JPS6243404B2 - - Google Patents

Info

Publication number
JPS6243404B2
JPS6243404B2 JP1846280A JP1846280A JPS6243404B2 JP S6243404 B2 JPS6243404 B2 JP S6243404B2 JP 1846280 A JP1846280 A JP 1846280A JP 1846280 A JP1846280 A JP 1846280A JP S6243404 B2 JPS6243404 B2 JP S6243404B2
Authority
JP
Japan
Prior art keywords
braking
chopper
circuit
regenerative
contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1846280A
Other languages
Japanese (ja)
Other versions
JPS56117503A (en
Inventor
Shigeru Kuryama
Kyoshi Nemoto
Michimasa Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1846280A priority Critical patent/JPS56117503A/en
Publication of JPS56117503A publication Critical patent/JPS56117503A/en
Publication of JPS6243404B2 publication Critical patent/JPS6243404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明は電気車制御装置に係り、特にバツテリ
フオークリフトなどの様に、回生制動とプラギン
グ制動を併用する制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device, and particularly to a control device that uses regenerative braking and plugging braking in combination, such as in a battery forklift.

バツテリフオークリフトなどの様な電気車にお
いては、省電力のため、回生制動、つまり駆動用
直流電動機の回転エネルギをバツテリを充電する
電気エネルギに変換して制動力を得る方式を採用
することが望ましい。しかし、この様な回生制動
のみでは、低速時における制動力が得られないた
め、プラギング制動、つまり前後進コンタクタを
切換え、逆転する方向に電流を流して制動力を得
る方式を併用することが多い。
In order to save power in electric vehicles such as battery lift trucks, it is desirable to adopt regenerative braking, that is, a method to obtain braking force by converting the rotational energy of the driving DC motor into electrical energy that charges the battery. . However, such regenerative braking alone cannot provide braking force at low speeds, so plugging braking, a method that switches the forward and backward contactors and supplies current in the reverse direction to obtain braking force, is often used in combination. .

なお、このブラギング制動方式としては、例え
ば特開昭49−39719号公報に開示されたものがあ
る。
An example of this braking braking system is disclosed in Japanese Patent Laid-Open No. 49-39719.

この回生制動からプラギング制動に移行する制
御は、回生制動中のチヨツパ通流率がある値、約
70〜100%になつたときを検出し、検出後はチヨ
ツパ通流率を0%にした後、つまりチヨツパの動
作を停止させてから、回生コンタクタを切換えて
いた。そのため、車両が減速途中で惰行する期間
が生じ、運転者に対するスムーズな減速感が得ら
れず、また回生制動による電気制動期間が短いた
めに、車両速度が0になるまでの制動時間が長く
なるという欠点があつた。
This control to shift from regenerative braking to plugging braking is performed when the flow rate of the chopper during regenerative braking is set to a certain value, approximately
The regenerative contactor was switched after detecting when the flow rate reached 70 to 100% and after reducing the chopper flow rate to 0%, that is, stopping the chipper operation. As a result, there is a period when the vehicle coasts during deceleration, making it impossible for the driver to feel a smooth deceleration.Also, since the electric braking period due to regenerative braking is short, the braking time until the vehicle speed reaches zero becomes longer. There was a drawback.

本発明の目的は、上記した従来技術の欠点を除
き、電気車をスムーズに減速し得るとともに、回
生制動に発電制動を加え電気制動期間を長くして
制動時間を短かくすることのできる電気車制御装
置を提供するにある。
An object of the present invention is to provide an electric vehicle that can smoothly decelerate an electric vehicle and shorten the braking time by adding dynamic braking to regenerative braking to lengthen the electric braking period, while eliminating the drawbacks of the prior art described above. Provides control equipment.

