JPS6039301A - Safety circuit for electric railcar - Google Patents

Safety circuit for electric railcar

Info

Publication number
JPS6039301A
JPS6039301A JP58146437A JP14643783A JPS6039301A JP S6039301 A JPS6039301 A JP S6039301A JP 58146437 A JP58146437 A JP 58146437A JP 14643783 A JP14643783 A JP 14643783A JP S6039301 A JPS6039301 A JP S6039301A
Authority
JP
Japan
Prior art keywords
railcar
reverse
circuit
transistor
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146437A
Other languages
Japanese (ja)
Inventor
Shunichiro Sugimoto
杉本 俊一郎
Kiyoshi Nemoto
清志 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58146437A priority Critical patent/JPS6039301A/en
Publication of JPS6039301A publication Critical patent/JPS6039301A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enhance the safety of an electric railcar by switching to a forward direction and simultaneously braking at the maximum when the railcar contacts an obstacle during reverse traveling and forward moving the railcar at a slow speed after stopping. CONSTITUTION:When a railcar contacts an obstacle during reverse traveling so that a safety switch 3 is operated, a thyristor SCR is conducted, a transistor TR2 is interrupted, and a reverse contactor coil R is deenergized. Further, a transistor TR4 and hence TR1 is conducted, and a forward contactor coil F is energized. Further, an output equivalent to the maximum accelerator output is applied to an oscillator 21, thereby performing the maximum plugging braking. When the railcar is stopped and subsequently forward moved, the conduction rate of the output voltage of the oscillator 21 is suppressed to the minimum conduction rate by a conduction rate detector 24, and the railcar is moved forward at the minimum speed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気車の安全回路に係シ、特に電気車が障害物
にあたったときの運転者の保護に好適な電気車安全回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a safety circuit for an electric vehicle, and particularly to an electric vehicle safety circuit suitable for protecting a driver when the electric vehicle hits an obstacle.

〔発明の背景〕[Background of the invention]

電気車の安全装置としては例えば特公昭51−2704
4号公報がおる。
As a safety device for electric cars, for example, the Japanese Patent Publication No. 51-2704
There is Publication No. 4.

従来の電気車安全回路の一例として電動パレットトシッ
クの安全回路について説明すると、第1図は電動パレッ
トトラックの概略外観斜視図で、ステップ1に運転者が
乗ってハンドルボスト2を操作して動かすが、その先端
には安全回路のセフティスイッチ3がある。第2図(a
)は同じく操作時の側面図で、このかたちで前進と後進
を行なうが、後進中に後方に壁などの障害物があると運
転者がはさまれてしまう危険があるから、このとき運転
者が車両を停止させるように操作すればよいが、気が動
転して後進操作を続ける場合がある。このためハンドル
ボスト2の先端に安全回路のセフティスイッチ3があシ
、このセフティスイッチ3が車両の後進中に障害物にあ
たったときに投入すると、後進から前進に強制的に切夛
換えるようにして運転者を保護している。第2図(b)
は同じく後進操作時に後方障害物に運転者があったとき
の側面図で、このとき運転者が後方の障害物4にはさま
れ、胸でハンドルボスト2の先端にあるセフティスイッ
チ3を押している状態が示されている。しかしながらこ
のような従来の電気車安全回路では、セフティスイッチ
3が動作すると、運転者が操作をやめないかぎシ一定時
間前進を続けるため、前方に人がいればひかれる危険が
ある。また運転者の操作としては後進であるにもかかわ
らず安全上強制的に前進しておシ、運転者の意志とは逆
の動作を続けるといった欠点などがあった。
To explain the safety circuit of an electric pallet truck as an example of a conventional electric vehicle safety circuit, Fig. 1 is a schematic external perspective view of an electric pallet truck, in which the driver rides on step 1 and moves it by operating the handle post 2. However, there is a safety switch 3 of the safety circuit at the tip. Figure 2 (a
) is also a side view during operation; forward and reverse are performed in this form, but if there is an obstacle such as a wall behind the driver while reversing, there is a risk of the driver getting caught, so at this time the driver All you have to do is stop the vehicle, but the driver may become upset and continue to reverse the vehicle. For this reason, there is a safety switch 3 in the safety circuit at the tip of the handlebar post 2, and when this safety switch 3 is turned on when the vehicle hits an obstacle while moving backward, the switch is forcibly switched from reverse to forward. to protect the driver. Figure 2(b)
2 is a side view of the driver being caught in the rear obstacle 4 during reverse operation. At this time, the driver is caught in the rear obstacle 4 and is pressing the safety switch 3 at the tip of the handlebar post 2 with his chest. The condition is shown. However, in such a conventional electric vehicle safety circuit, when the safety switch 3 is operated, the key continues to move forward for a certain period of time without the driver stopping the operation, so there is a risk of being run over if there is a person in front. In addition, the driver's operation had the disadvantage that, for safety reasons, the vehicle was forced to move forward even though the vehicle was in reverse, and the vehicle continued to operate in the opposite direction to the driver's will.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の欠点をなくし、よシ
安全性を高めた電気車安全回路を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide an electric vehicle safety circuit with improved safety.

