JPS6039130A - Method for recovering latent heat of waste sintering gas - Google Patents

Method for recovering latent heat of waste sintering gas

Info

Publication number
JPS6039130A
JPS6039130A JP58146476A JP14647683A JPS6039130A JP S6039130 A JPS6039130 A JP S6039130A JP 58146476 A JP58146476 A JP 58146476A JP 14647683 A JP14647683 A JP 14647683A JP S6039130 A JPS6039130 A JP S6039130A
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
sintering
gas
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58146476A
Other languages
Japanese (ja)
Other versions
JPS6248736B2 (en
Inventor
Kazuo Tsutsumi
堤 一夫
Katsuaki Shiobara
勝明 塩原
Osamu Komatsu
修 小松
Yoshiyuki Sato
芳行 佐藤
Masami Oama
小天 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58146476A priority Critical patent/JPS6039130A/en
Publication of JPS6039130A publication Critical patent/JPS6039130A/en
Publication of JPS6248736B2 publication Critical patent/JPS6248736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover efficiently the latent heat of waste sintering gas by separating sintering pallets, oxidizing catalytically only the waste gas contg. high- concn. CO, and utilizing the combustion heat of oxidation. CONSTITUTION:The pallets 3 are separated in a sintering machine of an iron ore equipped with a raw material charge port 1, an ignition furnace 2, and the pallets 3, and a waste gas having >=0.5vol% CO concn. is sent into a CO oxidizing apparatus 9 from ducts 4-1 by a main blower 7 through a collecting duct 5, a dust collection equipment 6, and a heat exchanger 8. The CO in the waste gas is catalytically oxidized in the oxidizing apparatus 9, and the generated combustion heat of oxidation is recovered by a heat recovery equipment 10 and utilized. The waste gas after the heat recovery is discharged from a stack 21 through said CO oxidizing apparatus 9 and the heat exchanger 8. The waste gas having a low CO concn. is supplied along with combustion air to the pallets 3 by a blower 15 through the duct 4, collecting ducts 11 and 12, collecting ducts 16 and 17, and a hood 18.

Description

【発明の詳細な説明】 本発明は、鉄鉱石等の焼結に用いられる焼結機から排出
される焼結排ガスの潜熱回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering latent heat from sintering exhaust gas discharged from a sintering machine used for sintering iron ore and the like.

一般に鉄鉱石の焼結に当っては、設備的にも大量生産に
適した焼結機として、第1図に示すような連続式の直線
型ドワイトロイド(DL)式が採用され稼動している。
Generally, when sintering iron ore, a continuous linear Dwight Lloyd (DL) type sintering machine, as shown in Figure 1, is adopted and operated as a sintering machine suitable for mass production in terms of equipment. .

第1図において、1は原料装入口、2は点火炉、3はパ
レットであシ、焼結原料は原料装入口1よりパレット3
上に、装入され、点火炉2にて点火され、パレット上の
焼結原料はパレット3の移動に伴ない成る一定時間(焼
結時間)後焼結反応を完了し、焼結機の他端より矢印に
示す如く排出され、粉砕、冷却後製品焼結鉱として高炉
に装入される。一方パレット3からの焼結排ガスは、メ
ーンブロア−7によシダクト4、生ダクト5を経由して
集塵装置6にて除塵後煙突21より排出される。これら
排ガスは、圧力制御器14によって、ダンパー13を開
閉することによシ制御される構成となっている。尚第2
図は第1図のA−A’断面を示すものである。
In Fig. 1, 1 is a raw material charging port, 2 is an ignition furnace, 3 is a pallet, and the sintering raw material is fed from the raw material charging port 1 to the pallet 3.
The raw material for sintering on the pallet is charged into the sintering furnace 2, and the sintering raw material on the pallet completes the sintering reaction after a certain period of time (sintering time) as the pallet 3 moves. It is discharged from the end as shown by the arrow, and after being crushed and cooled, it is charged into a blast furnace as a product sintered ore. On the other hand, the sintering exhaust gas from the pallet 3 is removed by a dust collector 6 via a main blower 7, a duct 4, and a raw duct 5, and then discharged from a chimney 21. These exhaust gases are controlled by the pressure controller 14 by opening and closing the damper 13. Furthermore, the second
The figure shows a cross section taken along the line AA' in FIG.