この目的を達成するため、本発明は、回生制動
終了時におけるチヨツパ通流率が所定値、例えば
90%以上に達してから、チヨツパ通流率が100%
に達する時点を越える所定時間、例えば0.5〜2
秒間、チヨツパの動作を停止させずにそのままと
して主に発電制動を行なわせ、その後プラギング
制動に切換える様にしたことを特徴とする。
To achieve this objective, the present invention provides that the flow rate of the chopper at the end of regenerative braking is a predetermined value, e.g.
After reaching 90% or more, Chiyotupa conduction rate becomes 100%.
A predetermined time beyond which the point is reached, e.g. 0.5 to 2
The present invention is characterized in that the operation of the chopper is left as it is without stopping for a second to mainly perform dynamic braking, and then it is switched to plugging braking.

以下、本発明を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明が適用される電気車の主回路に
おける回生制動時の結線図である。バツテリ1に
は、電源線2および電源線3を介して、回生
コンタクタ4、直流直巻電動機5の電機子6、電
流検出センサ8、前進コンタクタ9、後進コンタ
クタ10、直巻界磁コイル7およびチヨツパ11
が直列に接続されている。前記回生コンタクタ4
は励磁コイル12と、この励磁コイル12への通
電により実線の如く動作する接点13とから構成
されている。14はフリーホイールダイオード、
15はプラギングダイオード、16は回生用ダイ
オード、17は予備励磁抵抗である。
FIG. 1 is a wiring diagram during regenerative braking in the main circuit of an electric vehicle to which the present invention is applied. The battery 1 is connected via a power line 2 and a power line 3 to a regenerative contactor 4, an armature 6 of a DC series motor 5, a current detection sensor 8, a forward contactor 9, a reverse contactor 10, a series field coil 7, and a Chiyotsupa 11
are connected in series. The regenerative contactor 4
is composed of an excitation coil 12 and a contact 13 that operates as shown by the solid line when the excitation coil 12 is energized. 14 is a freewheel diode,
15 is a plugging diode, 16 is a regeneration diode, and 17 is a pre-excitation resistor.

いま、前後進コンタクタ9,10が図示実線位
置に切換えられている状態で、回生コンタクタ4
の励磁コイル12に通電され、その接点13が図
示実線位置に切換えられると、チヨツパ11の導
通時には、バツテリ1の側から回生コンタクタ
4、予備励磁抵抗17、後進コンタクタ10、界
磁コイル7、前進コンタクタ9およびチヨツパ1
1を通つてバツテリ1の側に至る回路で界磁コ
イル7に通電され、予備励磁が行なわれて電機子
6に図示極性の誘起電圧が発生する。この誘
起電圧により電機子6の側から電流検出用セン
サ8、後進コンタクタ10、界磁コイル7、前進
コンタクタ9、チヨツパ11および回生用ダイオ
ード16を通つて電機子6の側に至る回路で、
前記予備励磁電流を助長する様に、界磁コイル7
に電流が流れる。すなわち、自励作用も働く。
Now, with the forward/reverse contactors 9 and 10 switched to the solid line position shown in the figure, the regenerative contactor 4 is
When the excitation coil 12 is energized and its contact 13 is switched to the solid line position shown in the figure, when the chopper 11 is conductive, the regenerative contactor 4, pre-excitation resistor 17, reverse contactor 10, field coil 7, forward movement are connected from the battery 1 side. Contactor 9 and chipper 1
1 to the battery 1 side, the field coil 7 is energized, preliminary excitation is performed, and an induced voltage of the polarity shown is generated in the armature 6. This induced voltage causes a circuit from the armature 6 side to the armature 6 side through the current detection sensor 8, reverse contactor 10, field coil 7, forward contactor 9, chopper 11 and regeneration diode 16.
The field coil 7 is configured to promote the pre-excitation current.
A current flows through. In other words, a self-excitation effect also works.

