JPS6039125B2 - Probe for observation and measurement inside blast furnace - Google Patents

Probe for observation and measurement inside blast furnace

Info

Publication number
JPS6039125B2
JPS6039125B2 JP5783281A JP5783281A JPS6039125B2 JP S6039125 B2 JPS6039125 B2 JP S6039125B2 JP 5783281 A JP5783281 A JP 5783281A JP 5783281 A JP5783281 A JP 5783281A JP S6039125 B2 JPS6039125 B2 JP S6039125B2
Authority
JP
Japan
Prior art keywords
furnace
probe
blast furnace
cylindrical body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5783281A
Other languages
Japanese (ja)
Other versions
JPS57174405A (en
Inventor
篤 川崎
裕 宮辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5783281A priority Critical patent/JPS6039125B2/en
Publication of JPS57174405A publication Critical patent/JPS57174405A/en
Publication of JPS6039125B2 publication Critical patent/JPS6039125B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Telescopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は高炉炉内の実像を測定・観察する装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring and observing a real image inside a blast furnace.

近年高炉はその内容積が4,000で〜5,000あと
超大型化し、炉頂圧力も2kg/のG〜3kg/のGと
高圧化が進んできた。
In recent years, blast furnaces have become extremely large with an internal volume of 4,000 to 5,000, and the pressure at the top of the furnace has also increased to 2 kg/G to 3 kg/G.

一方、原燃料事情や景気の変動に伴なう増減産、高炉操
業を取り巻く諸条件の急激な変化、さらには製鉄プロセ
スにおける全消費エネルギーに占める高炉での消費量が
極めて大きな割合を占めること、省エネルギーへの強い
要請、などから、超大型化、高圧化した高炉の高効率・
高自由度・安定操業の実現が強く求められるようになっ
てきた。このためには、操業中の炉内ガス温度、ガス組
成、ガス流速やガス流れ状態をはじめとして、炉内の原
料の温度、還元状況・原料の充填構造や降下速度および
その分布状態などをも的確に計測することが極めて重要
であり、この一環として水平ゾンデ装置や垂直ゾンデ装
置・プロフィルメーター、その他各種の炉内状況検出機
器や炉内状態推定モデルなどの開発と現場への適用が行
なわれてきており、それらの測定結果を直ちに操業面に
フィードバックして炉頂での装入物分布制御の条件や原
料装入条件、或は羽□からの送風に関連した条件などの
諸条件の変更を通じて高炉の制御を行ない、高炉の高効
率・安定操業を行なう試みがなされてきた。しかしなが
ら今までに開発されてきた各種の炉内側定装置によって
測定可能な炉内状態の物理量(測定項目)は、本釆高炉
制御のために必要な項目のうちのほんの一部であった。
On the other hand, increases and decreases in production due to fluctuations in the raw material and fuel situation and economic conditions, rapid changes in various conditions surrounding blast furnace operation, and furthermore, the consumption of blast furnaces accounts for an extremely large proportion of the total energy consumption in the steelmaking process. Due to the strong demand for energy conservation, the high efficiency and
There is a strong demand for high degree of freedom and stable operation. For this purpose, we must take into consideration the temperature of the gas in the furnace during operation, the gas composition, the gas flow rate, and the gas flow state, as well as the temperature of the raw material in the furnace, the reduction situation, the filling structure of the raw material, the rate of descent, and its distribution state. Accurate measurement is extremely important, and as part of this effort, horizontal sonde devices, vertical sonde devices, profile meters, and various other devices for detecting conditions inside the reactor and models for estimating conditions inside the reactor are being developed and applied to the field. The measurement results are immediately fed back to the operational side to change various conditions such as the conditions for controlling the burden distribution at the top of the furnace, the raw material charging conditions, or the conditions related to air blowing from the vane. Attempts have been made to control blast furnaces and achieve highly efficient and stable operation of blast furnaces. However, the physical quantities (measurement items) of the furnace state that can be measured by the various furnace internal determination devices that have been developed so far are only a part of the items necessary for controlling the present blast furnace.