これら鉄鉱石の焼結過程における排ガス成分の変化を焼
結鋼試験結果の1例として示したものが第3図である。
FIG. 3 shows changes in exhaust gas components during the sintering process of these iron ores as an example of sintered steel test results.

fil、lち焼結原料中のコークスの燃焼は、過剰空気
の存在下で行なわれているが、完全にCO2まで燃焼せ
ず可成ルの濃度のCOが存在していることが示されてい
る。
The combustion of coke in the sintering raw material is carried out in the presence of excess air, but it has been shown that CO2 is not completely combusted and a considerable concentration of CO2 is present. There is.

これらDL焼結機の排ガス温度は、過剰空気ならびに、
含有水分の影善のため低く、かつ排ガス量は多く、その
排熱の利用回収は行なわれていないのが現状である。
The exhaust gas temperature of these DL sintering machines is the excess air and
The amount of exhaust gas is low due to the influence of water content, and the amount of exhaust gas is large, and the current situation is that the exhaust heat is not utilized and recovered.

近時焼結排ガスの脱硝、脱硫対策として排ガス量および
NOx、 SOX量の低減のため排ガスのカスケード使
用が行なわれている。また特に前記脱硝設備において、
排ガス中のCO酸化熱が一部利用されている。然しなか
ら、これらの方法においては、排ガス全量処理という点
から、排ガス中のCOを有効に利用されることは、CO
#度が低いためCO酸化による排ガスの温度上昇も小さ
く、熱回収が困難でおるという欠点を有し、かつ排ガス
聞も多いため設備規模も大きくなり、設置スペース、設
備投資も大きくなっている。
Recently, as a measure for denitrification and desulfurization of sintering exhaust gas, cascade use of exhaust gas has been carried out to reduce the amount of exhaust gas and the amount of NOx and SOX. In particular, in the denitrification equipment,
Part of the CO oxidation heat in the exhaust gas is utilized. However, in these methods, from the point of view of treating the entire amount of exhaust gas, the effective use of CO in the exhaust gas means that CO
# Since the temperature is low, the temperature rise of the exhaust gas due to CO oxidation is small, making it difficult to recover heat, which is a disadvantage.In addition, since there is a large amount of exhaust gas, the scale of the equipment is large, and the installation space and capital investment are also large.

本発明は斜上の焼結排ガス中のCO含有成分を有効に燃
焼せしめ回収するに当って、従来技術の問題点を解消す
ることを目的としてなされたものである。即ち本発明の
要旨とするところは、焼結排ガス中のCO酸成分、触媒
によシ酸化燃焼させ、熱を回収するに際し、焼結機パレ
ットを区刺し、CO濃度0.5容量チυ上の排ガスのみ
を触媒による酸化装着に導入し酸化燃焼熱を利用するこ
とを特徴とする焼結排ガスの潜熱回収方法にある。
The present invention has been made for the purpose of solving the problems of the prior art in effectively burning and recovering CO-containing components in the inclined sintering exhaust gas. That is, the gist of the present invention is to oxidize and burn the CO acid component in the sintering exhaust gas using a catalyst and recover the heat by partitioning the sintering machine pallet and increasing the CO concentration by 0.5 volume. A method for recovering latent heat from sintering exhaust gas is characterized in that only the exhaust gas is introduced into oxidation equipment using a catalyst and the heat of oxidation combustion is utilized.

次に本発明を実施態様例である図面に基いて述べる。第
4図は本発明の構成を示す模式的説明図である。尚図面
中鎖1図と同じ符号は同じ機能を示すものである。
Next, the present invention will be described based on drawings which are embodiment examples. FIG. 4 is a schematic explanatory diagram showing the configuration of the present invention. In the drawings, the same reference numerals as in Figure 1 indicate the same functions.

第4図において、本発明の構成はCO濃度の低いガスを
発生するパレット6をダクト4によシ区側し、これらダ
クト4の排ガスを集合ダクト11゜i2t 16* を
通じてブロワ−15によりパレットの7−ド18上に集
合ダクト17より繰返すこと、これらガスの圧力制御機
器としての14−1.14−2ならびにダンパー13−
2.13−3. 稀薄COガスとCO濃度リッチなガス
との仕切シ弁19゜19−1.20.21. 更に集塵
装置6、メーンブロワ−7、熱交換器8、CO酸化装置
8、熱回収装置9、及び煙突21からなる。
In FIG. 4, the configuration of the present invention is such that pallets 6 that generate gas with a low CO concentration are separated by ducts 4, and the exhaust gas from these ducts 4 is passed through a collection duct 11゜i2t 16* and used by a blower 15 to remove the pallets from the pallets. 7- repeat from the collective duct 17 on the door 18, 14-1, 14-2 as pressure control equipment for these gases and the damper 13-
2.13-3. Partition valve between dilute CO gas and CO-rich gas 19°19-1.20.21. It further includes a dust collector 6, a main blower 7, a heat exchanger 8, a CO oxidizer 8, a heat recovery device 9, and a chimney 21.

