JPS586913A - Method and apparatus for observing interior of blast furnace - Google Patents

Method and apparatus for observing interior of blast furnace

Info

Publication number
JPS586913A
JPS586913A JP10414081A JP10414081A JPS586913A JP S586913 A JPS586913 A JP S586913A JP 10414081 A JP10414081 A JP 10414081A JP 10414081 A JP10414081 A JP 10414081A JP S586913 A JPS586913 A JP S586913A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
cylindrical body
gas
transmission mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10414081A
Other languages
Japanese (ja)
Other versions
JPS6110003B2 (en
Inventor
Atsushi Kawasaki
川崎 篤
Yutaka Miyabe
宮辺 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10414081A priority Critical patent/JPS586913A/en
Publication of JPS586913A publication Critical patent/JPS586913A/en
Publication of JPS6110003B2 publication Critical patent/JPS6110003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To enhance the accuracy of the control of a blast furnace and to stabilize the operation by putting a cylindrical body provided with a water cooling and gas purging mechanism and a picture transmitting mechanism in the furnace and by observing the behavior of a burden in the furnace. CONSTITUTION:The cross-sectional shape of a cylindrical body 2 provided with a water cooling and gas purging mechanism and a picture transmitting mechanism 3 is made ellipsoidal or polygonal, and a protective plate 16 is adhered to the tip of the mechanism 3. Ventholes, 18, 19, 20 are pierced in a tube 12 supporting the plate 16, and an attachment 11 for branching purge gas is placed in front of the plate 16. Said cylindrical body 2 is put in a blast furnace 1, and while purging the surface of the plate 16 by feeding gas at an internal part of the furnace 1 to be observed from the ventholes 19, 20 an internal fixed point of the furnace 1 or the behavior of a burden due to dropping is observed.

Description

【発明の詳細な説明】 本発明は、高炉炉内の装入物(鉄鉱石、コークス)の状
況をIN棚・測定する装置及び方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus and method for measuring the status of charges (iron ore, coke) in a blast furnace.

高炉は、炉頂から鉄鉱石とコークスを装入し、炉下部に
設けられた羽口から熱風を送シ込んで銑鉄を生産する充
填・反応塔であ)、炉頂から層状に装入される鉄鉱石と
コークスは、層状を保ちつつ降下する。鉄鉱石は、降下
するにつれて、還元。
A blast furnace is a filling/reaction tower in which iron ore and coke are charged from the top of the furnace and hot air is blown through tuyeres installed at the bottom of the furnace to produce pig iron. Iron ore and coke fall while maintaining a layered structure. As iron ore descends, it is reduced.

昇温が進行し、軟化融**象を生じた後、溶銑として、
炉床に溶融滴下する。
After the temperature rise progresses and a softening and melting phenomenon occurs, as hot metal,
Melt dripping onto the hearth.

解体高炉から融着帯が発見されて以来、融着帯に関する
研究が数多くなされ、それがガス流の分配機能を有する
であろうと考えられること、同相と液相0′境界面であ
ることなどから、融着帯祉高炉の操業状!!(以下炉況
と記す)の代表因子として注目されてきた。近年のエネ
ルイー危機を集機とした高炉のエネルギーi=wム操業
の必要性。
Since the cohesive zone was discovered in a dismantled blast furnace, many studies have been conducted on the cohesive zone, and it is believed that the cohesive zone has a gas flow distribution function and that it is the 0' boundary between the same phase and the liquid phase. , operating status of cohesive zone blast furnace! ! (hereinafter referred to as furnace condition) has been attracting attention as a representative factor. The necessity of energy i=w operation of blast furnaces taking advantage of the recent energy crisis.

重要性の増大を背景にして、融着帯及びその近傍を中心
とした、装入物(鉄鉱石)状況の降下に伴なう変化、即
ち炉内における装入物挙動は、炉況に重大な影醤を与え
、これを知ることは、高炉操業技術の向上に大きく貢献
するものと考えられてきた。しかしながら、高炉内の高
温域に位置する融着帯と、その近傍の装入物挙動の*察
、I11定は奥部には困難を極め、軟化・融着までの鉄
鉱石状況の観察2粒度の半径方向分布などに関して、未
だ充分な情報が得られていない・また、どく身近でイメ
ージのわきやすい鉄鉱石やコークスの層の厚さく以下層
厚と記す)の測定をとシあげてみて42.3の方法が試
みられてはいるものの、現在のところ、炉頂付近及び炉
壁際でOIJ定が可能であるのみで、それらにしても、
以下に述べる理由によル、700℃以上の写囲気中での
測定は、原理上不可能である。
Against the background of increasing importance, changes in the condition of the burden (iron ore) as it falls, mainly in the cohesive zone and its vicinity, that is, the behavior of the burden in the furnace, are becoming important to the furnace condition. It has been thought that providing and knowing the effects of shadow sauce will greatly contribute to the improvement of blast furnace operating technology. However, observation of the cohesive zone located in the high-temperature region of the blast furnace and the behavior of the burden in its vicinity is extremely difficult in the deep part of the blast furnace. We have not yet obtained enough information regarding the radial distribution of iron ore and coke, which are very familiar and easy to imagine. Although method 3 has been attempted, at present it is only possible to determine OIJ near the furnace top and near the furnace wall, and even with these methods,
For the reasons described below, measurement in an atmosphere of 700° C. or higher is impossible in principle.