〔発明の概要〕[Summary of the invention]

本発明は、車両の後進中に障害物にあたったときにセフ
ティスイッチなどの障害物センサが動作すると、車両を
後進から前進に切シ換え、制動中はアクセル出力が微少
であっても最大プラギング制御を行なって速やかに車両
を停止させ、車両の停止後は最低速度で前進させたのち
、アクセルを。
The present invention switches the vehicle from reverse to forward when an obstacle sensor such as a safety switch is activated when the vehicle hits an obstacle while reversing, and during braking, the maximum plugging is applied even if the accelerator output is small. Control the vehicle to stop it quickly, and once the vehicle has stopped, move it forward at the minimum speed, then apply the accelerator.

開放することによシリセットするようにした電気車安全
回路である。
This is an electric car safety circuit that resets by opening the circuit.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を第3図と第4図によシ説明する
。第3図は本発明による′電気車安全回路の一実施例を
示す回路図である。第3図において、バッテリ5の正端
子6からヒユーズ8を介し電気車の電動機9の電機子1
0を経て前進用コンタクタ12の常用接点13と後進用
コンタクタ16の常用接点17に接続し、前進用コンタ
クタ12の共通接点15と後進用コンタクタ16の共通
接点19は′#L励機9の界磁コイル11の両端に接続
し、前進用コンタクタ12の常用接点14と後進用コン
タクタ16の常用接点18から主トランジスタ20を介
しバッチ)の負端子7に接続し、かつ電機子9と並列に
プラギングダイオードD2を接続し、電機子9と前、後
進コンタクタ14.16の接続回路と並列に7リーホイ
ールダイオードD1が接続されて電気車の主回路が構成
される。一方の制御回路はヒユーズfを介し前進用スイ
ッチFSWからアイオードD3と後進用スイッチ几SW
からダイオードD4とを経て前進用コンタクタコイルF
からトランジスタT几1と後進用コンタクタコイル几か
らトランジスタTR2とに接続し、かつ前進用スイッチ
FSWからダイオードD5と抵抗几lとツェナダイオー
ドZDIの直列回路を介してトランジスタTRIのベー
スと後進用スイッチRS WからダイオードD6と抵抗
几2とツェナダイオードZD2の直列回路を介してトラ
ンジスタTR2のベースとに接続し、ダイオードD4の
アノードからセフティスイッチ(障害物センサ゛3とダ
イオードD16と抵抗R4の直列回路を介してサイリス
タSC孔のゲートに接続し、かつ抵抗R2からダイオー
ドD7を介してサイリスタSCRのアノードに接続する
。さらにフユーズfから制御回路に一定電圧を供給する
定電圧回路23を介してトランジスタTR4のエミッタ
に接続し、トランジスタTR4のベースから抵抗R8と
ダイオードD8を介してダイオードD9のアノードに接
続し、かつトランジスタTR4のコレクタからダイオー
ドD12と抵抗R3を介してツェナーダイオードZDI
のカソードに接続するとともに抵抗RIOとダイオード
D13を介して発振回路21の入力に接続し、アクセル
回路22をアイオードD14を介して発振回路21の入
力に接続するとともに発振回路22の出力を主トランジ
スタ20のベースに接続し、さらに主トランジスタ20
のコレクタから通流率検出回路24を介して演算増幅器
OFの負入力に接続するとともにyX、算増幅器OPの
出力からダイオードD15を介して発振回路21の入力
に接続し、かつ定′亀圧回路23から抵抗R11を介し
て演算増幅器OPの正入力に接続するほか、図示のよう
にニュートラル回路25、抵抗R5,R,6,几7.几
9.几10゜R11,R12,几13.几14.几15
、コンデンサCI、C2、ダイオードDIO,Dll、
トランジスタTRaを接続して構成する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 is a circuit diagram showing an embodiment of the electric vehicle safety circuit according to the present invention. In FIG. 3, a positive terminal 6 of a battery 5 is connected to an armature 1 of an electric motor 9 of an electric vehicle via a fuse 8.
0 to the common contact 13 of the forward contactor 12 and the common contact 17 of the reverse contactor 16, and the common contact 15 of the forward contactor 12 and the common contact 19 of the reverse contactor 16 are connected to the field of the Connected to both ends of the magnetic coil 11, connected from the common contact 14 of the forward contactor 12 and the common contact 18 of the backward contactor 16 to the negative terminal 7 of the batch (batch) via the main transistor 20, and plugged in parallel with the armature 9. The main circuit of the electric vehicle is constructed by connecting the diode D2 and connecting the 7-lead wheel diode D1 in parallel with the connection circuit of the armature 9 and the forward and reverse contactors 14 and 16. One control circuit connects forward switch FSW through fuse f to iode D3 and reverse switch SW.
