JPS6039201B2 - Method for manufacturing integrated optical coupling device - Google Patents

Method for manufacturing integrated optical coupling device

Info

Publication number
JPS6039201B2
JPS6039201B2 JP15022777A JP15022777A JPS6039201B2 JP S6039201 B2 JPS6039201 B2 JP S6039201B2 JP 15022777 A JP15022777 A JP 15022777A JP 15022777 A JP15022777 A JP 15022777A JP S6039201 B2 JPS6039201 B2 JP S6039201B2
Authority
JP
Japan
Prior art keywords
light guide
substrate
thick film
coupler
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15022777A
Other languages
Japanese (ja)
Other versions
JPS5482252A (en
Inventor
潔 浅川
正和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15022777A priority Critical patent/JPS6039201B2/en
Publication of JPS5482252A publication Critical patent/JPS5482252A/en
Publication of JPS6039201B2 publication Critical patent/JPS6039201B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は、厚膜を用いた集積光結合装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an integrated optical coupling device using a thick film.

集積光回路は、光通信装置あるいは光情報処理装置の小
型化、堅牢化に必要な装置である。
Integrated optical circuits are necessary for making optical communication devices or optical information processing devices smaller and more robust.

光通信装置では、レーザー、光フアィバ、光検出器に加
えて、光偏向変調器、光スイッチ等の光制御素子や、光
分岐素子、光分波器の如き受動光素子が必要とされてい
る。これらの光制御素子や受動光素子を実現させるため
に、最近光学的に透明な物質の表面に周囲よりも屈折率
を高めて成る二次元若しくは三次元光ガイドを用いた集
積光回略が開発されている。これらの、集積光回路は複
数個の制御素子や受動光素子を前記二次元もしくは三次
元光ガイドで連結して、単一の基板上に組込むことが出
来るため、光装置が小型化、堅牢化するという利点を有
する。更に、これらの集積光回路は主として従来のIC
技術及びこれに関連する微細加工技術によって製造し得
るため、バッチ処理が可能であり、低価格化が可能であ
るという利点をも有する。ところで、上記集積光回路を
光通信装置もしくは光情報処理装置に使用する場合、い
よいよ光ファイバー等の外部光伝送体、もくは半導体レ
ーザー等の外部光源との効率良い結合方法が望まれてい
た。
In addition to lasers, optical fibers, and photodetectors, optical communication equipment requires optical control elements such as optical polarization modulators and optical switches, and passive optical elements such as optical branching elements and optical demultiplexers. . In order to realize these light control devices and passive optical devices, an integrated optical system has recently been developed that uses a two-dimensional or three-dimensional light guide made of an optically transparent material with a higher refractive index than its surroundings. has been done. These integrated optical circuits can connect multiple control elements and passive optical elements using the two-dimensional or three-dimensional light guide and incorporate them onto a single substrate, making optical devices more compact and robust. It has the advantage of Furthermore, these integrated optical circuits are primarily based on conventional ICs.
Since it can be manufactured using microfabrication technology and related microfabrication technology, it also has the advantage that batch processing is possible and cost reduction is possible. By the way, when the above-mentioned integrated optical circuit is used in an optical communication device or an optical information processing device, an efficient coupling method with an external optical transmission body such as an optical fiber or an external light source such as a semiconductor laser has been desired.

従来知られている集積光回路と外部光との代表的な結合
構造としては、前記光ガイド表面に設けたグレーティン
グカプラー及び高屈折率のガラス又は単結晶をプリズム
状に加工して前記光ガイド表面に圧接して用いるプリズ
ムカプラーが挙げられる。
Conventionally known typical coupling structures between an integrated optical circuit and external light include a grating coupler provided on the light guide surface and a high refractive index glass or single crystal processed into a prism shape. Examples include prism couplers that are used in pressure contact with.