この層厚測定法の1つに、磁気式層厚測定法。One of these layer thickness measurement methods is the magnetic layer thickness measurement method.

電極式層厚測定法がある。これらは、各々鉱石とコーク
スの透磁率、電気伝導度の差異を利用して鉱石層とコー
クス層とを判別するものである。しかしながら、該測定
法には、以下の共通した短所があると考えられている。
There is an electrode-based layer thickness measurement method. These methods distinguish between an ore layer and a coke layer by utilizing differences in magnetic permeability and electrical conductivity between ore and coke, respectively. However, these measurement methods are believed to have the following common disadvantages.

1)温度約700℃(キ凰−リーIインド)以上での、
層厚測定は、装入物特性の変化(鉱石とコークスの透磁
率及び電気伝導度の差異の大幅な減少)Kよル不可能。
1) At a temperature of about 700℃ or higher (Kiou-Li I India),
Layer thickness measurements are not possible due to changes in charge properties (significantly reduced differences in magnetic permeability and electrical conductivity between ore and coke).

2)鉱石とコークスの境界層にお゛いて、明確な境界面
の検出が不可能、または境!¥面において、1′鉱石と
コークスの混合層が形成された場合、正確な混合比のI
II定が困難。
2) In the boundary layer between ore and coke, it is impossible to detect a clear boundary surface, or there is a boundary! When a mixed layer of 1′ ore and coke is formed on the ¥ plane, the correct mixing ratio I
II is difficult to determine.

首た、上下に近接し九層厚針指示の時系列変化から、゛
皺襞入物炉内降下速度の算出が可能であゐが、2台の層
厚計を鉛直方向に近接して設装置し良場合、上部層厚針
によシ炉内層秋構造が乱され、下部層厚計指示が不正確
にな〕、精確な降下速度が算出されにくいという欠点も
ある。
It is possible to calculate the rate of descent inside the wrinkled material reactor from the time-series changes in the nine-layer thickness needles that are close to each other vertically. If the thickness of the upper layer is not good, the upper layer thickness needle disturbs the layer fall structure inside the furnace, making the lower layer thickness meter reading inaccurate, and it is also difficult to accurately calculate the rate of descent.

今一つの層厚測定法として、高炉炉頂に設置し九プロフ
ィールメータによ)炉内装入−表面のlロフィールを測
定し、層厚を算出する方法がある。
Another method for measuring layer thickness is to measure the profile of the inside of the furnace and the surface using a profile meter installed at the top of the blast furnace, and calculate the layer thickness.

鉱石装入時とコークス鋏入時O該プロフィールを測定し
、層厚を算出するが、該測定法は、高炉の炉頂付近(装
入物のごく上部)Kおける該降下速度を算出するのみで
あ)、高炉中、下部での装入物の性状変化、粉化、炉径
拡大などをも加味した、高炉中、下部での降下速度算出
にはなル得ない。
The profile is measured and the layer thickness is calculated when charging ore and coke, but this measurement method only calculates the rate of descent near the top of the blast furnace (the very top of the charge). However, it is not possible to calculate the rate of descent in the middle and lower part of the blast furnace, taking into account changes in the properties of the charge, pulverization, expansion of the furnace diameter, etc.