forward contactor coil F via diode D4.
is connected from the forward switch FSW to the transistor T1 and from the reverse contactor coil to the transistor TR2, and from the forward switch FSW to the base of the transistor TRI and the reverse switch RS through a series circuit of a diode D5, a resistor I, and a Zener diode ZDI. W is connected to the base of the transistor TR2 through a series circuit of a diode D6, a resistor D2, and a Zener diode ZD2, and a safety switch is connected from the anode of the diode D4 (through a series circuit of an obstacle sensor 3, a diode D16, and a resistor R4). is connected to the gate of the thyristor SC hole, and connected to the anode of the thyristor SCR via the resistor R2 and the diode D7.Furthermore, the emitter of the transistor TR4 is connected via the constant voltage circuit 23 that supplies a constant voltage from the fuse f to the control circuit. The base of the transistor TR4 is connected to the anode of the diode D9 through the resistor R8 and the diode D8, and the collector of the transistor TR4 is connected to the Zener diode ZDI through the diode D12 and the resistor R3.
The accelerator circuit 22 is connected to the input of the oscillation circuit 21 via the diode D14, and the output of the oscillation circuit 22 is connected to the input of the oscillation circuit 21 via the resistor RIO and the diode D13. further connected to the base of the main transistor 20
The collector of yX is connected to the negative input of the operational amplifier OF through the conductivity detection circuit 24, and the output of the operational amplifier OP is connected to the input of the oscillation circuit 21 through the diode D15, and the constant voltage circuit 23 to the positive input of the operational amplifier OP via the resistor R11, as well as a neutral circuit 25, resistors R5, R, 6, 7. 9.几10゜R11, R12, 几13.几14.几15
, capacitors CI, C2, diodes DIO, Dll,
It is configured by connecting a transistor TRa.

つぎに第4図は第3図−の部分タイムチャートである。Next, FIG. 4 is a partial time chart of FIG.

第3図によシ第4図の構成の動作を説明すれば、まず前
進操作の場合には前進用スイッチFSWを投入すると、
ダイオードD5と抵抗R1とツェナーダイオードZDI
を介してトランジスタTRIが導通し、これによシ前進
用コンククタコイルFに通電して前進用コンタクタ12
が投入(図中に波線で示す)する。そこでアクセル(図
示していない)を操作するとアクセル回路22の出力が
増してダイオードD14を介し発振回路21に入力され
、主トランジスタ20が導通して電動機9に通電し、前
進力行運転が行なわれる。
To explain the operation of the configuration shown in FIG. 4 with reference to FIG. 3, first, in the case of forward operation, when the forward switch FSW is turned on,
Diode D5, resistor R1, and Zener diode ZDI
The transistor TRI becomes conductive through the forward contactor coil F, thereby energizing the forward contactor coil F.
is input (indicated by the wavy line in the figure). When the accelerator (not shown) is operated, the output of the accelerator circuit 22 increases and is input to the oscillation circuit 21 via the diode D14, the main transistor 20 becomes conductive, and the electric motor 9 is energized to perform forward power running.

