JPH0443905A - Method and instrument for measuring thickness of oxide film of steel strip - Google Patents

Method and instrument for measuring thickness of oxide film of steel strip

Info

Publication number
JPH0443905A
JPH0443905A JP15150490A JP15150490A JPH0443905A JP H0443905 A JPH0443905 A JP H0443905A JP 15150490 A JP15150490 A JP 15150490A JP 15150490 A JP15150490 A JP 15150490A JP H0443905 A JPH0443905 A JP H0443905A
Authority
JP
Japan
Prior art keywords
light
oxide film
steel strip
film thickness
color sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15150490A
Other languages
Japanese (ja)
Other versions
JPH0781842B2 (en
Inventor
Yuji Toda
祐治 遠田
Katsunori Kawaguchi
川口 勝徳
Atsushi Nakakubo
中窪 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2151504A priority Critical patent/JPH0781842B2/en
Publication of JPH0443905A publication Critical patent/JPH0443905A/en
Publication of JPH0781842B2 publication Critical patent/JPH0781842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately measure the thickness of the oxide film of a body to be measured in moving motion by photodetecting the light emitted by the body to be measured by a color sensor and finding the lightness and hue of the color, and finding the film thickness from the lightness and hue. CONSTITUTION:A light collecting tube 3 is arranged nearby the top surface of the steel strip 1 which travels in a furnace body 1. The light collecting tube 3 is movable in the width direction of the steel tube 1, so while the tube is moved from one side end part to the other side end part of the steel strip, the light beam emitted by the steel strip is collected. For the light collection, the surface of the steels trip is irradiated with intense light from a lamp 9 through an irradiation light window 10 and only lamp reflected light is photodetected through a light collection window 12. The photodetected light is sent to the color sensor 7 outside the furnace through an optical fiber 6. The color sensor 7 measures the lightness and coordinate values of the light emitted by the steel belt and an arithmetic part operates the oxide film of the steel belt from those measured values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非接触状態で綱帯表面の酸化膜厚を測定する方
法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the oxide film thickness on the surface of a rope in a non-contact manner.

〔従来の技術〕[Conventional technology]

従来より鋼帯の連続焼鈍設備や連続溶融亜鉛メツキ設備
等の焼鈍設備において、鋼帯表面にバーナーから高温の
燃焼ガスを直接吹付けて鋼帯を加熱、又は加熱還元する
直火加熱処理が行われている。
Conventionally, in annealing equipment such as continuous annealing equipment for steel strips and continuous hot-dip galvanizing equipment, direct-fire heat treatment has been carried out in which the steel strip surface is heated or thermally reduced by directly spraying high-temperature combustion gas from a burner onto the surface of the steel strip. It is being said.

このような加熱処理を行うと、鋼帯表面に酸化膜が生成
され、その生成状態が鋼帯の最終製品に大きな影響を与
える。
When such heat treatment is performed, an oxide film is generated on the surface of the steel strip, and the state of the oxide film has a great influence on the final product of the steel strip.

即ち、溶融亜鉛メツキ銅板は鋼帯の最大酸化膜厚にその
品質が左右されるし、一般鋼帯においても製品不良を生
ぜしめる。
That is, the quality of hot-dip galvanized copper sheets depends on the maximum oxide film thickness of the steel strip, and even general steel strips cause product defects.

従って、か\る酸化膜の生成状態を正確に把握する必要
があり、従来より放射線を利用した放射線厚さ針の擾案
(特願昭63−271047号明細書)や化学的方法、
スパッタリングを利用する方法などが行われていた。
Therefore, it is necessary to accurately understand the state of formation of such an oxide film, and conventional methods have been used to develop radiation thickness needles using radiation (Japanese Patent Application No. 63-271047), chemical methods, etc.
Methods such as using sputtering have been used.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

しかしながら、前記の放射線厚さ計は精度上の問題と計
測の応答性の悪さのために、被測定物が移動する際の酸
化膜厚の測定に使用されてなく、又、化学的方法、スパ
ッタリング利用法は被測定物の表面を損傷する欠点を存
し、更に、測定に長時間を必要とするので、放射線厚さ
計と同様、移動中の被測定物の酸化膜厚を測定すること
が不可能であった。
However, the radiation thickness meter described above is not used to measure the oxide film thickness when the object to be measured is moving due to accuracy problems and poor measurement response. This method has the disadvantage of damaging the surface of the object to be measured, and also requires a long time for measurement, so it is not possible to measure the oxide film thickness of the object while it is being moved, similar to the radiation thickness meter. It was impossible.