グレーティングカプラーは光ガイド表面に凹凸の溝を形
成するだけで得られるため構造が簡単であるという利点
を有する。反面、不要の高次回折光が現われるため結合
効率が減少するという欠点がある。又プリズムカプラー
はグレーティングカプラーに比べて理論上の結合効率は
大きいという利点を有する反面、光ガイドの表面にこれ
と別の個体であるプリズムを圧接するため、構造が複雑
で集積化に適さないという欠点がある。これに対し、埋
め込み型三次元光ガィド‘こ外部光を効率良く注入する
場合、該光ガィド‘こ沿って上部表面の一部に光重合性
材料で厚膜カプラーを作製し、該厚膜カプラーの側壁か
ら光を注入する構造が考えられる。か)る厚脇カプラ−
を従来知られた方法により製造するには、予め作製され
た三次元光ガイドの上部表面に光重合性フィルムを熱圧
着もしくは塗布した後、所望のカプラ−のパターンを有
するフオトマスクを前記フィルムに密着させ、上方から
露光し、その後現象処理を行う方法が知られていた。而
してこの方法は、フオトマスクを光ガイドパターンに目
合せする必要があるため、工程に煩雑さを招くばかりか
、厚膜カプラー形成時の寸法精度も劣るという欠点があ
った。
The grating coupler has the advantage of a simple structure because it can be obtained by simply forming uneven grooves on the surface of the light guide. On the other hand, there is a drawback that the coupling efficiency decreases because unnecessary high-order diffracted light appears. Although prism couplers have the advantage of theoretically higher coupling efficiency than grating couplers, they have a complex structure and are not suitable for integration because a separate prism is pressed against the surface of the light guide. There are drawbacks. On the other hand, when external light is efficiently injected into an embedded three-dimensional light guide, a thick film coupler is fabricated from a photopolymerizable material along a part of the upper surface of the light guide. A structure in which light is injected from the sidewall is considered. Atsuwaki coupler
To manufacture by a conventionally known method, a photopolymerizable film is thermocompressed or coated on the upper surface of a three-dimensional light guide prepared in advance, and then a photomask having a desired coupler pattern is closely attached to the film. A known method is to expose the material to light from above, and then process the phenomenon. However, this method not only complicates the process because it is necessary to align the photomask with the light guide pattern, but also has the drawback that the dimensional accuracy during the formation of the thick film coupler is poor.

本発明の目的は、従来の欠点を改良した新しい集積光結
合装置の製造方法を提供するものである。
The object of the present invention is to provide a new method for manufacturing an integrated optical coupling device, which improves the drawbacks of the prior art.

本発明によれば、光学的に透明な基板の表面に光学的に
不透明な物質から成るマスクフィルムパターンを製造す
る工程と、該マスクフィルムパターンを用いて前記基板
に光ガイド部を形成する工程と、該基板表面に光重合性
物質から成る厚膜を付着する工程と、該基板の裏面に前
記光ガイドの一部を遮蔽するための手段を設けて前記基
板の裏面側から光学露光を行い、前記厚膜をフオトェッ
チングする工程とを含むことを特徴とする集積光結合装
置の製造方法が得られる。
According to the present invention, a step of manufacturing a mask film pattern made of an optically opaque material on the surface of an optically transparent substrate, and a step of forming a light guide part on the substrate using the mask film pattern. , a step of attaching a thick film made of a photopolymerizable substance to the surface of the substrate, and performing optical exposure from the back side of the substrate by providing means for shielding a part of the light guide on the back side of the substrate, There is obtained a method of manufacturing an integrated optical coupling device, characterized in that it includes a step of photoetching the thick film.

次に図面を用いて本発明の詳細を説明する。Next, details of the present invention will be explained using the drawings.