また後進操作の場合には後進スイッチ几Swが第4図の
時刻toに投入すると、ダイオードD6と抵抗几2とツ
ェナーダイオードZD2を介してトランジスタTR2が
導通し、これによシ後通用コンタクタコイル几に通電し
て後進用コンタクタ16が第4図の時刻ioに投入する
。そこでアクセルを操作するとアクセル回路22の出力
が第4図のように増すにつれて発振回路21の出力電圧
の通流率も同図のように増し、これにょシ主トランジス
タ20の通流率が増すとともに電動機9の電流が第4図
のように増して後進力行運転が行なわれる。つぎに後進
力行運転中に第4図の時刻t1に障害物にあたって化7
テイスイツチ(障害物センサ)3が動作して投入した場
合には、後進中であるから後進スイッチR8Wが投入さ
れていて、この状態でセフティスイッチ3が投入すると
ダイオードD16と抵抗R4を介してサイリスタ8CR
のゲートに電圧が印加されてサイリ゛スタSCRが導通
する。するとダイオードD7とD9を介してトランジス
タTll、2のベース電流を引き込み、これにより)ラ
ンジスタTR2が不導通となシ、シたがって後進用コン
タクタコイルRが不通電となって後進用コンタクタ16
が開放(図中に実線で示す)する。またトランジスタT
R,4のベース電流が抵抗R8とダイオードD8とD9
とサイリスタSC孔を通して流れてトランジスタTR4
が導通し、したがってダイオードD12と抵抗R3を介
してトランジスタTRIを導通にし、これによシ前進用
コンタクタコイルFに通電して前進用コンタクタ12が
投入し、すなわち後進から前進へ切シ換えられる。さら
にまた抵抗RIOとダイオードD13を介して発振回路
21の入力にたとえアクセル回路22からの出力が微少
であってもアクセル出力に関係なく強制的にアクセル最
大出力と同等の最大出力を与えて制動中は最大プラギン
グ制御を行なう。なお第4図にこのときの発振回路21
の最大入力(破線で示す)と、発振回路21の出力電圧
と、電動機9の電流などが示されている。ついでこれに
よシ最大制動力が働いてすみやかに第4図の時刻t2に
車両が停止し制動が終了して引き続き前進力行に移行す
ると、これにともない主トランジスタ20の通流率が大
きくなるので、これを通流率検出回路24によシ検出し
て制動が終了して力行になったことを検知する。すると
これによシ演算増幅器OPが動作して発振回路21の出
力電圧の通流率を最少通流率におさえ、したがって主ト
ランジスタ20の通流率を最少通流率におさえて第4図
のように電動機9の電流を最少にし、車両を最低速度で
前進力行するが、その後アクセルを開放することによシ
リセットするようにする。なおその他の回路部分の動作
については説明を省略する。
In addition, in the case of reverse operation, when the reverse switch Sw is turned on at time to in FIG. The reverse contactor 16 is turned on at time io in FIG. 4. When the accelerator is operated, as the output of the accelerator circuit 22 increases as shown in FIG. The current of the electric motor 9 is increased as shown in FIG. 4, and reverse power running is performed. Next, during reverse power driving, at time t1 in Fig. 4, the driver hit an obstacle and the situation changed to 7.
When the safety switch (obstacle sensor) 3 operates and is turned on, the reverse switch R8W is turned on because the vehicle is moving in reverse, and when the safety switch 3 is turned on in this state, the thyristor 8CR is turned on via the diode D16 and the resistor R4.
A voltage is applied to the gate of the thyristor SCR, and the thyristor SCR becomes conductive. Then, the base current of the transistor Tll,2 is drawn through the diodes D7 and D9, and as a result, the transistor TR2 becomes non-conductive, and therefore the reverse contactor coil R becomes non-energized, and the reverse contactor 16 becomes non-conductive.
is opened (indicated by a solid line in the figure). Also, transistor T
The base current of R,4 is connected to resistor R8 and diodes D8 and D9.
and flows through the thyristor SC hole to the transistor TR4.
becomes conductive, thereby making the transistor TRI conductive through the diode D12 and the resistor R3, thereby energizing the forward contactor coil F and turning on the forward contactor 12, ie, switching from reverse to forward. Furthermore, even if the output from the accelerator circuit 22 is very small, a maximum output equivalent to the accelerator maximum output is forcibly applied to the input of the oscillation circuit 21 via the resistor RIO and the diode D13, regardless of the accelerator output, during braking. performs maximum plugging control. In addition, FIG. 4 shows the oscillation circuit 21 at this time.
The maximum input (indicated by a broken line), the output voltage of the oscillation circuit 21, the current of the motor 9, etc. are shown. Then, the maximum braking force is applied and the vehicle immediately stops at time t2 in FIG. 4, the braking is completed, and the vehicle continues to move forward, and the conduction rate of the main transistor 20 increases accordingly. This is detected by the conduction rate detection circuit 24 to detect that braking has ended and power running has started. Then, the operational amplifier OP operates to suppress the conduction rate of the output voltage of the oscillation circuit 21 to the minimum conduction rate, and therefore the conduction rate of the main transistor 20 to the minimum conduction rate as shown in FIG. In this way, the electric current of the electric motor 9 is minimized and the vehicle is powered forward at the lowest speed, but then the series is reset by releasing the accelerator. Note that a description of the operations of other circuit parts will be omitted.