すなわち、周知の通り、高炉のような還元ガスと被還元
固体(鉄鉱石、競結鉱など)やコ−クスとからなる対向
流型還元充填塔の場合には、炉内における還元ガスの分
配制御が、炉としての還元効率、熱交換効率の向上に極
めて重要である。それにもかかわらず、これらを決定す
る主要因であるところの、炉内における原料の粒度偏祈
状況・鉱石・コ−クスの層厚比や混合層の生成状況など
を含んだ炉内の原料の充填構造を実情のまま定量的に解
明する手段は存在していなかった。
In other words, as is well known, in the case of a counter-flow type reduction packed tower consisting of reducing gas, solids to be reduced (iron ore, competitive ore, etc.) and coke, such as in a blast furnace, the distribution of reducing gas within the furnace is Control is extremely important for improving the reduction efficiency and heat exchange efficiency of the furnace. Nevertheless, the main factors that determine these are the particle size imbalance of the raw material in the furnace, the layer thickness ratio of ore and coke, and the formation of a mixed layer. There was no means to quantitatively elucidate the filling structure under actual conditions.

また、この約10王ほどの間に相次いで実施された、高
炉の解体調査研究の結果、還元と熱交換を受けた原料(
鉱石層)が炉内で軟化・融着して局部的に大きな通気抵
抗を生ずる、軟化融着帯の存在が明らかになりこれが高
炉の操業状態と密接なつながりをもっといういくつかの
知見にもとづいて、高炉操業を制御する上での1つの狙
いとして軟化葛虫着帯の計測と制御に着目し、その試み
が種々行なわれていることはすでに知られている。とこ
ろが操業中に該軟化融着帯を視覚を通して計測・確認す
る手段も今までにはなく、従ってその結果に基づいて高
炉の制御を考えることも、またなかったのである。さら
には、従来の水平ゾンデ装置や垂直ゾンデ装置などは炉
内のる位置におけるガス温度やガス組成を測定するため
のものであるが、本発明者等の解明によれば該ガス温度
や該ガス組成を測定する箇所の近傍の原料層がコークス
層か鉱石層か、或は混合層なのかによって、また原料の
平均粒度によって決定される空隙率と該空隙率により影
響を受けるところのガス流速によって、上記ガス温度や
ガス組成の測定値自体は影響を受け、炉内側定値の代表
性という意味では問題があった。
In addition, as a result of blast furnace dismantling research conducted one after another during this period of about 10 years, it was found that raw materials that had undergone reduction and heat exchange (
The existence of a softened cohesive zone, where the ore layer (ore layer) softens and fuses inside the furnace, causing localized large ventilation resistance, has been revealed.Based on several findings, it has been found that this zone is closely connected to the operating conditions of the blast furnace. It is already known that various attempts have been made to measure and control the softened kudzu worm zone as one of the aims of controlling blast furnace operations. However, there has been no means to visually measure and confirm the softened cohesive zone during operation, and therefore there has been no consideration of blast furnace control based on the results. Furthermore, although conventional horizontal and vertical sonde devices are used to measure the gas temperature and gas composition at a certain position in the furnace, the present inventors have found that the gas temperature and gas composition are Depending on whether the raw material layer near the point where the composition is measured is a coke layer, an ore layer, or a mixed layer, the porosity determined by the average particle size of the raw material and the gas flow rate affected by the porosity. However, the measured values of the gas temperature and gas composition themselves were affected, and there was a problem in terms of the representativeness of the in-furnace constant values.

