、廃液を蒸発濃縮し、濃縮液にカセイ
ソーダおよび可溶性のカルシウム化合物を加えて不溶性
のホウ酸カルシウムを析出させ、熟成して析出物の粒子
を成長させ、固液分離して、析出物は濃縮固形分スラリ
ーとしてセメント固化処理し、分離液は蒸発濃縮を行な
った上で不溶性ホウ酸カルシウム析出工程に戻して循環
再処理することを特徴とする処理プロセス。
(1) In the volume reduction and solidification process of radioactive waste liquid containing boron, the waste liquid is evaporated and concentrated, caustic soda and soluble calcium compounds are added to the concentrated liquid to precipitate insoluble calcium borate, and the precipitate is aged. The particles are grown, solid-liquid separated, the precipitate is treated as a concentrated solid slurry for cement solidification, and the separated liquid is evaporated and concentrated, then returned to the insoluble calcium borate precipitation process for circulation and reprocessing. Featured processing process.
(2)廃液濃縮液中のホウ酸に対するカセイソーダおよ
びカルシウム化合物の添加量を、Na/B(廃液濃縮液
中のホウ素に対するナトリウムのモル比)が少なくとも
0.2であって、Ca/B(廃液濃縮液中のホウ素に対
するカルシウムのモル比)が少なくとも0.3となるよ
うにえらぶ特許請求の範囲第1項に記載の処理プロセス
(2) The amount of caustic soda and calcium compounds added to boric acid in the waste liquid concentrate is such that Na/B (molar ratio of sodium to boron in the waste liquid concentrate) is at least 0.2, and Ca/B (the molar ratio of sodium to boron in the waste liquid concentrate) is at least 0.2. A process according to claim 1, wherein the molar ratio of calcium to boron in the concentrate is selected to be at least 0.3.
(3)不溶性のホウ酸カルシウムの析出を温度40〜7
0℃において撹拌下に行ない、液の熟成を析出温度以下
で行なう特許請求の範囲第1項に記載の処理プロセス。
(3) Precipitation of insoluble calcium borate at a temperature of 40 to 7
The treatment process according to claim 1, wherein the treatment process is carried out at 0° C. with stirring, and the liquid is matured at a temperature below the precipitation temperature.
(4)可溶性のカルシウム化合物として、水酸化カルシ
ウムまたは酸化カルシウムを使用する特許請求の範囲第
1項に記載の処理プロセス。
(4) The treatment process according to claim 1, wherein calcium hydroxide or calcium oxide is used as the soluble calcium compound.
JP15493584A 1984-07-25 1984-07-25 Volume-reducing solidifying treating process of radioactive waste liquor Granted JPS6131999A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15493584A JPS6131999A (en) 1984-07-25 1984-07-25 Volume-reducing solidifying treating process of radioactive waste liquor
GB08518117A GB2163892B (en) 1984-07-25 1985-07-18 Volume-reducing solidification treatment process for radioactive waste water
FR8511236A FR2568400B1 (en) 1984-07-25 1985-07-23 SOLIDIFICATION TREATMENT WITH VOLUME REDUCTION FOR RADIOACTIVE WASTE WATER CONTAINING BORON

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15493584A JPS6131999A (en) 1984-07-25 1984-07-25 Volume-reducing solidifying treating process of radioactive waste liquor

Publications (2)

Publication Number Publication Date
JPS6131999A true JPS6131999A (en) 1986-02-14
JPH0519679B2 JPH0519679B2 (en) 1993-03-17

Family

ID=15595151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15493584A Granted JPS6131999A (en) 1984-07-25 1984-07-25 Volume-reducing solidifying treating process of radioactive waste liquor

Country Status (3)

Country Link
JP (1) JPS6131999A (en)
FR (1) FR2568400B1 (en)
GB (1) GB2163892B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797128A (en) * 1984-12-10 1989-01-10 Quadrex Hps, Inc. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants
AU670617B2 (en) * 1993-09-16 1996-07-25 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
BG65037B1 (en) * 2001-11-09 2006-12-29 ВЛАДИМИРОВ Владимир Process and installation for radioactive waste treatment
CN108689544A (en) * 2018-07-24 2018-10-23 苏州方舟环保科技有限公司 A kind of the waste water containing boron processing unit and method of zero-emission
EP4141891A1 (en) * 2021-08-31 2023-03-01 EPSE Oy A method for reducing radioactivity from an aqueous dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912400A (en) * 1982-07-12 1984-01-23 日揮株式会社 Radioactive liquid waste treating process
JPS5912399A (en) * 1982-07-12 1984-01-23 日揮株式会社 Method of processing radioactive liquid waste

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD106732A1 (en) * 1973-08-24 1974-06-20
DE2553569C2 (en) * 1975-11-28 1985-09-12 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the solidification of radioactive aqueous waste materials by spray calcination and subsequent embedding in a matrix made of glass or glass ceramic
BE838533A (en) * 1976-02-13 1976-05-28 PROCESS FOR DRYING SOLUTIONS CONTAINING BORIC ACID
US4377508A (en) * 1980-07-14 1983-03-22 Rothberg Michael R Process for removal of radioactive materials from aqueous solutions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912400A (en) * 1982-07-12 1984-01-23 日揮株式会社 Radioactive liquid waste treating process
JPS5912399A (en) * 1982-07-12 1984-01-23 日揮株式会社 Method of processing radioactive liquid waste

Also Published As

Publication number Publication date
FR2568400B1 (en) 1992-12-04
JPH0519679B2 (en) 1993-03-17
FR2568400A1 (en) 1986-01-31
GB2163892B (en) 1988-08-10
GB2163892A (en) 1986-03-05
GB8518117D0 (en) 1985-08-21

Similar Documents

Publication Publication Date Title
CN102947229A (en) Treatment of phosphate-containing wastewater
US4800042A (en) Radioactive waste water treatment
JPS6131999A (en) Volume-reducing solidifying treating process of radioactive waste liquor
JPH0119559B2 (en)
US2191206A (en) Process of purifying gelatin and casein
JPS5924876B2 (en) How to treat boron-containing water
JPS6367878B2 (en)
DK0729438T3 (en) Process for preparing a cesium and rubidium salt solution
JPS5832019A (en) Basic aluminum sulfate and manufacture
RU2104938C1 (en) Method for extraction of rare-earth elements of phosphogypsum
CS216522B2 (en) Method of cleaning the waste waters containing dissolved organic impurities
JPS6351520B2 (en)
US3259458A (en) Process for preparing wet process phosphoric acid stabilized against iron and aluminum precipitation
US3393233A (en) Method for recovering ethylene diamine tetraacetic acid
JPS5678680A (en) Treatment for water containing fluoride ion
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
SU1747385A1 (en) Method of calcium fluoride preparation
JPS5912399A (en) Method of processing radioactive liquid waste
SU806622A1 (en) Method of purifying technological solutions from fluorine and aluminium
JPS59119299A (en) Method of processing radioactive liquid waste
JPH0228118B2 (en) HOSHASEIHAIEKINOSHORIHOHO
JP2001162287A (en) Method for treating boron-containing water and treatment agent
SU528260A1 (en) Extraction phosphoric acid purification method
SU1131858A1 (en) Method for producing complex fertilizer
RU2250521C2 (en) Method for decontaminating liquid radioactive wastes