したがって、現在の測定法によ)、高炉下部の層厚及び
降下速度を測定することは不可能に近く、かつ、高炉上
部においても、精度の低い測定に甘んじている◎ 本発明は、高炉炉内の実画像を得て、高炉炉内装入物の
降下に伴なう挙動(例えば粒度、s面形状4りのI!測
・測定を可能ならしめ、さらに従来法の持つ欠点を克服
し、高温下での連続的な該層厚測定及び降下達111J
定を可能とした装置と、これを用いた各測定方法を提供
するためにまされたもので、高炉内に1本以上の本測定
装置を設置。
Therefore, with the current measurement method, it is almost impossible to measure the layer thickness and descent rate in the lower part of the blast furnace, and even in the upper part of the blast furnace, we are content with low-accuracy measurements. By obtaining actual images of the inside of the blast furnace, it is possible to measure and measure the behavior (e.g., grain size, s-plane shape, etc.) of the contents as they fall, and it also overcomes the drawbacks of conventional methods. Continuous layer thickness measurement and descent under high temperature 111J
It was developed to provide a device that enables measurement and various measurement methods using this device, and one or more of these measurement devices are installed inside a blast furnace.

本測定方法によル、解析装置、iai僚処理等によシ、
該装入物挙動の観察0層厚の測定、降下速度の算出をす
ることを目的としている。
Due to this measurement method, analysis equipment, IAI processing, etc.
The purpose is to observe the behavior of the charge, measure the zero layer thickness, and calculate the rate of descent.

第1図は、本発明の一1!施例を示す説明図、第2図(
へ)杜、第1図にお社る筒状体2の正面図、(ロ)は(
へ)のム−A llFr?IC)説明図、禽3.4.5
図社、それぞれ特許請求の範1!l#!2.3.4項に
記載の該筒状体の断面外形を示す館2図(ロ)のB−B
断面図である。
Figure 1 shows part 1 of the present invention! Explanatory drawing showing the example, Fig. 2 (
f) Mori, the front view of the cylindrical body 2 shown in Fig. 1, (b) is (
)'s Mu-A llFr? IC) Illustration, bird 3.4.5
Zusha, each claim 1! l#! B-B in Figure 2 (B) showing the cross-sectional outline of the cylindrical body described in Section 2.3.4.
FIG.

第1図において1は高炉の縦断面、Ztii1m伝送機
構を有する筒状体、3は画像伝送機構、4はカメラ、5
は照明用光源、6は画像解析及び処理装置、7は表示装
置である。
In Fig. 1, 1 is a longitudinal section of the blast furnace, a cylindrical body having a Ztii1m transmission mechanism, 3 is an image transmission mechanism, 4 is a camera, and 5
1 is an illumination light source, 6 is an image analysis and processing device, and 7 is a display device.

第2図(へ)(ロ)において、9紘外壁用筒状体、10
は中間仕切体、1lafスパージ用アタツチメント、1
2はアタッチメント11及び−僚伝送機構3の支持装置
、13.14は、冷却水通路となる間隙、15は先端/
4−ジ用ガスの通路となる間隙、16は画像伝送機構3
先端対物部の保護板、17は該保護板16支持体s 1
g=19.20は/ダージガス流路となるスリット間隙
である。
In Figure 2 (F) and (B), 9 cylindrical body for outer wall, 10
is an intermediate partition, 1laf sparge attachment, 1
2 is a support device for the attachment 11 and the transmission mechanism 3; 13.14 is a gap serving as a cooling water passage; 15 is a tip/end
4 - Gap serving as a passage for the gas; 16 is the image transmission mechanism 3;
The protective plate 17 of the objective section at the tip is the protective plate 16 support s 1
g=19.20 is the slit gap that becomes the dirge gas flow path.