この様にして誘起電圧が高くなり電流も増大す
ると、やがて前記閉回路による自励作用のみで電
流が流れる様になる。この状態で、チヨツパ11
が遮断されると、電機子6の誘起電圧と界磁コイ
ル7のインダクタンスで蓄えられた磁気エネルギ
により、電機子6の側から電流検出用センサ
8、後進コンタクタ10、界磁コイル7、前進コ
ンタクタ9、フリーホイールダイオード14、バ
ツテリ1および回生用ダイオード16を通つて電
機子6の側に至る回路でバツテリ1に電力が回
生され、いわゆる回生制動が行なわれて電動機5
の回転数が低下する。
As the induced voltage increases and the current increases in this way, the current will eventually flow only due to the self-excitation effect of the closed circuit. In this state, Chiyotsupa 11
When the current detection sensor 8, the backward contactor 10, the field coil 7, and the forward contactor are cut off, the magnetic energy stored in the induced voltage of the armature 6 and the inductance of the field coil 7 causes the current detection sensor 8, the reverse contactor 10, the field coil 7, and the forward contactor 9. Power is regenerated to the battery 1 in a circuit that passes through the freewheel diode 14, the battery 1, and the regeneration diode 16 to the armature 6 side, so that so-called regenerative braking is performed, and the electric motor 5
rotation speed decreases.

そして、電動機5の回転数がある値まで低下し
てくると、チヨツパ通流率を大きくしても、電機
子6に流れる電流が最大制限値よりも小さくなる
が、本実施例では、この状態をある一定時間保持
する様にする。この様にすると、電機子6の側
から電流検出用センサ8、後進コンタクタ10、
界磁コイル7、前進コンタクタ9、チヨツパ11
および回生用ダイオード16を通つて電機子6の
側に至る回路で電流が流れ続けるので、電動機
5の内部抵抗によつて消費されるエネルギが制動
力として働き、いわゆる発電制動が行なわれるこ
とになる。
When the rotational speed of the motor 5 decreases to a certain value, even if the chopper current flow rate is increased, the current flowing through the armature 6 becomes smaller than the maximum limit value. to be held for a certain period of time. In this way, the current detection sensor 8, reverse contactor 10,
Field coil 7, forward contactor 9, chopper 11
Since current continues to flow in the circuit that passes through the regenerative diode 16 and reaches the armature 6, the energy consumed by the internal resistance of the motor 5 acts as a braking force, resulting in so-called dynamic braking. .

第2図は前述した制御を行なうためのブロツク
図である。第2図において、3,11,12は第
1図と同様に電源線、チヨツパ、回生コンタク
タの励磁コイルである。また、18はアクセル、
19は電流制限回路、20はトリガ回路、21は
通流率検出回路、22はタイマ回路、23は回生
制御判定回路、24はレベル比較回路、25はチ
ヨツパ停止回路、26はトランジスタである。
FIG. 2 is a block diagram for carrying out the above-described control. In FIG. 2, numerals 3, 11, and 12 are a power supply line, a chopper, and an excitation coil for a regenerative contactor, as in FIG. 1. Also, 18 is Axel,
19 is a current limiting circuit, 20 is a trigger circuit, 21 is a conductivity detection circuit, 22 is a timer circuit, 23 is a regeneration control determination circuit, 24 is a level comparison circuit, 25 is a chopper stop circuit, and 26 is a transistor.