本発明は移動中の被測定物の酸化膜厚を容易に、且つ正
確に測定することを目的とする。
An object of the present invention is to easily and accurately measure the oxide film thickness of a moving object.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、被測定物の色彩を
酸化膜厚測定に利用したものであり、その特徴は被測定
物、例えば鋼帯が発する光をカラーセンサーで受光して
色の明度、色相を求め、しかる後該明度、色相より膜厚
を求めるところにあり、更にその装置として、鋼帯が発
する光を採光するために、採光管の一端に光源部と受光
部を併設し、該受光部とカラーセンサーを光ファイバー
を介して連結し、且つ該センサーで得られた色相と明度
より膜厚を演算する演算装置を設けたことを特徴とする
In order to achieve the above object, the present invention utilizes the color of the object to be measured to measure the thickness of the oxide film.The present invention is characterized in that the color of the object to be measured, for example, a steel strip, is received by a color sensor to detect the color. The lightness and hue are determined, and then the film thickness is determined from the lightness and hue.Furthermore, as a device for this purpose, a light source section and a light receiving section are installed at one end of the lighting tube in order to collect the light emitted by the steel strip. , the light receiving section and the color sensor are connected via an optical fiber, and an arithmetic device is provided for calculating the film thickness from the hue and brightness obtained by the sensor.

〔作 用〕[For production]

本発明者等は鋼帯が直火無酸化加熱炉内を移動する際、
綱帯の入熱温度により順次鋼帯表面が黄色→青色→灰色
→黒色に変化することに着目し、各色彩における酸化膜
の生成量を調べたところ、黄色域では約300Å以下、
青色域では300〜600人、灰色、黒色域では600
Å以上になることが判った。
The present inventors discovered that when the steel strip moves through the direct fire non-oxidation heating furnace,
Focusing on the fact that the steel strip surface changes sequentially from yellow to blue to gray to black depending on the heat input temperature of the steel strip, we investigated the amount of oxide film formed in each color, and found that in the yellow region, the amount of oxide film formed was approximately 300 Å or less;
300-600 people in the blue area, 600 people in the gray and black area
It was found that it was more than Å.

従って、鋼帯の各色彩域での膜厚を知ることができれば
該鋼帯の酸化膜生成状態を把握することができる。本発
明者はか−る認識のもとで、色彩と酸化膜厚との関係を
究明した。
Therefore, if the film thickness in each color range of the steel strip can be known, the state of oxide film formation on the steel strip can be grasped. Based on this recognition, the present inventor investigated the relationship between color and oxide film thickness.

色彩は一般に、第4図に示すような円筒座標系で整理さ
れている。
Colors are generally arranged in a cylindrical coordinate system as shown in FIG.

即ち、色彩は明度し、色相角度H1彩度Cで表わされる
が、それぞれを2.θ、rとして円筒座標に表示する。
That is, colors have lightness and are expressed by hue angles H1 and chroma C, each of which is expressed by 2. It is expressed in cylindrical coordinates as θ and r.

なお、2を一定としたθ−r平面を直角座標で示したも
のがa軸、b軸である。
Note that the a-axis and b-axis are rectangular coordinates of the θ-r plane where 2 is constant.

本発明者等は前記り、a、bの各値と酸化膜厚の関係を
調査し、第5図に示すような結果を得た。
The inventors investigated the relationship between the values of a and b and the oxide film thickness, and obtained the results shown in FIG. 5.

即ち、明度りは酸化膜厚が450人付近で変曲点を有し
、酸化膜厚と1対lの対応になっていないこと、また、
座標値aは酸化膜厚が500〜550人の間に負の側に
移ること、座標値すは850〜900人の間に変曲点が
あること等が判明した。
That is, the brightness has an inflection point when the oxide film thickness is around 450 people, and there is no 1:1 correspondence with the oxide film thickness;
It was found that the coordinate value a shifts to the negative side when the oxide film thickness is between 500 and 550 people, and that the coordinate value a has an inflection point between 850 and 900 people.

そこで酸化膜が450Å以下の場合は明度りに着目して
求めればよいことが判った。第6図は明度りと450Å
以下の酸化膜厚DLとの関係を示したもので、下記式に
よって表わすことができる。
Therefore, it was found that when the oxide film is 450 Å or less, it is sufficient to focus on brightness. Figure 6 shows brightness and 450 Å
The following relationship with the oxide film thickness DL is shown and can be expressed by the following formula.