以上のようにして本実施例によれば、後進用スイッチが
投入して後進運転中に障害物にあたってセフティスイッ
チが動作すると、サイリスタSCRが導通して後進用コ
ンタクタから前進用コンタクタに切シ換えるとともに制
動中はアクセル出力に関係なく発振回路21に最大入力
を与えて最大プラギング制御を行ない、車両がすみやか
に停止して引き続き前進力行に移る時点で通流率検出回
路24の動作によシ主トランジスタ200通流率を最少
に制御して微速前進させるようにして、電気車が障害物
にあたったときの運転者の保護をよpよく行なうほか前
進して後の事故防止をもはかって電気車の安全性を向上
させることなどができる。
As described above, according to this embodiment, when the reverse switch is turned on and the safety switch is activated by hitting an obstacle during reverse driving, the thyristor SCR becomes conductive and switches from the reverse contactor to the forward contactor. During braking, the maximum input is given to the oscillation circuit 21 regardless of the accelerator output to perform maximum plugging control, and when the vehicle quickly stops and continues to move forward, the main transistor is activated by the operation of the duty ratio detection circuit 24. 200 The current flow rate is controlled to the minimum so that the electric car moves forward at a very slow speed to better protect the driver when the electric car hits an obstacle. It is possible to improve the safety of

〔発明の効果〕〔Effect of the invention〕

以上の説明のように本発明の電気車安全回路によれば、
車両が後進中に障害物にあたったときに前進方向に切υ
換えると同時に最大制動を行なってすみやかに車両を停
止し、かつ停止後は微速で前進するようにしているので
、障害物にあたったときの運転者の保護がよりよく行な
われるほか、前進後に前方に入る人に対しても車両の安
全性が向上できるなどの効果かえられる。
As explained above, according to the electric vehicle safety circuit of the present invention,
When the vehicle hits an obstacle while reversing, the vehicle turns forward.
As soon as the vehicle is changed, maximum braking is applied to quickly stop the vehicle, and after stopping, the vehicle is moved forward at a very slow speed, which not only better protects the driver when it hits an obstacle, but also prevents the vehicle from moving forward after moving forward. This also has other effects, such as improving vehicle safety for people entering the vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気車の一例としての電動パレットトラックの
概略外観斜視図、第2図(a)は同じく操作時の側面図
、第2図(b)は同じく後進操作中に障害物にあたった
ときの側面図、第3図は本発明による電気車安全回路の
一実施例を示す回路図、第4図は第3図の部分タイムチ
ャートである。 l・・・ステップ、2・・・ハンドルポスト、3・・・
セフティスイッチ、4・・・障害物、5・・・バッテリ
、9・・・電動機、10・・・電機子、11・・・界磁
コイル、12・・・前進用コンタクタ、16・・・後進
用コンタクタ、20・・・主トランジスタ、21・・・
発振回路、22・・・アクセル回路、23・・・定電圧
回路、24・・・通流率検出回路、F・・・前進用コン
タクタコイル、几・・・後進用コンタクタコイル、FS
W・・・前進用スイッチ、R8W・・・後進用スイッチ
、TR1,TR2,TR3・・・各トランジスタ、8C
1’L・・・サイリスク、OP・・・第 1 ロ 3 / /
Figure 1 is a schematic external perspective view of an electric pallet truck as an example of an electric vehicle, Figure 2 (a) is a side view during operation, and Figure 2 (b) is a similar example of an electric pallet truck hitting an obstacle during reverse operation. FIG. 3 is a circuit diagram showing an embodiment of the electric vehicle safety circuit according to the present invention, and FIG. 4 is a partial time chart of FIG. 3. l...Step, 2...Handle post, 3...
Safety switch, 4... Obstacle, 5... Battery, 9... Electric motor, 10... Armature, 11... Field coil, 12... Contactor for forward movement, 16... Reverse movement contactor, 20...main transistor, 21...
Oscillation circuit, 22... Accelerator circuit, 23... Constant voltage circuit, 24... Conductivity detection circuit, F... Forward contactor coil, 几... Reverse contactor coil, FS
W...Forward switch, R8W...Reverse switch, TR1, TR2, TR3...Each transistor, 8C
1'L...Cyrisk, OP...1st Lo3 / /