第3図において、8は、III状体20カバーであるO 第1図において、筒状体2祉例えば光フアイバーイメー
ジガイド又は、リレーレンズ勢の画像伝送機構3を有し
、高炉の所菫の位置に挿入、固定される。この際、壁際
の付着物の影譬、壁に近接しすぎた部分の装入物挙動の
特殊性(壁効果)を排除するため、筒状体先端は、少な
くと%50〜100−程度以上炉内に挿入されることが
望ましい。設置本数は、本発明よ)得られる情報の処理
能力、解析の目的等によ〕異なるが、降下速度の高炉上
下方向推移を知るKは、少なくとも上下方向に2本、半
径方向の層厚分布を知るに鉱、少なくと4半径方向同レ
ベルに3〜4本(例えに、90度間隔で4本)設置する
ことが望ましい。本装置を設置する場合には、本発明者
らが特願昭54−165691に提案したように、筒状
体2先端部に栓体(図示せず)を嵌合し、炉内の所定位
置よ)も若干深く挿入稜、後退させ該栓体を炉内にて脱
却することで、挿入時に該筒状体2先端への悪影響1例
えば対物光学系の破損や、ダスト付着などを防止するこ
とができる・筒状体2で得られるiii*情報祉情報像
伝送機構3によ)炉外の適当な位置まで伝送されるが、
この際画像の解僚力が解析にたえるものであるためには
1iI健伝送機#13がたとえば光フアイバーイメージ
ガイドの場合には、画素数20,000程度以下である
ことが望ましい。伝送された画偉祉、カメラ4によって
、板抜O解析の為、電気信号に変換されるが、画像伝送
機構3で伝送される光量拡、画像伝送機構3断面積に対
応して一般的Ka極〈少量であるためカメラ状高感度で
あることが好ましい・高炉l内の観測対象物温度が、お
よそ1000℃以下の場合には、一般KM明用光源5か
ら光伝送機構(図示せず)を介°して、該対象物0*明
が必要で、照明用光源5としてたとえば、ハロダンラン
グを用いる。この場合にa、1iii會伝送徐構3は、
J!III例用光源器からの光伝送機構(図示せず)を
も含むものと表る。
In FIG. 3, reference numeral 8 denotes the cover of the III-shaped body 20. In FIG. Insert and fixed in position. At this time, in order to eliminate the influence of deposits near the wall and the peculiarity of the behavior of the charge (wall effect) in the part too close to the wall, the tip of the cylindrical body should be at least about 50 to 100% It is desirable to insert it into the furnace. The number of installations will vary depending on the information processing capacity obtained (in accordance with the present invention), the purpose of the analysis, etc., but K, which can determine the vertical direction transition of the blast furnace, is at least two in the vertical direction, and the layer thickness distribution in the radial direction. Knowing this, it is desirable to install 3 to 4 rods at the same level in at least 4 radial directions (for example, 4 rods at 90 degree intervals). When installing this device, as proposed by the inventors in Japanese Patent Application No. 54-165691, a stopper (not shown) is fitted to the tip of the cylindrical body 2, and a stopper (not shown) is fitted at a predetermined position in the furnace. By retracting the insertion edge a little deeper and removing the plug in the furnace, it is possible to prevent adverse effects on the tip of the cylindrical body 2 during insertion, such as damage to the objective optical system and dust adhesion. can be transmitted to an appropriate position outside the furnace (by the information transmission mechanism 3) obtained by the cylindrical body 2,
At this time, in order for the image resolution to be sufficient for analysis, if the 1iI transmitter #13 is, for example, an optical fiber image guide, it is desirable that the number of pixels be approximately 20,000 or less. The transmitted image is converted into an electrical signal by the camera 4 for the O analysis, but the amount of light transmitted by the image transmission mechanism 3 is expanded, and the general Ka Since the amount is very small, it is preferable to use camera-like high sensitivity. When the temperature of the object to be observed inside the blast furnace is approximately 1000°C or less, a light transmission mechanism (not shown) is transmitted from the general KM bright light source 5. The object must be 0*bright through the illumination light source 5, and a Halodan Lang, for example, is used as the illumination light source 5. In this case, a, 1iii meeting transmission mechanism 3 is,
J! It also includes a light transmission mechanism (not shown) from the light source device for example III.

こうして得られた信号は、画像解析及び処理装置6によ
シ処理され、該層厚、装入物状況が調定され、降下速度
が算出される0表示装置7は、゛この結果を表示する機
能を有し、さらに筒状体2からの伝送1iii倫そのも
のを表示する機能(例えばカメラモニタ機能)を有すゐ
ことが、例えば混合層の視覚的情報を得る為に4好tし
い。
The signals obtained in this way are processed by the image analysis and processing device 6, the layer thickness and charge situation are adjusted, and the descending speed is calculated.The display device 7 displays the results. In addition, it is preferable to have a function (for example, a camera monitor function) to display the transmission process itself from the cylindrical body 2, in order to obtain visual information of the mixed layer, for example.