DL=Ao+A+XL+AzXL”・・・(1)但し、
A、=504 A、 =−2,1 A、= −0,05196 次に、酸化膜厚が450人超0厚い領域の場合について
解析をした結果、第5図の座標値a、b、即ち色相Hに
着目すると広い領域で膜厚を求めることができるという
ことが判った。
DL=Ao+A+XL+AzXL”...(1) However,
A, = 504 A, = -2,1 A, = -0,05196 Next, as a result of analyzing the case where the oxide film thickness exceeds 450 layers, the coordinate values a and b in Fig. 5, i.e. It has been found that by focusing on the hue H, the film thickness can be determined over a wide area.

第7図は酸化膜厚と色相との関係を示したもので、第5
図の膜厚と座標値a、bとの関係を縦軸にb、横軸にa
を表示した座標に表わしたものである。即ち、酸化膜厚
は、a、b共に00地点より出発し、1000人までの
軌跡で表示されている。
Figure 7 shows the relationship between oxide film thickness and hue.
The relationship between the film thickness and the coordinate values a and b in the figure is shown on the vertical axis b and horizontal axis a.
It is expressed in the displayed coordinates. That is, the oxide film thickness is displayed as a trajectory starting from point 00 for both a and b and extending up to 1000 people.

これを色相Hで表わすと、色相Hと酸化膜厚DHとがは
一1対lの間係にあることが判る。
When this is expressed by hue H, it can be seen that the hue H and the oxide film thickness DH are in a ratio of 11:1.

そこでH=105°を始点とし、−〇方向へ回転する角
度H6を修正色相角度と定義し、酸化膜厚DHに対し4
次回帰すると第8図に示すように、500Å以上の酸化
膜厚に対しても精度よく推定することが可能となった。
Therefore, starting from H = 105°, the angle H6 rotating in the -〇 direction is defined as the corrected hue angle, and 4
In the next regression, as shown in FIG. 8, it became possible to accurately estimate even oxide film thicknesses of 500 Å or more.

この関係を下記式で表わす。This relationship is expressed by the following formula.

Dtl=B6+BIXH6+BtXHi+IhXHi+
B4XH8−(2)但し、B、= 23.2 B+=  9.5366 Bz= −0,88447 Bs=  3.4378X10−’ B4=  4.1992X10−’ しかしながら、酸化膜厚が薄い領域、特に300〜42
0人の範囲では第6図に示す明度L・の方が膜厚の変化
が大きいので精度が良いと考えられる。
Dtl=B6+BIXH6+BtXHi+IhXHi+
B4XH8-(2) However, B, = 23.2 B+ = 9.5366 Bz = -0,88447 Bs = 3.4378X10-' B4 = 4.1992X10-' However, in the region where the oxide film thickness is thin, especially 300~ 42
In the range of 0 people, the brightness L· shown in FIG. 6 is considered to have better accuracy because the change in film thickness is larger.

そこで、修正色相角度H0が90°未満の場合は、下記
(3)式により明度から推定した膜厚DLと色相から推
定した膜厚DHとの加重平均値を求め、より正確な膜厚
りを得るようにした。
Therefore, when the corrected hue angle H0 is less than 90°, a weighted average value of the film thickness DL estimated from the lightness and the film thickness DH estimated from the hue is calculated using the following formula (3) to obtain a more accurate film thickness. I tried to get it.

D=DHXsin(Ha)+DLX (1−sin(H
a)) −(3)この推定方法によって得た酸化膜厚と
実測値との関係を第9図に示す。酸化膜厚が75〜55
0人の範囲で両者がよく一致していることが判る。
D=DHXsin(Ha)+DLX (1-sin(H
a)) -(3) The relationship between the oxide film thickness obtained by this estimation method and the actually measured value is shown in FIG. Oxide film thickness is 75-55
It can be seen that the two agree well within the range of 0 people.

以上より、鋼帯の酸化膜を測定するに際しては、カラー
センサーで明度し、座標値a、bを測定し、該座標値a
、bから修正色相角度H0を求め、該H0が90°未満
の場合は上記(3)式によって膜厚を求め、また、上記
H0が90°以上の場合は上記(2)式によって膜厚を
求め、これらから最終推定酸化膜厚を求めるのである。
From the above, when measuring the oxide film on a steel strip, the brightness is measured with a color sensor, the coordinate values a and b are measured, and the coordinate value a
, b, calculate the corrected hue angle H0, and if H0 is less than 90°, calculate the film thickness using the above equation (3), and if the above H0 is 90° or more, calculate the film thickness using the above equation (2). The final estimated oxide film thickness is determined from these values.