Claims (1)

【特許請求の範囲】[Claims] 1、電気車が障害物にあたったとき動作する障害物セン
サと、電気車が後進中に該障害物センサが動作したとき
電気車を後進から前進に切シ換える手段と、該前進に切
シ換えてのち制動中は所定の最大プラギング制御を行な
う手段と、該制動が終了し前進力行に移行する状態を検
知して所定の低速前進動作をさせる手段とからなる電気
車安全回路。
1. An obstacle sensor that operates when the electric vehicle hits an obstacle, a means for switching the electric vehicle from reverse to forward when the obstacle sensor is activated while the electric vehicle is traveling in reverse, and a switch for switching the electric vehicle from reverse to forward. An electric vehicle safety circuit comprising means for performing predetermined maximum plugging control during braking, and means for detecting a state in which braking is completed and transition to forward power running occurs and performs a predetermined low-speed forward operation.
JP58146437A 1983-08-12 1983-08-12 Safety circuit for electric railcar Pending JPS6039301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146437A JPS6039301A (en) 1983-08-12 1983-08-12 Safety circuit for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146437A JPS6039301A (en) 1983-08-12 1983-08-12 Safety circuit for electric railcar

Publications (1)

Publication Number Publication Date
JPS6039301A true JPS6039301A (en) 1985-03-01

Family

ID=15407640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146437A Pending JPS6039301A (en) 1983-08-12 1983-08-12 Safety circuit for electric railcar

Country Status (1)

Country Link
JP (1) JPS6039301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133501A (en) * 1987-11-18 1989-05-25 Sanyo Electric Co Ltd Electric motor car
JP2013198190A (en) * 2012-03-16 2013-09-30 Mitsubishi Nichiyu Forklift Co Ltd Electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133501A (en) * 1987-11-18 1989-05-25 Sanyo Electric Co Ltd Electric motor car
JP2013198190A (en) * 2012-03-16 2013-09-30 Mitsubishi Nichiyu Forklift Co Ltd Electric vehicle

Similar Documents

Publication Publication Date Title
JP3394197B2 (en) Electric vehicle control device and control method
JPS6039301A (en) Safety circuit for electric railcar
JPH01146504U (en)
JP3344011B2 (en) Drive control device for DC motor
US4425535A (en) Erroneous start preventing device for battery-powered vehicle
JPH0311901A (en) Travel control device of electric vehicle
JP2925356B2 (en) Electric power steering device
JP3736094B2 (en) Battery car travel control device
JP3227622B2 (en) Travel control device for electric industrial vehicles
JPS631001B2 (en)
JP2556005B2 (en) Electric vehicle regenerative braking control device
JPS6243404B2 (en)
JP2523679Y2 (en) Braking control device in electric vehicle running speed control device
JP2730354B2 (en) Fault diagnosis device in DC motor drive control device
JPH07288901A (en) Controller for electric rolling stock
JP2814851B2 (en) Travel control device for electric industrial vehicles
JPH0368602B2 (en)
JPS5820522B2 (en) Electric vehicle regenerative braking control device
JPS5922721Y2 (en) electric car control device
JPS5828475Y2 (en) DC motor control device
JP3066616B2 (en) Electric power steering device
JPH0721117Y2 (en) Dynamic braking control circuit for electric vehicles
JPS638682B2 (en)
JPH10310398A (en) Regenerative braking device for battery vehicle
JPS58156301U (en) electric car safety circuit