換言すれば、定常もしくは準定常状態にある高炉内のあ
る特定の測定箇所で、炉内ガス温度やガス組成を測定す
る場合に、その測定箇所がコークス層の中にあるか、鉱
石層の中にあるか、或は混合層の中にあるかによって、
またさらにはその近傍の原料粒度、充填構造などによっ
て決まり、そこを流れるガス流速によっても測定値は異
なってくるので、測定値同志の比較検討や高炉内状態の
評価を行なう場合などにはそれらの炉内ガス温度やガス
組成が上記の条件のどのような状況下で測定されたもの
かを明らかにする必要がある。しかるに従来の測定装置
ではこうしたことは不可能であった。また、炉頂の装入
物分布状況の計測に関しては、機械式、マイクロ波式、
レーザー式などのプロフィールメーターがよく知られて
おり、これより原料の降下速度分布や層厚の計測が試み
られているが、この装置では、原料(特に鉱石)袋入時
に、装入直前の原料(特にコークス)の炉中心部への流
れ込みなどが考えられ、従ってあるバッチの原料装入前
の、前バッチのプロフィールは、該バッチの原料装入後
には必ずしも同一形状を保っていない可能性が大きいに
もかかわらず、該プロフィールを該バッチの原料装入の
前後で変わらなし、としているところから、制御の信頼
性は必ずしも十分ではなかった。
In other words, when measuring the in-furnace gas temperature or gas composition at a specific measurement point in a blast furnace that is in a steady or quasi-steady state, the measurement point is either in the coke layer or in the ore layer. depending on whether it is in the mixed layer or in the mixed layer.
In addition, the measured values are determined by the particle size of the raw material in the vicinity, the packing structure, etc., and the measured values also vary depending on the flow rate of the gas flowing there. It is necessary to clarify under what conditions the furnace gas temperature and gas composition were measured. However, this was not possible with conventional measuring devices. In addition, mechanical, microwave, and
Profile meters such as laser types are well known, and attempts have been made to measure the descending velocity distribution and layer thickness of raw materials. (Especially coke) may flow into the center of the furnace, and therefore the profile of the previous batch before charging the raw materials for a certain batch may not necessarily maintain the same shape after charging the raw materials for that batch. Despite the large size, the reliability of the control was not necessarily sufficient because the profile was assumed to remain unchanged before and after the raw material was charged into the batch.

また、これらプロフィールも炉上部では対向する炉内ガ
ス流の影響も受けて原料降下に伴って再配置されるため
、高炉制御上重要因子であると考えられている欧化融着
帯の位贋・形状・構造などの制御のためには該再配置現
象がほぼ十分におさまると考えられるシャフト中段以下
の炉内領域での充填構造の把握が望まれるところである
が、このための手段は今までのところ存在しなかった。
従来の各種高炉炉内側定装置は以上のように、炉内還元
ガスの分配を決定する主要因子であるところの炉径方向
の原料粒度偏析状況や充填構造、原料降下速度の炉蚤方
向分布などの計測ができず、また原料の軟化融着状況の
実状確認を伴った、操業中及び休風中の炉内欧化融着帯
の位置・形状・構造などの実態確認ができないなどの欠
点があった。
In addition, these profiles are also affected by the opposing gas flows in the furnace at the upper part of the furnace, and are rearranged as the raw material descends. In order to control the shape and structure, it is desirable to understand the filling structure in the furnace region below the middle stage of the shaft, where the rearrangement phenomenon is thought to be sufficiently suppressed. However, it didn't exist.
As mentioned above, various conventional blast furnace in-furnace determination devices are capable of measuring the main factors that determine the distribution of reducing gas in the furnace, such as the raw material particle size segregation in the radial direction of the furnace, the packing structure, and the distribution of the raw material descent rate in the direction of the furnace fleas. There are drawbacks such as the inability to measure the softening and fusion of raw materials, and the inability to confirm the position, shape, and structure of the cohesive zone inside the reactor during operation and during wind breaks. Ta.

本発明は上記のような従来のものの欠点を除去するため
になされたもので、本発明者らが特願昭56−5990
で提案した高炉内に1本以上の少なくとも実画像伝送機
能を有するランスを挿入して、得られる実画像情報を種
々の角度(方法。
The present invention was made in order to eliminate the drawbacks of the conventional products as described above, and the present invention was made in Japanese Patent Application No. 56-5990.
The proposed method involves inserting one or more lances having at least a real image transmission function into the blast furnace and transmitting the obtained real image information from various angles (methods).

解析装置)より解析して、これを表示および、または電
気信号として出力し、あるいはそれらの信号(状態)の
望ましい値(状態)との偏差を出力する装置からなる高
炉炉内側定装置に好適なプローブを提供することを目的
としている。以下に本発明を、一実施例を示す図により
説明する。
Suitable for a blast furnace internal determination device consisting of a device that analyzes the results using an analysis device) and outputs the results as a display and/or electric signal, or outputs the deviation from the desired value (state) of those signals (state). The purpose is to provide probes. The present invention will be explained below with reference to figures showing one embodiment.