アクセル18の出力信号と、電流検出用センサ
8からの信号に応じた電流制限回路19のフイー
ドバツク信号を比較し、この差信号でトリガ回路
20を動作させ、チヨツパ11を制御している。
このチヨツパ11の通流率がある値に達すると、
通流率検出回路21はこれを検出し、検出信号を
タイマ回路22に出力する。このタイマ回路22
は、前記検出信号が発生してから一定時間経過後
に出力信号を出し、回生制動の動作を停止させ
る。すなわち、タイマ回路22の出力信号は、レ
ベル比較回路24に入力されるアクセル18の出
力信号に対して差として加わり、レベル比較回路
24の入力信号を“L”にしてトランジスタ26
を不導通にする。したがつて、励磁コイル12の
通電が遮断されて回生コンタクタ4の接点13は
第1図の破線位置に切換わり、回生制動の動作は
停止する。
The output signal of the accelerator 18 and the feedback signal of the current limiting circuit 19 corresponding to the signal from the current detection sensor 8 are compared, and the trigger circuit 20 is operated using this difference signal to control the chopper 11.
When the conduction rate of this chopper 11 reaches a certain value,
The conductivity detection circuit 21 detects this and outputs a detection signal to the timer circuit 22. This timer circuit 22
outputs an output signal after a certain period of time has elapsed since the detection signal is generated, and stops the regenerative braking operation. That is, the output signal of the timer circuit 22 is added as a difference to the output signal of the accelerator 18 that is input to the level comparison circuit 24, and the input signal of the level comparison circuit 24 is set to "L", and the transistor 26 is
becomes non-conductive. Therefore, the excitation coil 12 is de-energized, the contact 13 of the regenerative contactor 4 is switched to the position shown by the broken line in FIG. 1, and the regenerative braking operation is stopped.

なお、回生制御判定回路23は、前後進コンタ
クタ9,10を切換えたとき、回生を中止するか
どうかを判定する回路で、もし回生を行なつても
よいと判定したときには、レベル比較回路24に
入力されるアクセル18の出力信号を低下させな
いで、レベル比較回路24の入力信号を“H”に
保つ。また、チヨツパ停止回路25は、レベル比
較回路24の出力信号が“H”から“L”に変化
したときに動作して、トリガ回路20に信号を出
力し回生コンタクタ4が復帰し終るまでチヨツパ
動作を停止させる回路で、次にプラギング動作を
行なわせるようにしている。
The regeneration control determination circuit 23 is a circuit that determines whether or not to stop regeneration when the forward/reverse contactors 9 and 10 are switched.If it is determined that regeneration may be performed, the level comparison circuit 24 The input signal of the level comparison circuit 24 is kept at "H" without lowering the input output signal of the accelerator 18. Further, the chopper stop circuit 25 operates when the output signal of the level comparison circuit 24 changes from "H" to "L", outputs a signal to the trigger circuit 20, and operates the chopper until the regenerative contactor 4 is completely restored. This circuit stops the plugging operation and then performs the plugging operation.

第2図の制御ブロツク図の要部の具体的な回路
構成を示すと第3図の如くなる。この図におい
て、第1図および第2図と同一符号は同一物また
は相当物を示し、また27は定電圧回路、28は
定電圧線、29はDタイプフリツプフロツプ、3
0はリセツタブル単安定マルチバイブレータ、3
1,32はそれぞれ演算増幅器である。
The specific circuit configuration of the main part of the control block diagram of FIG. 2 is shown in FIG. 3. In this figure, the same reference numerals as in FIGS. 1 and 2 indicate the same or equivalent parts, and 27 is a constant voltage circuit, 28 is a constant voltage line, 29 is a D-type flip-flop, and 3
0 is a resettable monostable multivibrator, 3
1 and 32 are operational amplifiers, respectively.

従来第4図aに示す如く、チヨツパ通流率が例
えば90%になつた時点t1で直ちにチヨツパ通流率
を0%、つまりチヨツパ動作を停止させて回生コ
ンタクタを切換え、切換えが完了した時点t2でチ
ヨツパ動作を再開し、プラギング動作を行なわせ
ていたので、車両が減速途中で惰行する期間が生
じ、運転者に対するスムーズな減速感が得られ
ず、また回生制動による電気制動期間が短かいた
めに、車両速度が0になるまでの制動時間が長く
なつていた。
Conventionally, as shown in Fig. 4a, at time t1 when the chopper conduction rate reaches 90%, the chopper conduction rate is immediately reduced to 0%, that is, the chopper operation is stopped and the regenerative contactor is switched, and the switching is completed. Since the chipping operation was restarted at t 2 and the plugging operation was performed, there was a period in which the vehicle coasted during deceleration, making it difficult for the driver to feel a smooth deceleration, and the electric braking period due to regenerative braking was shortened. As a result, the braking time until the vehicle speed reaches zero was longer.