排ガスの流れをより詳しく述べると、まずCO濃度、例
えばCO濃度1.2容fi(乾ガス基準)チ以下の低い
給鉱部及び排鉱部のガスをブロワ−15によりパレット
3上のCO濃度リッチ部分に操返す。即ち給鉱部では、
ダクト4→集合ダクト11→プロワ−15→集合ダクト
16→集合ダクト17→フード18に、排鉱部では、ダ
クト4→集合ダクト5−1→集合ダクト12→ブロワ−
15→集合ダクト16→集合ダクト17→フード18の
ルートを経由しパレット6に燃焼用酸化空気と共に供給
される。ブロワ−15以降は給鉱部及び排鉱部排ガスは
同一ルートとなる。斯くしてCO濃度の低い排ガスは焼
結焼成のための燃焼空気用として利用され、パレット下
部から排出される排ガス中のCO濃度は高くなる。CO
濃度の高くなつよ排ガスは各ダクト4−1から生ダクト
5に集められ集塵装置6へ導かれ集塵処理され、次にメ
ーンブロワ−7で昇圧され熱交換器8に導入され熱交換
される。次でCO酸化装着9で排ガス中のCOはある割
合で触媒的に接触酸化され、熱回収装置10に入り熱回
収が行なわれる。熱回収装置10からの排出ガスには未
だCOが残留しておシCO酸化装置9を通し酸化させ熱
交換器8で低温排ガスと熱交換して煙突21から排出さ
れる。
To explain the flow of exhaust gas in more detail, first, the gas from the ore feeding section and the ore discharge section where the CO concentration is low, for example, 1.2 volume fi (dry gas standard) or less, is removed by the blower 15 to reduce the CO concentration on the pallet 3. Return to the rich part. In other words, in the ore supply department,
duct 4 → collection duct 11 → blower 15 → collection duct 16 → collection duct 17 → hood 18; in the ore discharge section, duct 4 → collection duct 5-1 → collection duct 12 → blower
The oxidizing air is supplied to the pallet 6 along with the combustion oxidizing air via the route 15 → collection duct 16 → collection duct 17 → hood 18. After blower 15, the exhaust gas from the ore supply section and the ore discharge section is the same route. In this way, the exhaust gas with a low CO concentration is used as combustion air for sintering, and the CO concentration in the exhaust gas discharged from the lower part of the pallet increases. C.O.
The highly concentrated exhaust gas is collected from each duct 4-1 into a raw duct 5, guided to a dust collector 6, where it is collected, and then pressurized by a main blower 7 and introduced into a heat exchanger 8 for heat exchange. Next, CO in the exhaust gas is catalytically oxidized at a certain rate in a CO oxidation installation 9, and then enters a heat recovery device 10 for heat recovery. The exhaust gas from the heat recovery device 10 still contains CO, which is passed through the CO oxidizer 9 to be oxidized, exchanged heat with the low-temperature exhaust gas in the heat exchanger 8, and then discharged from the chimney 21.

以上のようにCO濃度の低い排ガスをパレット上へ導き
カスケード使用すると焼結排ガス量の削減が図られると
同時にCO濃度も高くな夛、COリッチな排ガスを接触
酸化することによシ排ガス温度が高められ熱回収率の向
上が図られる。
As mentioned above, by guiding the exhaust gas with low CO concentration onto the pallet and using it in a cascade, the amount of sintering exhaust gas can be reduced. This increases the heat recovery rate.

COの接触酸化は高温排ガスの方が反応が早く実用的で
あるため、スタートするときは予熱炉22で燃料を焚き
所定温度まで排ガスを予熱する。CO酸化反応が安定す
れば予熱炉22は消火する。
In the catalytic oxidation of CO, high-temperature exhaust gas reacts faster and is more practical, so when starting, fuel is fired in the preheating furnace 22 to preheat the exhaust gas to a predetermined temperature. When the CO oxidation reaction becomes stable, the preheating furnace 22 is extinguished.