第1図は、本発明実施例の主要な工程の概略図である。
同図aにおいて、溶融石英基板11の表面に光ガイド領
域33を残して金Auの蒸着膜から成るマスクフィルム
31が通常のフオトェツチングにより形成されている。
基板の上方からヘリウムイオンHe十32が照射され、
前記光ガイド領域33のみが注入される。この時のイオ
ン加速エネルギーは約160KeVの単一エネルギーで
あり、注入量は約2×1び5/めである。この結果、同
図b‘こ示す如く中心部の深さが約0.8ミクロンでガ
イド幅が約50ミクロン埋め込み型光ガイド34が形成
される。ここに矢印50の方向が光ガイドの伝搬方向で
ある。次に、同図bにおいてアクリル樹脂を主成分とし
、ベースフィルム36上に塗布された光重合性フィルム
35が基板表面に熱圧着される。
FIG. 1 is a schematic diagram of the main steps of an embodiment of the present invention.
In FIG. 1A, a mask film 31 made of vapor-deposited gold (Au) is formed by normal photoetching, leaving a light guide region 33 on the surface of a fused silica substrate 11.
Helium ions He132 are irradiated from above the substrate,
Only the light guiding region 33 is implanted. The ion acceleration energy at this time is a single energy of about 160 KeV, and the implantation amount is about 2×15/. As a result, as shown in Figure b', a buried light guide 34 is formed with a central depth of about 0.8 microns and a guide width of about 50 microns. Here, the direction of arrow 50 is the propagation direction of the light guide. Next, in FIG. 1B, a photopolymerizable film 35 mainly composed of acrylic resin and coated on the base film 36 is thermocompression bonded to the surface of the substrate.

次に同図cに示す如く基板裏面に、前記光ガイドの一部
が遮蔽されるべく暗部38を有するようなフオトマスク
37が密着されて、裏面全面にアルゴン〜レーザーから
の平行光39が照射される。この場合レーザー光39は
、前記ガイド光の伝搬方向50の向きにのみ傾斜して基
板裏面を照射している。か)る密着光学露光の工程で、
前記フィルム35はマスクフィルム31及びフオトマス
ク暗部38により選択的露光を受ける。この後現象処理
により同図dに示す如く埋め込み光ガイドの真上に前記
アクリル樹脂の厚膜パターン40が形成される。最後に
同図eに示す如く不要のマスクフィルム31を除去して
該厚膜パターン40が所望の厚膜カプラーとなる。この
時端面41の傾斜角は露光ビーム39の傾斜角に依存す
る。第2図は本発明の具体的実施例によって得られた集
積光結合装置の動作原理を示す構造概略図である。
Next, as shown in FIG. 3c, a photomask 37 having a dark area 38 is closely attached to the back surface of the substrate so as to partially block the light guide, and the entire back surface is irradiated with parallel light 39 from argon to a laser. Ru. In this case, the laser beam 39 irradiates the back surface of the substrate with an inclination only in the propagation direction 50 of the guide light. In the process of contact optical exposure,
The film 35 is selectively exposed to light by a mask film 31 and a photomask dark area 38 . Through this post-processing process, the thick film pattern 40 of the acrylic resin is formed directly above the embedded light guide as shown in FIG. 4(d). Finally, as shown in FIG. 4E, the unnecessary mask film 31 is removed, and the thick film pattern 40 becomes a desired thick film coupler. At this time, the inclination angle of the end face 41 depends on the inclination angle of the exposure beam 39. FIG. 2 is a structural schematic diagram showing the operating principle of an integrated optical coupling device obtained according to a specific embodiment of the present invention.

同図において、溶融石英基板21の表面近傍に上述のイ
オン注入法により埋め込み光ガイド22が形成されてい
る。該光ガイド22はイオン注入により周囲より屈折率
が高められており、低屈折率層28を隔て)上述の方法
にて得られた厚膜カプラー23と近接している。該厚膜
カプラー23、低屈折率層28、光ガイド22、基板2
1の各屈折率をnc,n6,nW,nsとすると、これ
らの関係はnC>nW>ng〜〉nS となっている。
In the figure, an embedded optical guide 22 is formed near the surface of a fused silica substrate 21 by the above-described ion implantation method. The light guide 22 has a higher refractive index than its surroundings by ion implantation, and is in close proximity to the thick film coupler 23 obtained by the above method (with a low refractive index layer 28 in between). The thick film coupler 23, the low refractive index layer 28, the light guide 22, the substrate 2
Letting each refractive index of 1 be nc, n6, nW, and ns, the relationship between these is nC>nW>ng~>nS.