第2図(イ)←)は、第1図に示す筒状体2の説明図で
ある・第2図において筒状体2は、外壁用筒状体9及び
′fI#曽伝送機構3の熱的保護の為、一般には水冷さ
れる。冷却水は筒状体2後端から注入排出されるが、冷
却水は、外壁用筒状体9内部に備えられ九仕切体10に
よ−って外壁用筒状体9内部に生じる間1114,13
を、それぞれ往路、復路とすることで外壁用筒状体9及
び−像伝送機構3を冷却する・筒状体2はさらK[i像
伝送機構3と、外壁用筒状体9内壁の間隙15を流路と
して、画像伝送機構3先端対物部よシ炉内に流出する不
活性ガス(たとえばN2ガス)/4−ジ機能を有し、こ
れによル画像伝送機構3先端対物部へのダスト付着や、
温度上昇を防止することができる。さらに、III像伝
送機構3先端対物光学系部保護の為の透明な先端保護板
16(例えば石英ガラス板)を取付は九支持体17を画
像伝送機構3先端にキャがグ状に装着、又拡画像伝送機
構3と一体化することで、画像を歪ませることなくaI
m伝送機構3先端対物部に直接ダストが付着するのを防
止することが可能である。また、/4−ジ用ガス流れは
、付着したダスト洗浄の為先端保護板16表面に沿うも
のと、直接炉内に向かって流出し、先端保護板16近傍
を炉内ガス雰囲気と響囲気鍾断するためのものに大別さ
れることがよシ効果的で、ガス/母−ゾ用アタッチメン
ト11は、前者用のスリット間1119と後者用のスリ
ット間l![20を有していゐことが望ましい。
FIG. 2 (a) ←) is an explanatory diagram of the cylindrical body 2 shown in FIG. 1. In FIG. It is generally water cooled for thermal protection. Cooling water is injected and discharged from the rear end of the cylindrical body 2, and the cooling water is provided inside the cylindrical body 9 for the external wall and is generated inside the cylindrical body 9 for the external wall by the partition body 10 (1114). ,13
The outer wall cylindrical body 9 and the image transmission mechanism 3 are cooled by making them an outgoing path and a return path, respectively.The cylindrical body 2 is further 15 as a flow path, it has a function of inert gas (for example, N2 gas) flowing out from the objective section at the tip of the image transmission mechanism 3 into the furnace. Dust adhesion,
Temperature rise can be prevented. Furthermore, a transparent tip protection plate 16 (for example, a quartz glass plate) is attached to protect the objective optical system at the tip of the III image transmission mechanism 3, and a support member 17 is attached to the tip of the image transmission mechanism 3 in a cage-like manner. By integrating with the enlarged image transmission mechanism 3, the aI can be transmitted without distorting the image.
It is possible to prevent dust from directly adhering to the objective section at the tip of the m-transmission mechanism 3. In addition, the /4-di gas flow flows along the surface of the tip protection plate 16 to clean the attached dust, and directly flows into the furnace, causing the vicinity of the tip protection plate 16 to flow into the furnace gas atmosphere and the surrounding atmosphere. It is more effective to divide the gas/mother-zo attachment 11 into two parts: one between the slits 1119 for the former and the other between the slits 1119 for the latter. [It is desirable to have 20.]

また、先端保護板16へのダスト付着蝶、単に飛着する
場合と、高温ガス中に含まれる炭素が冷温ガスによシ析
出、付着する場合とが考えられ、後者の場合は、iii
像伝送機構3を耐熱型とし、装入物の炉内位置に対応し
た炉内温度と同勢の温度にした温ガス、熱ガスで・f−
ジすることにょシ仁れを防止することが必要である。こ
の際、外壁用筒状体9は、剛性維持のため水冷されるべ
きであるが、この影響によル温ガス、熱ガスが大きく温
度低下することを防ぐため、外壁用筒状体9内周と画像
伝送機構3外周に断熱材を接着するなど層別の断熱装置
を施すことがmtt、い。
In addition, there are two cases in which dust adheres to the tip protection plate 16: one case is that the dust simply flies to the tip, and the other case that carbon contained in the high-temperature gas is precipitated and attached to the cold gas, and in the latter case, iii
The image transmission mechanism 3 is a heat-resistant type, and hot gas is heated to the same temperature as the furnace temperature corresponding to the position of the charge in the furnace.
It is necessary to prevent burns from getting wet. At this time, the outer wall cylindrical body 9 should be water-cooled in order to maintain its rigidity, but in order to prevent the temperature of the hot gas from decreasing significantly due to this influence, the inside of the outer wall cylindrical body 9 should be cooled. It is best to apply a layered heat insulating device such as adhering a heat insulating material to the periphery and the outer periphery of the image transmission mechanism 3.

画像伝送機構3先端対物部は、筒状体2先端よシも数十
−炉外寄J)K内装されるのが好オしいが、この際画像
伝送機構3の持つ視野角内に筒状体2内壁が訣し出され
ると画像伝送機構3の持つ有効視野が十分に活用できな
い為、第2図における距11Atは、この点を考慮して
決定される。
It is preferable that the objective section at the tip of the image transmission mechanism 3 is placed inside the tube several tens of times outside the furnace, as well as the tip of the cylindrical body 2. If the inner wall of the body 2 is exposed, the effective field of view of the image transmission mechanism 3 cannot be fully utilized, so the distance 11At in FIG. 2 is determined with this point in mind.