〔実施例〕〔Example〕

次に、本発明を図面に基づいて更に説明する。 Next, the present invention will be further explained based on the drawings.

第′1図及び第2図は本発明で用いる採光管の一部断面
正面図及びそのA−A断面図である0図において、採光
管3の先端部に光源部4と受光部5を併設す・る、該光
源部4はソケット9にセットされたランプ8、例えばキ
セノンランプ、とその前面をカバーした投光窓lOで構
成されており、また、上記受光部5は受光センサーを介
してカラーセンサー(図示せず)に連結する光ファイバ
ー6と、前記受光部前面をカバーする採光窓12とで構
成されている。前記光ファイバー6を保護する内管19
の外周にパージガス管18が設けられ、これにパージガ
ス人口17が連結されている。該パージガス管18の外
周に冷却水人口13を一端に開口した冷却水導入パイプ
14が設けられ、更に、該冷却水導入パイプ14の外周
に冷却水排出パイプが設けられている。14は冷却水出
口であり、又20はランプ電源口である。
Figures 1 and 2 are a partially sectional front view of a daylight tube used in the present invention, and a cross-sectional view taken along the line A-A of the daylight tube 3, in which a light source section 4 and a light receiving section 5 are installed together at the tip of the daylight tube 3. The light source section 4 is composed of a lamp 8, such as a xenon lamp, set in a socket 9, and a light projection window 1O that covers the front surface of the lamp. It consists of an optical fiber 6 connected to a color sensor (not shown) and a lighting window 12 that covers the front surface of the light receiving section. Inner tube 19 that protects the optical fiber 6
A purge gas pipe 18 is provided on the outer periphery of the purge gas pipe 18, and a purge gas port 17 is connected to this. A cooling water introduction pipe 14 having one end open to the cooling water intake 13 is provided on the outer periphery of the purge gas pipe 18, and a cooling water discharge pipe is further provided on the outer periphery of the cooling water introduction pipe 14. 14 is a cooling water outlet, and 20 is a lamp power supply port.

以上の構成をなす採光管3を第3図に示すように、炉体
l内を走行する鋼帯1の上面に近接して配設する。前記
採光管3は鋼帯1の幅方向に移動可能になっているので
、鋼帯の側端部より順次他側端部に移動しつ一鋼帯より
発する光線を採光する。採光に際してはランプ8から強
い光量を照射光窓10を介して鋼帯表面に照射し、鋼帯
温度、炉内温度等の外乱を低減しキセノンランプ反射光
だけを採光窓12を介して受光センサーに受光する。
As shown in FIG. 3, the lighting tube 3 having the above structure is arranged close to the upper surface of the steel strip 1 running inside the furnace body l. Since the lighting tube 3 is movable in the width direction of the steel strip 1, it sequentially moves from one side end of the steel strip to the other end, and captures the light rays emitted from one steel strip. During daylighting, a strong amount of light from the lamp 8 is irradiated onto the surface of the steel strip through the irradiation window 10 to reduce disturbances such as the temperature of the steel strip and furnace temperature, and only the reflected light from the xenon lamp is sent to the light receiving sensor through the daylight window 12. Receives light.

受光した光は光ファイバー6を通って炉外のカラーセン
サー7へ送られる。採光管3内は水冷却されると共に受
光部5がガスパージされる。
The received light is sent to a color sensor 7 outside the furnace through an optical fiber 6. The interior of the lighting tube 3 is cooled with water, and the light receiving section 5 is purged with gas.

カラーセンサーでは鋼帯の発する光の明度し、座標値a
、bを測定し、演算部でこれら測定値に基づき前述の各
式に基づき鋼帯の酸化膜を演算するのである。
The color sensor measures the brightness of the light emitted by the steel strip and calculates the coordinate value a
, b are measured, and the calculation section calculates the oxide film of the steel strip based on the above-mentioned formulas based on these measured values.

(実施例1) 連続焼鈍設備の直火還元帯の出側の炉体内における走行
中の鋼帯の上面に採光管を配設し、該鋼帯表面の酸化膜
を本発明の方法によって演算した。
(Example 1) A lighting tube was installed on the upper surface of the steel strip running in the furnace body on the outlet side of the direct flame reduction zone of continuous annealing equipment, and the oxide film on the surface of the steel strip was calculated by the method of the present invention. .