第1図は本発明装置を用いた高炉炉内実像観察状況の概
要を示し、1は高炉の断面半炉体、2は炉内に形成され
ている融着帯、3は炉内装入物上端、4は本発明プロー
ブ、5はイメージガイドファイバーとライトガイドファ
イバー及びそれらの両端に各各綾眼及び対物レンズ系を
内蔵した線状体、6は外部光源装置、7は高感度カラー
カメラ、8はカラービデオ装置、9はカラーモニターで
、10,11は各々を接続する信号伝送ケ−ブルである
Fig. 1 shows an overview of the observation of a real image inside a blast furnace using the apparatus of the present invention, in which 1 is a cross-sectional half-body of the blast furnace, 2 is a cohesive zone formed in the furnace, and 3 is the upper end of the contents in the furnace. , 4 is a probe of the present invention, 5 is a linear body incorporating an image guide fiber, a light guide fiber, and each twill and objective lens system at both ends thereof, 6 is an external light source device, 7 is a high-sensitivity color camera, 8 9 is a color video device, 9 is a color monitor, and 10 and 11 are signal transmission cables connecting each.

第2図は本発明プローブ4の要部断面図で12は線状体
5を内装した筒状体で、線状体5の外周と該筒状体12
の内周との間には間隙13を形成し、これに図示しない
外部設置ガス源を蓮通する。
FIG. 2 is a sectional view of the main part of the probe 4 of the present invention, and 12 is a cylindrical body with a linear body 5 inside, and the outer periphery of the linear body 5 and the cylindrical body 12 are
A gap 13 is formed between the inner periphery of the gap 13 and an externally installed gas source (not shown) is passed through the gap 13.

14は中間仕切体で前記筒状体12の外周とは間隙15
を形成し、該中間仕切体14と間隙16を介して外壁用
筒状体17を設け前記間隙15,16を図示しない外部
設置冷媒源と運通する。
Reference numeral 14 denotes an intermediate partition, and a gap 15 is formed between it and the outer periphery of the cylindrical body 12.
An outer wall cylindrical body 17 is provided through the intermediate partition 14 and a gap 16, and the gaps 15 and 16 are communicated with an external refrigerant source (not shown).

中間仕切体14はプローブ4の炉内挿入端部18側で欠
落部19を設け冷煤(図示せず)の流通を矢印20の如
く可能とする。21は前記プローブ4の炉内挿入端部1
8側に形成した金具で線状体5の端部を支持すると共に
前記ガス(図示せず)を前記線状体5の炉内挿入端部2
2表面に噴射して冷媒兼汚損防止する通路23を有し、
更には前記筒状体12の炉内挿入端部24を閉塞する部
材、25はプローブ4の炉内挿入端部18に着脱可能に
設けた栓体である。
The intermediate partition 14 has a cutout 19 on the furnace insertion end 18 side of the probe 4 to allow cold soot (not shown) to flow as shown by an arrow 20. 21 is the furnace insertion end 1 of the probe 4
The end portion of the linear body 5 is supported by a metal fitting formed on the side 8, and the gas (not shown) is connected to the end portion 2 of the linear body 5 inserted into the furnace.
2 has a passage 23 that serves as a refrigerant and prevents contamination by injecting it onto the surface.
Further, a member 25 for closing the furnace insertion end 24 of the cylindrical body 12 is a plug detachably provided at the furnace insertion end 18 of the probe 4.

本発明のプローブ4としては、操作上或いはプローブ挿
入に伴なう炉内への悪影響なども考慮して本発明者らが
特鹿昭54−165690および袴顔昭54−1656
91ならびに特腰昭54一165692にて提案したよ
うな、小窪ランス(プローブ)とすることが望ましく、
外壁用筒状体17は耐熱性などを考慮してSUS31庇
を用いることが好ましい。
The probe 4 of the present invention was designed by the inventors of Tokukasho 54-165690 and HakamagaoSho 54-1656, taking into account the operation and the adverse effects on the inside of the furnace due to probe insertion.
It is desirable to use a small lance (probe) as proposed in 91 and Tokukoshi Sho 54-165692,
For the outer wall cylindrical body 17, it is preferable to use a SUS31 eave in consideration of heat resistance and the like.