ガス/4−ジ用アタッチメント11及びIiiIgI伝
送機構3の支持のため支持装置12が設けられるがこの
際支持装置12内壁に、多数のスリット18を通気溝と
して加工するなどして、アタッチメン)11及び伝送機
$3と嵌合支持可能にすると同時に%/4−ジ用ガスの
流路を確保する必要がある。
A support device 12 is provided to support the gas/4-di attachment 11 and the IIIIgI transmission mechanism 3. At this time, a large number of slits 18 are processed as ventilation grooves on the inner wall of the support device 12, so that the attachment 11 and It is necessary to make it possible to fit and support the transmitter $3 and at the same time secure a flow path for the gas for %/4-ji.

を九、炉内装入物層を乱さない為には、筒状体2は本発
明者らが特願l854−16590に提案したように可
能な限ヤ小径であることが好ましく(例えは直径30■
程度の円筒)、さらに、炉内定点における層厚や降下速
度の測定をする場合などにおいては、第3図に示す山型
カバー8を装着するか、第4図および第5図に示す様に
筒状体外壁断面形状を楕円mあるいは、上部に頂点を持
つ多角形fIi(例えば5角形)にするなどして降下物
の排除機能と自げ剛性を向上させることが望ましい。
(9) In order not to disturb the contents layer in the furnace, it is preferable that the cylindrical body 2 has a diameter as small as possible (for example, a diameter of 30 ■
Furthermore, when measuring the layer thickness or descending speed at a fixed point in the reactor, install a chevron-shaped cover 8 as shown in Fig. 3, or as shown in Figs. 4 and 5. It is desirable to improve the falling object removal function and self-rigidity by making the cross-sectional shape of the outer wall of the cylindrical body into an ellipse m or a polygon fIi (for example, a pentagon) having an apex at the top.

以上述べた様に1本発F!A杜、装入物状況を観察し、
これに基づいて層厚を測定、降下速度を算出する装置及
び方法であシ、炉内実画儂を得ることによ)、炉内装入
物状況を観察すると共に従来法    、、1で祉不可
能であった、温f700℃以上での高温域の層厚測定を
、それ以下の温度域での測定と全く同様の操作にて可能
ならしめ、伝送@llo目視観目視観察等判断)、混合
層の正確な把握を可能とする@さらにまえ、本発明で述
べ九ところの糊定装鐙及び測定方法を用いることkよ)
筒状体2を1本炉内に挿入することで従来問題であった
層の乱れ、降下速度の変化等による精度低下を招くとと
々しに降下速度を正確かつ連続的に算出すること、を可
能としえものであって、これKよル、高炉の制御精度向
上と、操業・炉況の安定に寄与する魁のである。
As mentioned above, one shot F! A Mori, observe the charging situation,
Based on this, there is a device and method that measures the layer thickness and calculates the rate of descent (by obtaining actual pictures of the inside of the reactor), observes the state of the contents in the reactor, and is not possible with the conventional method. The layer thickness measurement in the high temperature range above 700°C was made possible by the same operation as the measurement in the lower temperature range, transmission @llo (visual observation, etc.), mixed layer. In addition, it is possible to accurately grasp the value of the material by using the glue fixing stirrup and measuring method described in the present invention).
Accurately and continuously calculate the descending speed, since inserting one cylindrical body 2 into the furnace causes a decrease in accuracy due to conventional problems such as disturbance of the layer and changes in the descending speed. This greatly contributes to improving blast furnace control accuracy and stabilizing operation and furnace conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉の縦断面を含む本発明の一賽施例の説明図
、第2図0)は、本発明装置における筒状体2の正面図
、(→は(へ)のムーム断面の説明図、第3図、#!4
図#第5図は、それぞれ、本発明装置に用いられる筒状
体2の断面形状例を示す図で、第2図(ロ)のB−8断
面の各外形図である。 l:高炉、2:筒状体、3:@i像伝送機構、4:カメ
ラ、5:照明用光源、6:li像解析及び処理装置、7
:表示装置、8:筒状体力d−19:−19:外状壁用
筒状:中間仕切体%11:ガス/4−ジ用アタッチメン
)、12:支持装置、13゜14.15:間隙、16:
先端保護板、17:支持体、18,19.20:x!J
y)関1m。 第11 第3回      芥4図 集5図 手続補正書(自発) 昭和56年lO月260 特許庁長官 島 1)春 書 殿 1、 事件の表示 昭和56牛特許願第104140号 2、 発明の名称 高炉炉内測定装置および測定方法 3、 補正をする者 事件との関係 特許出願人 代表者  武  1)   豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 6、 補正の対象 (1)明細書8頁14行「画素数20,000程度以下
」を「画素数15.00os度以上」に補正する。
Fig. 1 is an explanatory diagram of an embodiment of the present invention including a vertical cross section of a blast furnace, Fig. 2 (0) is a front view of a cylindrical body 2 in the apparatus of the present invention, Explanatory diagram, Figure 3, #!4
Figure #5 is a diagram showing an example of the cross-sectional shape of the cylindrical body 2 used in the apparatus of the present invention, and is an external view of the B-8 cross section in Figure 2 (b). l: Blast furnace, 2: Cylindrical body, 3: @i image transmission mechanism, 4: Camera, 5: Light source for illumination, 6: Li image analysis and processing device, 7
: Display device, 8: Cylindrical physical strength d-19: -19: Cylindrical for external wall: Intermediate partition body% 11: Attachment for gas/4-di), 12: Support device, 13° 14.15: Gap , 16:
Tip protection plate, 17: Support, 18, 19. 20: x! J
y) Seki 1m. 11th 3rd Akuta Collection of Figures 4 and 5 Procedural Amendments (Voluntary) January 1980 260 Commissioner of the Japan Patent Office Shima 1) Harusho 1, Indication of the case 1982 Cattle Patent Application No. 104140 2, Title of the invention Blast Furnace Inner Measuring Device and Measurement Method 3, Relationship with the case of the person making the amendment Patent applicant representative Takeshi 1) Yutaka 4, agent 4-1-6 Marunouchi 2-chome, Chiyoda-ku, Tokyo 100 Japan, subject of amendment ( 1) Correct "number of pixels approximately 20,000 or less" to "number of pixels 15.00 os or more" on page 8, line 14 of the specification.