このため外部光25が前記厚膜カプラー23の端面24
を通して内部に入射されると、入射光26は低屈折率層
28を介して前記光ガイド22を伝搬する伝搬モード光
27に徐々に変換され、所謂分布結合を起こす。このこ
とは従来のプリズムカプラーを用いた光ガイド伝搬光の
注入と同様の事情によるものである。而して従釆のプリ
ズムカプラーは、ガラス又は単結晶体をプリズム状に成
形して、これを光ガイド部に圧援もしくは接着して用い
られたものであり、本発明中の表面低屈折率層28が前
記プリズムと基板表面との空気間隔層もしくは接着層に
対応するものであった。か)る空気間隔層又は接着層の
厚みは、いまいまプリズム設置条件によって変動するた
め、実用性に欠けるものであった。これに対し本発明に
おける前記厚膜カプラ−23は基板に直接熱圧着されて
おり本給合装置において重要なパラメーターである前記
低屈折率層28の厚みは前述のイオン注入条件で決まり
良好に制御され得るものである。以上説明したように本
発明の製造方法には幾つかの利点がある。
Therefore, the external light 25 is transmitted to the end surface 24 of the thick film coupler 23.
When incident light 26 enters the interior through the low refractive index layer 28, it is gradually converted into propagation mode light 27 that propagates through the light guide 22, causing so-called distributed coupling. This is due to the same circumstances as the injection of light guide propagating light using a conventional prism coupler. Therefore, the secondary prism coupler is formed by molding glass or a single crystal into a prism shape, and presses or adheres the prism to the light guide part. Layer 28 corresponded to the air spacing layer or adhesive layer between the prism and the substrate surface. The thickness of the air spacing layer or the adhesive layer varies depending on the prism installation conditions, and is therefore impractical. In contrast, the thick film coupler 23 in the present invention is bonded directly to the substrate by thermocompression, and the thickness of the low refractive index layer 28, which is an important parameter in this coupling device, is determined by the ion implantation conditions described above and can be well controlled. It can be done. As explained above, the manufacturing method of the present invention has several advantages.

第1の利点は、予め形成された光ガイドの真上に厚膜カ
プラーを光学露光によって作製する工程で、光ガイドと
厚膜カプラ−の両パターンの精密な目合わせが不要なこ
とである。
The first advantage is that the process of fabricating the thick film coupler directly above the preformed light guide by optical exposure eliminates the need for precise alignment of both the light guide and thick film coupler patterns.

第1図cにおいて、従来の方法では厚膜カプラーのパタ
ーンを有するフオトマスクをベースフィルム36の表面
に密着ごて上方から露光を行っていた。この場合、いま
いまベースフィルム36及び光重合性フィルム35の厚
みは数10ミクロンを越えるものであるため本工程での
前記目合わせが困難であった。これに対し本発明の方法
によれば、光ガイドを作製する際に用いられたマスクフ
ィルム31が厚膜カプラー作製の際のマスクフィルムと
して併用される。本発明中、厚膜カプラー40の長さを
制御するために前記フオトマスク37が必要であるが、
該厚膿カプラー長は高精度の制御を必要としない。以上
の理由により本発明には精密なフオトマスク目合わせが
不要で製造工程が簡略できる。本発明の第2の利点は厚
膜カプラー40の寸法精度が良好なことである。第1図
cにおいて従来の方法では、上述の如く厚み数ミクロン
に達するベースフィルム36を隔てて光重合性フィルム
35を密着露光していた為、前記ベースフィルムの表面
もしくは内部にいよいよ存在する散乱体により、前記露
光中の光ガイドが散乱を受け、所望のパターン形成に寸
法誤差を生ぜしめていた。これに対し本発明では、か)
る寸法誤差の要因は除去されている為、精度良く良好な
微4・パターン形成ができる高集積化が可能となる。以
上、本発明の実施例に用いた埋め込み型光ガイドとして
はイオン注入法によるものを用いたが本発明の適用範囲
はこれに限定されるものではなく他の方法、例えばイオ
ン交換法、熱拡散法による光ガイド‘こ対しても本発明
は有効である。
In the conventional method, as shown in FIG. 1c, a photomask having a thick film coupler pattern is brought into close contact with the surface of the base film 36, and exposure is performed from above. In this case, since the thickness of the base film 36 and the photopolymerizable film 35 exceeds several tens of microns, it is difficult to perform the alignment in this step. On the other hand, according to the method of the present invention, the mask film 31 used in producing the light guide is also used as a mask film in producing the thick film coupler. In the present invention, the photomask 37 is required to control the length of the thick film coupler 40;
The thick coupler length does not require precise control. For the above reasons, the present invention does not require precise photomask alignment and can simplify the manufacturing process. A second advantage of the present invention is that the thick film coupler 40 has good dimensional accuracy. As shown in FIG. 1c, in the conventional method, the photopolymerizable film 35 is closely exposed with the base film 36 having a thickness of several microns in between as described above, so that the scattering material that exists on the surface or inside of the base film is increasing. As a result, the light guide during exposure is subjected to scattering, causing dimensional errors in forming a desired pattern. In contrast, in the present invention,
Since the factors that cause dimensional errors have been eliminated, it is possible to achieve high integration that allows formation of fine patterns with high accuracy. As described above, the embedded light guide used in the embodiments of the present invention was one based on the ion implantation method, but the scope of the present invention is not limited to this, and other methods such as ion exchange method, thermal diffusion method, etc. The present invention is also effective for light guides based on the method.