排ガスの圧力コントロールについては焼結焼成過程で焼
結原料層の通過風量はある一定量が必要なため吸引圧力
を一定に制御する必要がある。そのためにはます給鉱側
について集合ダクト11上の点26の圧力検出を行ない
圧力制御機器14−1によってダンパー13−2の開閉
を行ない吸引量を調節する。また排鉱側についても同様
にダクト12上の点24について検出を行ない圧力制御
機器14−2によってダンパー16−6の開閉を行ガい
吸引量を調節する。仕切多弁19.21は常時閉とし、
仕切弁19−1.20は常時開としCO濃度低い排ガス
を集合ダクト11及び12に導通可能とする。
Regarding the pressure control of the exhaust gas, since a certain amount of air passing through the sintering raw material layer is required during the sintering and firing process, it is necessary to control the suction pressure to a constant value. For this purpose, the pressure at a point 26 on the collecting duct 11 is detected on the ore supply side, and the damper 13-2 is opened and closed by the pressure control device 14-1 to adjust the suction amount. Similarly, on the ore discharge side, the point 24 on the duct 12 is detected, and the pressure control device 14-2 opens and closes the damper 16-6 to adjust the suction amount. Partition valves 19 and 21 are always closed,
The gate valves 19-1 and 20 are always open to allow exhaust gas with a low CO concentration to flow into the collecting ducts 11 and 12.

次にCO濃度例えば0,5容量チ(乾ガス基準)以上の
高い部分の排ガスを分離し熱回収する場合について第5
図に基いて説明する。
Next, Section 5 describes the case where exhaust gas with a high CO concentration, for example, 0.5% by volume or more (dry gas standard) is separated and heat recovered.
This will be explained based on the diagram.

パレット中間部のCO濃度が0.5容量−以上ある排ガ
スをダクト4−1に集合し集合ダクト5−2を経由し集
塵装#6−1に導き除塵稜熱交換器8にて熱交換し酸化
装置9にて触媒により酸化しCOガスを燃焼せしめ排熱
回収装置10にて熱回収する。熱回収後の排ガス中残留
COガスを酸化袋#9を通すことにより酸化せしめ熱交
換器8を通し熱交換後CO濃度の低い排ガスと共に煙突
21より排気する。尚CO濃度の高いガスの外圧用とし
てブロワ−17−1によ勺ガスを導通せしめ、これらガ
スの圧力制御はダクト5−2上の点25の圧力を検出し
圧力制御器14−6によりダンパー13−4を調節し制
御する。
Exhaust gas with a CO concentration of 0.5 volume or more in the middle of the pallet is collected in the duct 4-1 and guided to the dust collector #6-1 via the collecting duct 5-2 for heat exchange in the dust removal ridge heat exchanger 8. The CO gas is oxidized by a catalyst in an oxidizer 9, and the CO gas is combusted, and the heat is recovered in an exhaust heat recovery device 10. The remaining CO gas in the exhaust gas after heat recovery is passed through an oxidizing bag #9 to be oxidized, and after heat exchange is passed through the heat exchanger 8 and exhausted from the chimney 21 together with the exhaust gas having a low CO concentration. In addition, a blower 17-1 is used to conduct the external pressure of the gas having a high CO concentration, and the pressure of these gases is controlled by detecting the pressure at a point 25 on the duct 5-2 and controlling the damper by the pressure controller 14-6. 13-4.

co酸化において高温即ち4DO℃以上で反応せしめる
と、その接触酸化反応は迅速に又安定して反応するため
常時酸化製病を常時高温に維持することが必要である。
In co-oxidation, when the reaction is carried out at a high temperature, that is, 4DOC or higher, the catalytic oxidation reaction occurs quickly and stably, so it is necessary to maintain the oxidation reaction at a high temperature at all times.

このためCO酸化反応熱の一部をリサイクルして使用す
るために熱交換器か必要である。本発明の熱回収システ
ムの特徴1d、これら機器の配列にあり、第4図及び第
5図に示が本願発明の目的を達成するために好ましい。
Therefore, a heat exchanger is required to recycle and use a portion of the CO oxidation reaction heat. The feature 1d of the heat recovery system of the present invention lies in the arrangement of these devices, and the arrangement shown in FIGS. 4 and 5 is preferable for achieving the object of the present invention.

この場合の排ガスの流れはメーンブロワー→貼交換器→
CO酸化装置→排熱回収装瞳→CO酸化装置→熱交換器
と々る。この時メーンブロワーは熱交換器と酸化装置の
間、酸化装置と熱回収装置の間或は熱回収装置又は熱交
換器の後に設置してもよい。
In this case, the flow of exhaust gas is from main blower → pasting exchanger →
CO oxidizer → exhaust heat recovery pupil → CO oxidizer → heat exchanger. At this time, the main blower may be installed between the heat exchanger and the oxidizer, between the oxidizer and the heat recovery device, or after the heat recovery device or the heat exchanger.