Claims (5)

【特許請求の範囲】[Claims] (1)高炉炉内を一定する、水冷およびガスパージ機構
並びに、11g1伝送機構を備えた筒状体において、m
s伝送機構先端に保S*を接着し、該保護板の支持筒体
に通気孔な投砂ると共に1、該保護板前面に該保護板表
面と前方に−9−ジfスを分流するアタッチメントを設
は九ことを特徴とする高炉炉内測定装置。
(1) In a cylindrical body equipped with a water cooling and gas purge mechanism and an 11g1 transmission mechanism that maintain a constant flow inside the blast furnace, m
Glue a protective S* to the tip of the s transmission mechanism, throw sand into the support cylinder of the protective plate through a ventilation hole, and 1. Divide -9-zif into the front surface of the protective plate and the front of the protective plate. A blast furnace in-furnace measuring device characterized by nine attachments.
(2)  前記筒状体上部に剛性を持つ部材を装着した
ことを特徴とする特許請求の範囲第1項記載の高炉炉内
測定装置。
(2) The blast furnace in-furnace measuring device according to claim 1, characterized in that a rigid member is attached to the upper part of the cylindrical body.
(3)  前記筒状体断面形状を、楕円形にした仁とを
特徴とする特許請求の範囲第1項記載の高炉炉内測定装
置。
(3) The blast furnace in-furnace measuring device according to claim 1, characterized in that the cylindrical body has an elliptical cross-sectional shape.
(4)  該筒状体断面形状を多角形にしたことを特徴
とする特許請求の範囲第1項記載の高炉炉内測定装置。
(4) The blast furnace in-furnace measuring device according to claim 1, wherein the cross-sectional shape of the cylindrical body is polygonal.
(5)水冷およびガス/平−ジ機構並びKil*伝送I
Il構を備見良筒状体からなシ画會伝送機構先端に保護
板を接着し、該保護板の支持筒体に通気孔を設けると共
に1該保護板前面に該保護板表面と齢方にΔ−ジガスを
分流するアタッチメントを設は良高炉炉内III定装置
を用い、該装置の通気孔から、高炉炉内測定地点の温度
に対応する温ガス、熱ガスを送って保−板表面を・ヤー
ジしつつ、高炉炉内の定点−j定あるいは、高炉炉内装
入物の降下に伴なう挙動の測定を行ガうことを特徴とす
る高炉炉内測定方法。
(5) Water cooling and gas/purge mechanism and Kil* transmission I
A protective plate is glued to the tip of the picture transmission mechanism made of a cylindrical body, and a ventilation hole is provided in the supporting cylinder of the protective plate. An attachment is installed to divert the Δ-di gas to the surface of the retaining plate by sending hot gas corresponding to the temperature of the measurement point in the blast furnace from the ventilation hole of the device. A method for measuring the inside of a blast furnace, characterized in that the behavior of the contents of the blast furnace is measured at a fixed point in the blast furnace or as the contents of the blast furnace fall.
JP10414081A 1981-07-03 1981-07-03 Method and apparatus for observing interior of blast furnace Granted JPS586913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10414081A JPS586913A (en) 1981-07-03 1981-07-03 Method and apparatus for observing interior of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10414081A JPS586913A (en) 1981-07-03 1981-07-03 Method and apparatus for observing interior of blast furnace