これに対して本実施例によれば、第4図bに示
す如く、チヨツパ通流率が90%になつた時点t1
もそのままの状態を保ち、車両速度がほぼ0にな
るまでの所定時間(主として発電制動を行なう時
間)τ経過後の時点t3ではじめてチヨツパ動作を
停止させて回生コンタクタを切換えるので、従来
に比べて所定時間τだけ発電制動による電気制動
(回生制動、発電制動はプラギング制動に比べて
制動力が大きい)期間が長くなり、その結果、制
動時間を短かくすることができる。また、車両速
度がほぼ0の時点t3でプラギングに切換えるの
で、運転者にスムーズな減速感を与えることがで
きる。その後、回生コンタクタの切換えが完了し
た時点t4でプラギング制動を行なわせることは従
来と同様である。
On the other hand, according to the present embodiment, as shown in FIG. 4b, the current state remains unchanged even at the time point t1 when the flow rate reaches 90%, and the predetermined time until the vehicle speed becomes almost 0 is maintained. Since the chopper operation is stopped and the regenerative contactor is switched for the first time at time t 3 after τ has elapsed (mainly the time during which dynamic braking is performed), electric braking by dynamic braking is applied for a predetermined time τ (regenerative braking, dynamic braking is performed by plugging). The period during which the braking force is large compared to the braking becomes longer, and as a result, the braking time can be shortened. Furthermore, since the system switches to plugging at time t3 when the vehicle speed is approximately 0, it is possible to give the driver a smooth feeling of deceleration. Thereafter, plugging braking is performed at time t4 when switching of the regenerative contactor is completed, as in the conventional case.

以上説明した様に、本発明によれば、回生制動
に引続いて低速まで発電制動を行なわせ、その後
プラギング制動を行なわせる様にしたので、電気
車をスムーズに減速し得るとともに、車両速度が
0になるまでの制動時間を短かくすることができ
る。
As explained above, according to the present invention, regenerative braking is followed by regenerative braking to a low speed, and then plugging braking is performed, so that the electric vehicle can be decelerated smoothly and the vehicle speed can be reduced. The braking time until it reaches zero can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電気車の主回路に
おける回生制動時の結線図、第2図は本発明の一
実施例に係る電気車制御装置のブロツク図、第3
図は同制御装置の具体的な回路構成図、第4図
a,bは従来装置と本発明装置の制御動作説明図
である。 1…バツテリ、4…回生コンタクタ、5…直流
電動機、9…前進コンタクタ、10…後進コンタ
クタ、11…チヨツパ、12…回生コンタクタの
励磁コイル、18…アクセル、19…電流制限回
路、20…トリガ回路、21…通流率検出回路、
22…タイマ回路、23…回生制御回路、24…
レベル比較回路、25…チヨツパ停止回路、26
…トランジスタ。
FIG. 1 is a wiring diagram during regenerative braking in the main circuit of an electric vehicle to which the present invention is applied, FIG. 2 is a block diagram of an electric vehicle control device according to an embodiment of the present invention, and FIG.
The figure is a specific circuit configuration diagram of the same control device, and FIGS. 4a and 4b are explanatory diagrams of control operations of the conventional device and the device of the present invention. DESCRIPTION OF SYMBOLS 1... Battery, 4... Regenerative contactor, 5... DC motor, 9... Forward contactor, 10... Reverse contactor, 11... Chopper, 12... Excitation coil of regenerative contactor, 18... Accelerator, 19... Current limiting circuit, 20... Trigger circuit , 21... conduction rate detection circuit,
22...Timer circuit, 23...Regeneration control circuit, 24...
Level comparison circuit, 25...Chopper stop circuit, 26
...transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源に対して互に直列接続された駆動用
直流電動機と、前後進切換装置と、チヨツパとを
備え、前後進切換時に回生制動とプラギング制動
を行なうようにした電気車制御装置において、回
生制動終了時にチヨツパ通流率が所定値に達した
ことを検出する通流率検出装置と、この通流率検
出装置でチヨツパ通流率が所定値に達したことを
検出してからチヨツパ通流率が100%に達する時
点を越える所定時間経過後にチヨツパ停止信号を
出力する装置とを設け、回生制動終了時における
チヨツパ通流率が前記所定値に達してから前記所
定時間主として発電制動を行ない、その後プラギ
ング制動に切換えるようにしたことを特徴とする
電気車制御装置。
1. In an electric vehicle control device that includes a driving DC motor connected in series to a DC power source, a forward/reverse switching device, and a chopper, the control device performs regenerative braking and plugging braking when switching between forward/reverse. A conduction rate detection device detects that the chopper conduction rate reaches a predetermined value at the end of braking, and a conduction rate detection device detects that the chopper conduction rate reaches a predetermined value and then stops the chopper conduction. and a device that outputs a chopper stop signal after a predetermined time period exceeding the point at which the regenerative braking rate reaches 100%, and after the chopper flow rate reaches the predetermined value at the end of regenerative braking, mainly performs dynamic braking for the predetermined time period, An electric vehicle control device characterized in that the braking is then switched to plugging braking.
JP1846280A 1980-02-19 1980-02-19 Control apparatus for electric rolling stock Granted JPS56117503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1846280A JPS56117503A (en) 1980-02-19 1980-02-19 Control apparatus for electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1846280A JPS56117503A (en) 1980-02-19 1980-02-19 Control apparatus for electric rolling stock