次に実施例について述べる。Next, examples will be described.

実施例 第4図の如き機器配列にてドワイトロイド焼結機の排ガ
ス中のCO酸化熱回収するに当り排熱回収装置として排
熱ボイラーを用い得られた蒸気にて蒸気タービンによる
発電を行なった。その場合の操業成績を次の第1表に示
す。
Example: With the equipment arrangement shown in Figure 4, an exhaust heat boiler was used as an exhaust heat recovery device to recover CO oxidation heat from the exhaust gas of the Dwight Lloyd sintering machine, and the resulting steam was used to generate electricity using a steam turbine. . The operational results in that case are shown in Table 1 below.

第1表 操業成績表 第1表に示す如く排ガス量はン2にco濃度は2%に濃
縮され、CO酸化装置による燃焼熱によシ有効な熱エネ
ルギーが発電々力として回収された。
Table 1: Operational Results As shown in Table 1, the amount of exhaust gas was reduced to 2%, the CO concentration was concentrated to 2%, and effective thermal energy was recovered as power generation power from the combustion heat generated by the CO oxidizer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のドワイトロイド焼結機の排ガス系統図、
第2図は第1図のA−A’断面図、第3図は焼結過程に
おける排ガス成分の変化を示す同第4図は本発明の実施
態様例を示す模式図、第5図は本発明の別な態様を示す
模式図である。 6・・・パレット 4.4−1・・・ダクト、5.5−
1゜5−2t 11,12,16,17・・・集合ダク
ト、6・・・集塵装置、7.15・・・送風機、 8・
・・熱交換器9・・・酸化装置、10・・・熱回収装置
、13−1゜13−2.13−3. 制御弁、14−1
.14−2゜14−3.14−4、圧力制御装置 18
19.フード代理人 弁理士 木 村 三 朗 (り・)’gtf乙a渾
Figure 1 is an exhaust gas system diagram of a conventional Dwight Lloyd sintering machine.
Fig. 2 is a sectional view taken along the line AA' in Fig. 1, Fig. 3 is a schematic diagram showing changes in exhaust gas components during the sintering process, and Fig. 4 is a schematic diagram showing an embodiment of the present invention. FIG. 3 is a schematic diagram showing another embodiment of the invention. 6...Pallet 4.4-1...Duct, 5.5-
1゜5-2t 11, 12, 16, 17... Collection duct, 6... Dust collector, 7.15... Blower, 8.
...Heat exchanger 9...Oxidizer, 10...Heat recovery device, 13-1゜13-2.13-3. Control valve, 14-1
.. 14-2゜14-3.14-4, Pressure control device 18
19. Food Agent Patent Attorney Sanro Kimura (Ri・)'gtf Ota Jun

Claims (3)

【特許請求の範囲】[Claims] (1)焼結排ガス中のCO酸成分、触媒によシ酸化燃焼
させ、熱を回収するに際し、焼結機パレットを区劃し)
CO濃度0.5容1′−9上の排ガスのみを触媒による
酸化装置に導入し酸化燃焼熱を利用することを特徴とす
る焼結排ガスの潜熱回収方法。
(1) When the CO acid component in the sintering exhaust gas is oxidized and burned by a catalyst and the heat is recovered, the sintering machine pallet is separated)
A method for recovering latent heat from sintering exhaust gas, characterized in that only exhaust gas with a CO concentration of 0.5 volume 1'-9 is introduced into an oxidation device using a catalyst and the heat of oxidation combustion is utilized.
(2)C08度の低いガスを排出するパレット排ガスを
、CO濃度の高いガスを排出するパレット上に繰返し、
焼結燃焼用9気として利用しCo誤贋を高めた後前記酸
化装置に導入することを特徴とする特許請求の範囲第1
項記載の焼結排ガスの潜熱帥1収方法。
(2) Repeating pallet exhaust gas that discharges gas with a low CO8 degree onto a pallet that discharges gas with a high CO concentration,
Claim 1, characterized in that Co is introduced into the oxidizer after being used as 9 gas for sintering and combustion to increase Co error.
1. Method for recovering latent heat from sintering exhaust gas as described in Section 1.
(3) 前記酸化装置に装入する排ガスを、ブロアーに
より、熱交換器、CO酸化装置、熱回収装置の順に導通
せしめ、酸化熱を熱回収稜、該熱回収装置の排ガスを前
記CO酸化装置ならびに前記熱交換器を経由し熱交換後
、煙突よシ排出することを特徴とする特許請求の範囲第
1項記載の焼結排ガスの潜熱回収方法。
(3) The exhaust gas charged to the oxidizer is passed through the heat exchanger, the CO oxidizer, and the heat recovery device in this order by a blower, and the oxidation heat is transferred to the heat recovery ridge, and the exhaust gas from the heat recovery device is transferred to the CO oxidizer. 2. The method for recovering latent heat from sintering exhaust gas according to claim 1, further comprising expelling the sintered exhaust gas through a chimney after exchanging heat through the heat exchanger.
JP58146476A 1983-08-12 1983-08-12 Method for recovering latent heat of waste sintering gas Granted JPS6039130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146476A JPS6039130A (en) 1983-08-12 1983-08-12 Method for recovering latent heat of waste sintering gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146476A JPS6039130A (en) 1983-08-12 1983-08-12 Method for recovering latent heat of waste sintering gas