但し熱拡散法による場合には第1図のマスクフィルム3
1の材料としては光ガイド形成に寄与しない程度に拡散
速度の遅い金属薄膜を用い、この上に拡散用金属膜を付
着して熱拡散を行い、その後該拡散用金属膜のみを除去
する等の工程を追加すれば、以下、全く本発明の実施は
有効となる。更に、上記実施例の厚膜カプラーとしては
、アクリル樹脂を主成分とした光重合性フィルムを用い
たが、他の光重合性材料、例えばケィ皮酸ビニル系成分
を主体とした市販のフオトェジスト材料を用いても本発
明は実施可能である。
However, when using the thermal diffusion method, the mask film 3 in Figure 1 is used.
As material 1, a metal thin film with a slow diffusion rate is used to the extent that it does not contribute to the formation of a light guide, a diffusion metal film is attached on top of this, thermal diffusion is performed, and then only the diffusion metal film is removed. If a step is added, the present invention will be completely effective from now on. Furthermore, although a photopolymerizable film containing an acrylic resin as a main component was used as the thick film coupler in the above example, other photopolymerizable materials, such as commercially available photoesist materials containing a vinyl cinnamate component as a main component, may be used. The present invention can also be implemented using the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の主要な工程概略図、第2図は本
発明実施例によって得られる集積光結合装置の構造概略
図である。 なお、図において11,21は溶融石英基板、22,3
4は埋め込み型光ガイド、23,4川ま厚膜カプラー3
1はマスクフィルム、32は注入イオンビーム、39は
光ビームである。 が2図 オー図
FIG. 1 is a schematic diagram of the main steps of an embodiment of the present invention, and FIG. 2 is a schematic diagram of the structure of an integrated optical coupling device obtained by the embodiment of the present invention. In the figure, 11 and 21 are fused silica substrates, 22 and 3
4 is an embedded light guide, 23, 4 is a thick film coupler 3
1 is a mask film, 32 is an implanted ion beam, and 39 is a light beam. is 2 diagram O diagram

Claims (1)