また筒状体12、中間仕切体14は冷蝶による冷却効果
とその熱伝達をより良くするために銅を用いることが望
ましく、栓体25は本発明者らが持蕨昭54一1656
91にて提案したようにプローブ4を炉内所定位層より
若干深く挿入後、後退させることによって炉内にて脱却
する程度の般合状態にすることが望ましい。プローブ4
の炉内に対する挿出入は通常の高炉ゾンデ装置を用いて
行なうことができるが、上述の特願昭54−16569
0で提案した高炉用ゾンデ装置を用いることはより好ま
しい。以上説明した本発明のプローブによると、高炉炉
内の実像がつぶさに観察でき、さらにイメージガイドフ
ァイバーによって炉内から導かれる光情報を画像観察と
時分割してわずか数秒間の間だけファイバー型放射温度
計に入力すれば、画像内の平均温度を瞬時にして測定す
ることが可能である。
Further, it is preferable to use copper for the cylindrical body 12 and the intermediate partition body 14 in order to improve the cooling effect of the cold butterfly and its heat transfer.
As proposed in No. 91, it is preferable to insert the probe 4 slightly deeper than the predetermined layer in the furnace and then retreat it to bring it into a general state where it can be dislodged in the furnace. probe 4
Insertion and removal into and out of the furnace can be carried out using a normal blast furnace sonde device;
It is more preferable to use the blast furnace sonde device proposed in No. 0. According to the probe of the present invention described above, a real image inside the blast furnace can be observed in detail, and the optical information guided from inside the blast furnace by the image guide fiber is time-shared with the image observation, so that the fiber-type radiation temperature can be measured for just a few seconds. By inputting the information into the meter, it is possible to instantly measure the average temperature within the image.

このようにして葛虫着帯の位置、厚さ、性状及び装入物
の性状変化が直接把握でき同時に温度測定も可能である
ので操炉上その制御が迅速、的確にかつ子灘的に実施で
き炉況安定に及ぼす効果は大きい。
In this way, it is possible to directly grasp the location, thickness, and properties of the kudzu-covering zone, as well as changes in the properties of the charge, and at the same time, it is also possible to measure the temperature. The effect on the stability of furnace conditions is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概要を説明する図、第2図
は本発明プローブの菱部断面図である。 1・…・・高炉断面半炉体、2・・・・・・炉内融着帯
、3・・・…炉内装入物上端、4・・・・・・本発明プ
ローブ、5・・…・イメージガイド、ライトガイド及び
薮眼、対物レンズ系を内蔵する糠状体、6・・・・・・
外部光源装置、7・・・…高感度カラーカメラ、8・・
・・・・カラービデオ装置、9…・・・カラーモニター
、10,11…・・・信号伝送ケーブル、12・・・…
筒状体、13・・・・・・間隙、14・・・・・・中間
仕切体、15・・・・・・間隙、16・・・・・・間隙
、17・・・・・・外壁用筒状体、’8・・・・・・プ
ローブの炉内挿入端部、i9…・・・欠落部、20・・
・・・・矢印、21・・・・・・金具、22・・・・・
・線状体の炉内挿入端部、23・・・・・・通路、24
…・・・筒状体炉内挿入端部、25・・・…キ全体。 第2函 麓ノ図
FIG. 1 is a diagram illustrating an overview of an embodiment of the present invention, and FIG. 2 is a sectional view of the lozenge portion of the probe of the present invention. 1... Blast furnace cross-sectional half-furnace body, 2... Cohesive zone in the furnace, 3... Upper end of the furnace contents, 4... Probe of the present invention, 5...・An image guide, a light guide, a bush eye, and a bran containing an objective lens system, 6...
External light source device, 7... High sensitivity color camera, 8...
...Color video device, 9...Color monitor, 10, 11...Signal transmission cable, 12...
Cylindrical body, 13...Gap, 14...Intermediate partition, 15...Gap, 16...Gap, 17...Outer wall Cylindrical body, '8... End of probe inserted into the furnace, i9... Missing part, 20...
...Arrow, 21...Metal fittings, 22...
・Furnace insertion end of linear body, 23...Passway, 24
... End of insertion of cylindrical body into furnace, 25 ... Entire part. Diagram of the foot of the second box