Publications (2)

Publication Number Publication Date
JPS56117503A JPS56117503A (en) 1981-09-16
JPS6243404B2 true JPS6243404B2 (en) 1987-09-14

Family

ID=11972295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1846280A Granted JPS56117503A (en) 1980-02-19 1980-02-19 Control apparatus for electric rolling stock

Country Status (1)

Country Link
JP (1) JPS56117503A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211123Y2 (en) * 1980-03-17 1987-03-16
JPS60139102A (en) * 1983-12-23 1985-07-23 Suzuki Motor Co Ltd Drive device of motor driven vehicle
JPS61128407A (en) * 1984-11-27 1986-06-16 株式会社村田製作所 Dielectric ceramic composition

Also Published As

Publication number Publication date
JPS56117503A (en) 1981-09-16

Similar Documents

Publication Publication Date Title
US4479080A (en) Electrical braking control for DC motors
US4388573A (en) Electric vehicle control device
JP3394197B2 (en) Electric vehicle control device and control method
JPH0865809A (en) Motor controller for motor driven vehicle
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
GB1567037A (en) Safety system for a vehicle
JPS58198193A (en) Dc motor controller
JPS6243404B2 (en)
KR0152301B1 (en) Brake revival control of an industrial car
US4011492A (en) Chopper motor controller having pulse-by-pulse sensing of plugging
JPH0746707A (en) Drive controller for direct current motor
KR0183465B1 (en) A regenerating control method for an industrial motor car
JPS638682B2 (en)
JPH06101881B2 (en) Braking controller for electric vehicle
JP2735208B2 (en) Electric car control device
JPS635366Y2 (en)
JPS58175901A (en) Regenerative braking device for electric motor vehicle
JPH0514484B2 (en)
JPH0368602B2 (en)
JPH0667054B2 (en) Constant speed running controller for unmanned electric vehicles
JPS6211123Y2 (en)
JPH0993726A (en) Method for controlling electric rolling stock
JPH0321197Y2 (en)
JPH10310398A (en) Regenerative braking device for battery vehicle
JPS5944841B2 (en) Electric vehicle plugging detection method and detection device