Publications (2)

Publication Number Publication Date
JPS6039130A true JPS6039130A (en) 1985-02-28
JPS6248736B2 JPS6248736B2 (en) 1987-10-15

Family

ID=15408499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146476A Granted JPS6039130A (en) 1983-08-12 1983-08-12 Method for recovering latent heat of waste sintering gas

Country Status (1)

Country Link
JP (1) JPS6039130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895049A1 (en) * 1997-07-24 1999-02-03 Siemens Aktiengesellschaft Sintering installation
LU90439B1 (en) * 1999-09-13 2001-03-14 Wurth Paul Sa Process for treating gases from a sintering plant
JP2020012574A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintering machine and operation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895049A1 (en) * 1997-07-24 1999-02-03 Siemens Aktiengesellschaft Sintering installation
US5971752A (en) * 1997-07-24 1999-10-26 Siemens Aktiengesellschaft Sintering plant
LU90439B1 (en) * 1999-09-13 2001-03-14 Wurth Paul Sa Process for treating gases from a sintering plant
WO2001019497A1 (en) * 1999-09-13 2001-03-22 Paul Wurth S.A. Method of treating gases issued from a sintering plant
US6749822B2 (en) 1999-09-13 2004-06-15 Paul Wurth S.A. Process for treatment of gases from a sintering plant
JP2020012574A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Sintering machine and operation method thereof

Also Published As

Publication number Publication date
JPS6248736B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
CS218587B2 (en) Method of reduction of the iron oxides
CN104630405A (en) Partition wall rotary kiln for ferroelectric and coke coproduction
CN102344987B (en) Primary flue gas dry dedusting process for vanadium recovering converter
KR850001644B1 (en) Direct reduction of iron using coke oven gas
US6251162B1 (en) Process for the production of liquid pig iron or liquid intermediate products of steel
US8771638B2 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
CN107726873B (en) A kind of segmentation of sintering flue gas and utilize the method for erecting cold kiln emission reduction sulphur, nitrogen oxides
CN105271841A (en) Rotary kiln device and method for constant temperature indirect calcination of limestone
JPS6039130A (en) Method for recovering latent heat of waste sintering gas
CN109971916B (en) Device and method for preheating scrap steel by using converter waste gas
CN209541450U (en) A kind of comprehensive treatment of sintering flue gas and the system of utilizing
CN204661750U (en) A kind of partition rotary kiln of ferroelectric burnt combination producing
CN107192271B (en) Spuious off-gas recovery utilizes system and method in a kind of smelting process for production
JP2024524019A (en) Recycling of hydrogen gas in direct reduction processes
JPS6036608A (en) Blast furnace system
JP3746993B2 (en) Steelworks generated waste treatment system
JP3877443B2 (en) Melting equipment
JPS59123707A (en) Utilizing method of gas formed by reaction in melt reducing furnace
US20140013665A1 (en) Method for treating carbon dioxide-containing waste gas
CA1206751A (en) Process of afterburning combustible constituents of exhaust gases from rotary kilns
EA028730B1 (en) Method and apparatus for sequestering carbon dioxide from a spent gas
CN220300815U (en) System for grading desulfurization of grate-rotary kiln pellet flue gas
CN211823775U (en) Chain grate-rotary kiln-circular cooler with ultralow emission
JPH04239095A (en) Method for reforming gas generated in converter
Rehmat et al. Recovery of direct reduced iron from blast furnace dust