Claims (1)

【特許請求の範囲】 1 イメージガイドフアイバーとライトガイドフアイバ
ーを内蔵する線状物を該線状物の外周と間隙を設けて筒
状体内に内装し、前記筒状体の外周に外部の冷媒源と連
通する冷媒通路を介して外壁用筒状体を形成し、該外壁
用筒状体の炉内挿入端部に着脱可能に栓体を装着してな
る高炉炉内観察測定用プローブ。 2 線状物の外周と筒状体の内周の間隙に外部設置ガス
類を連通してなる特許請求の範囲第1項記載の高炉炉内
観察測定用プローブ。
[Claims] 1. A linear object containing an image guide fiber and a light guide fiber is housed in a cylindrical body with a gap between the outer periphery of the cylindrical object and an external refrigerant source on the outer periphery of the cylindrical object. A probe for observing and measuring the inside of a blast furnace, which includes an outer wall cylindrical body formed through a refrigerant passage communicating with the outer wall cylindrical body, and a plug body removably attached to the furnace insertion end of the outer wall cylindrical body. 2. The probe for observing and measuring the inside of a blast furnace according to claim 1, wherein an externally installed gas is communicated through a gap between the outer periphery of the linear object and the inner periphery of the cylindrical body.
JP5783281A 1981-04-18 1981-04-18 Probe for observation and measurement inside blast furnace Expired JPS6039125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5783281A JPS6039125B2 (en) 1981-04-18 1981-04-18 Probe for observation and measurement inside blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5783281A JPS6039125B2 (en) 1981-04-18 1981-04-18 Probe for observation and measurement inside blast furnace

Publications (2)

Publication Number Publication Date
JPS57174405A JPS57174405A (en) 1982-10-27
JPS6039125B2 true JPS6039125B2 (en) 1985-09-04

Family

ID=13066910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5783281A Expired JPS6039125B2 (en) 1981-04-18 1981-04-18 Probe for observation and measurement inside blast furnace

Country Status (1)

Country Link
JP (1) JPS6039125B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185200U (en) * 1984-05-18 1985-12-07 新日本製鐵株式会社 observation probe
JPS6119713A (en) * 1984-07-06 1986-01-28 Kawasaki Steel Corp Observing device in high-temperature atmosphere

Also Published As

Publication number Publication date
JPS57174405A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
CN109991125B (en) Method and equipment for testing variable-pressure type reflow dripping performance
Brimacombe et al. Heat transfer in a direct-fired rotary kiln: I. Pilot plant and experimentation
US4442706A (en) Probe and a system for detecting wear of refractory wall
EP1491641A1 (en) Method for operating a blast furnace
JPS6039125B2 (en) Probe for observation and measurement inside blast furnace
US4197495A (en) System for controlling the charge distribution and flow in blast furnace operations using magnetic sensors positioned within the charge
CN207581847U (en) The analoging detecting device that a kind of burden distribution system influences blast furnace melting with soft
CN86103328A (en) In converter, measure the device of temperature
JPS6142898Y2 (en)
US4150973A (en) Method of controlling molten steel temperature and carbon content in oxygen converter
US5971286A (en) Method for the determination of the gas flux distribution in a blast furnace
CN110926619A (en) Continuous temperature measurement method for temperature of molten steel in steel ladle
JPS6119712A (en) Detecting device of thickness of layer of charged burden
JPH0150832B2 (en)
JPS586913A (en) Method and apparatus for observing interior of blast furnace
CA1049258A (en) Method of detecting abnormal conditions of blast furnaces
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
JPS5819419A (en) Deciding method for condition in blast furnace
CN2251722Y (en) Melted iron constant-silicon sensor
JPS61119610A (en) Method for controlling balance of blast furnace by water blowing
GB2037960A (en) Methods of monitoring a blast furnace
JP2006519385A (en) Control method in polymerization process
KR20220089480A (en) Apparatus for measuring molten iron temperature of blast furnace
Sugiura et al. Development of A New Technique for Continuous Molten Steel Temperature Measurement
JPS5943526B2 (en) Observation equipment inside blast furnaces