【特許請求の範囲】[Claims] 1 外部光を光ガイドに結合する光結合装置の製造方法
に於いて、光学的に透明な基板の表面に、光学的に不透
明な物質から成るマスクフイルムパターンを製造する工
程と、該マスクフイルムパターンを用いて、前記基板に
光ガイド部を形成する工程と、該基板表面に光重合性物
質から成る厚膜を付着する工程と、該基板の裏面に前記
光ガイドの一部を遮蔽する為の手段を設けて、前記基板
の裏面側から光学露光を行い、前記厚膜をフオトエツチ
ングする工程とを含むことを特徴とする集積光結合装置
の製造方法。
1. A method of manufacturing an optical coupling device for coupling external light to a light guide, which includes the steps of manufacturing a mask film pattern made of an optically opaque substance on the surface of an optically transparent substrate; a step of forming a light guide portion on the substrate using a method, a step of attaching a thick film made of a photopolymerizable substance to the surface of the substrate, and a step of forming a thick film made of a photopolymerizable substance on the back surface of the substrate for shielding a part of the light guide. 1. A method of manufacturing an integrated optical coupling device, comprising the steps of: providing a means for optically exposing the substrate from the rear surface side, and photoetching the thick film.
JP15022777A 1977-12-13 1977-12-13 Method for manufacturing integrated optical coupling device Expired JPS6039201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15022777A JPS6039201B2 (en) 1977-12-13 1977-12-13 Method for manufacturing integrated optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15022777A JPS6039201B2 (en) 1977-12-13 1977-12-13 Method for manufacturing integrated optical coupling device

Publications (2)

Publication Number Publication Date
JPS5482252A JPS5482252A (en) 1979-06-30
JPS6039201B2 true JPS6039201B2 (en) 1985-09-05

Family

ID=15492312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15022777A Expired JPS6039201B2 (en) 1977-12-13 1977-12-13 Method for manufacturing integrated optical coupling device

Country Status (1)

Country Link
JP (1) JPS6039201B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192223U (en) * 1986-05-27 1987-12-07
JPS62192222U (en) * 1986-05-27 1987-12-07
JPH0316040Y2 (en) * 1985-04-11 1991-04-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049984A1 (en) 2000-12-20 2002-06-27 Murata Manufacturing Co.,Ltd. Transparent ceramic and method for production thereof, and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316040Y2 (en) * 1985-04-11 1991-04-08
JPS62192223U (en) * 1986-05-27 1987-12-07
JPS62192222U (en) * 1986-05-27 1987-12-07

Also Published As

Publication number Publication date
JPS5482252A (en) 1979-06-30

Similar Documents

Publication Publication Date Title
JP3253622B2 (en) Optical integrated circuit device
US7050691B2 (en) Optical waveguide and method of manufacturing the same
JP2011033876A (en) Method of manufacturing optical sensor module and optical sensor module obtained thereby
JP2001281480A (en) Photonic crystal optical waveguide and directional coupler
JP2968508B2 (en) Manufacturing method of optical waveguide device
KR20060060610A (en) Process for producing filmy optical waveguide
JP5308408B2 (en) Optical sensor module
JP2011102955A (en) Method of manufacturing optical sensor module and optical sensor module obtained thereby
JP2002169042A (en) Optical waveguide coupling structure, optical waveguide and its manufacturing method, and optical device part having optical waveguide and its manufacturing method
US20080050582A1 (en) Multi-level optical structure and method of manufacture
US20050185891A1 (en) Optical coupling device and method for fabricating the same, and master used in fabricating optical coupling device and method for fabricating the same
US20040120676A1 (en) Method for manufacturing optical waveguide using laser writing method and optical waveguide manufactured by using the same
JP2784503B2 (en) Guided optical waveguide and method of manufacturing the same
JPH08179155A (en) Method for coupling lens with optical fiber and production of lens substrate
JPS6039201B2 (en) Method for manufacturing integrated optical coupling device
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
US6445837B1 (en) Hybrid opto-electronic circuits and method of making
US6501891B2 (en) Optical wave-guide, light-beam spot converter and optical transmission module
JPH1048443A (en) Polymer waveguide and its production
JP2701326B2 (en) Method for connecting optical waveguide and method for manufacturing optical waveguide connecting portion
US20200379175A1 (en) High-throughput manufacturing of photonic integrated circuit (pic) waveguides using multiple exposures
JP2893093B2 (en) Fabrication method of optical waveguide with fiber guide
JP2005128407A (en) Optical waveguide module
JP2000019337A (en) Optical waveguide and its production
JPS6115403B2 (en)