Publications (2)

Publication Number Publication Date
JPS586913A true JPS586913A (en) 1983-01-14
JPS6110003B2 JPS6110003B2 (en) 1986-03-27

Family

ID=14372786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10414081A Granted JPS586913A (en) 1981-07-03 1981-07-03 Method and apparatus for observing interior of blast furnace

Country Status (1)

Country Link
JP (1) JPS586913A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195433U (en) * 1985-05-28 1986-12-05
JPH02140406U (en) * 1989-04-25 1990-11-26
JPH0443905A (en) * 1990-06-12 1992-02-13 Nippon Steel Corp Method and instrument for measuring thickness of oxide film of steel strip
JP2011002434A (en) * 2009-06-22 2011-01-06 Nippon Steel Corp Gas supply device for inhibiting adhesion of suspended matter
CN113355471A (en) * 2021-06-09 2021-09-07 建龙阿城钢铁有限公司 Monitoring protection mechanism for high-temperature furnace machining

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195433U (en) * 1985-05-28 1986-12-05
JPH058501Y2 (en) * 1985-05-28 1993-03-03
JPH02140406U (en) * 1989-04-25 1990-11-26
JPH0443905A (en) * 1990-06-12 1992-02-13 Nippon Steel Corp Method and instrument for measuring thickness of oxide film of steel strip
JP2011002434A (en) * 2009-06-22 2011-01-06 Nippon Steel Corp Gas supply device for inhibiting adhesion of suspended matter
CN113355471A (en) * 2021-06-09 2021-09-07 建龙阿城钢铁有限公司 Monitoring protection mechanism for high-temperature furnace machining
CN113355471B (en) * 2021-06-09 2022-06-24 建龙阿城钢铁有限公司 Blast furnace processing is with control protection machanism

Also Published As

Publication number Publication date
JPS6110003B2 (en) 1986-03-27

Similar Documents

Publication Publication Date Title
US3862574A (en) Adjusting the temperature of a radiation furnace
US3530716A (en) Device for continuously measuring the temperature of metal baths in melting or refining furnaces,particularly in converters
JPS586913A (en) Method and apparatus for observing interior of blast furnace
Elliott et al. Physical conditions in the combustion and smelting zones of a blast furnace
US5100111A (en) Device for the detection of the temperature course of a metal or metal alloy melt using measurement techniques
JP2660048B2 (en) Immersion probe and sampler
US2020019A (en) Apparatus for measuring high temperatures
CN207512202U (en) Slag iron liquid level monitoring arrangement in a kind of blast furnace cupola well
US6106150A (en) Method and apparatus for measuring the melt temperature in a melt vessel
Sugiura et al. Simultaneous measurements of temperature and iron–slag ratio at taphole of blast furnace
SK47494A3 (en) Method and device for gaining of mineral fibers of thermoplastic material with high melting point
CN1007754B (en) In converter, measure the device of temperature
US4355907A (en) Apparatus for picking up a molten test sample of metal or metal alloys and measuring the cooling curve of said sample
CN103884448B (en) Measure the built-in type x-ray imaging method and apparatus of component inside temperature
CN208026661U (en) A kind of iron ore melting dripping test device
JPWO2012073625A1 (en) Inspection equipment for molten glass
JPS6142898Y2 (en)
KR20120098407A (en) Apparatus for detecting and displaying varying levels of a metal melt
US3123712A (en) spooner
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
WO2019132495A1 (en) Device for monitoring tapping amount of molten iron
US3572124A (en) Apparatus for simultaneous determination of carbon-temperature in liquid steel during blowing
JPH09243470A (en) Method for measuring level of molten metal in molten metal container and apparatus therefor
EP2554959A1 (en) Method and device for measuring the temperature of hot molten metal
CN2541465Y (en) Ablation monitor of furnace brasque