鋼帯厚み二〇、5閣、直火還元帯の炉温: 1300℃
、板温:650℃、空燃比:0.9、通板速度:150
ン分、 採光した光の明度L=44 座標値a=2 〃b=is 修正色相角度H@ =21”  (H6<90°)酸化
膜DL=Ao + At X42+^XX42”=31
O人 酸化膜DH=B@+BI X23+BZX23g+B5
X233+B4X23’−189人 従って、酸化膜D= 266人 一方、鋼帯の同一個所における酸化膜厚を実測したとこ
ろ246人であった。従って、本発明の方法で得られた
膜厚が一実測値の±25人以内にあって、その膜厚推定
値が正しいことが確認された。
Steel strip thickness 20, 5 kaku, furnace temperature of direct fire reduction zone: 1300℃
, plate temperature: 650℃, air-fuel ratio: 0.9, plate threading speed: 150
Brightness of captured light L = 44 Coordinate value a = 2 〃b = is Corrected hue angle H @ = 21" (H6 < 90°) Oxide film DL = Ao + At X42 + ^XX42" = 31
O person oxide film DH=B@+BI X23+BZX23g+B5
X233+B4X23'-189 people Therefore, oxide film D=266 people On the other hand, when the oxide film thickness at the same location on the steel strip was actually measured, it was 246 people. Therefore, it was confirmed that the film thickness obtained by the method of the present invention was within ±25 of the actual measurement value, and that the estimated film thickness value was correct.

(実施例2) 実施例1と同様の鋼帯を空燃比を0.92にした以外は
実施例1と同様の直火還元帯で処理した後、実施例1と
同一の場所で鋼帯の酸化膜を測定した。
(Example 2) After treating the same steel strip as in Example 1 in the same direct flame reduction zone as in Example 1 except that the air-fuel ratio was set to 0.92, the steel strip was treated at the same location as in Example 1. The oxide film was measured.

採光した光の座標値a=  4 #  b=−42 修正色相角度H@ = 190@(H@ >90” )
酸化膜D=Bo+B+ X190+BtX190”+B
sX1903+B4X190’ =452人 一方、鋼帯の同一個所における酸化膜厚を実測したとこ
ろ460人であった。従って、本発明の方法で得られた
膜厚が実測値の±25λ以内にあることが確認された。
Coordinate value of captured light a=4 #b=-42 Corrected hue angle H@=190@(H@>90”)
Oxide film D=Bo+B+X190+BtX190”+B
sX1903+B4X190' = 452 people On the other hand, when the oxide film thickness at the same location on the steel strip was actually measured, it was found to be 460 people. Therefore, it was confirmed that the film thickness obtained by the method of the present invention was within ±25λ of the actually measured value.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明は走行中の被測定物の酸化
膜厚を非接触状態で容易にかつ正確に測定することがで
きるので被測定物の加熱状態を効率良く制御でき、その
工業的効果は甚大である。
As described in detail above, the present invention enables easy and accurate measurement of the oxide film thickness of a moving object in a non-contact manner, making it possible to efficiently control the heating state of the object. The effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一部断面正面図、第2図は第1
図A−A断面図、第3図は本発明の実施状態を示す概略
断面図、第4図は色彩を円筒座標系で整理した図、第5
図は明度し、座標値a、bと酸化膜厚との関係を示す図
、第6図は明度りと酸化膜厚の関係を示す詳細図、第7
図は座標値a。 b及び修正色相角度H0と酸化膜厚との関係を示す図、
第8図は修正色相角度H0と酸化膜厚の関係を示す詳細
図、第9図は本発明法で得た酸化膜厚推定値と実測値と
の関係を示す図である。 1・・・鋼帯、     2・・・炉体、3・・・採光
管、     4・・・光源部、5・・・受光部、  
   6・・・光ファイバー7・・・カラーセンサー及
び演算装置、8・・・ランプ、     9・・・ソケ
ット、10・・・照射光窓、   12・・・採光窓、
13・・・冷却水入口、  14・・・冷却水導入パイ
プ、15・・・冷却水出口、  16・・・冷却水排出
パイプ、17・・・パージガス入口、18・・・パージ
ガス管、19・・・内管、      20・・・ラン
プ電源口。 Z°明度し 第 邑 酸化膜厚い) 明度L フ や 図
FIG. 1 is a partially sectional front view of the device of the present invention, and FIG.
Figure 3 is a schematic cross-sectional view showing the implementation state of the present invention, Figure 4 is a diagram in which colors are arranged in a cylindrical coordinate system, Figure 5 is a cross-sectional view taken along the line A-A,
The figure shows the relationship between brightness, coordinate values a and b, and oxide film thickness. Figure 6 is a detailed view showing the relationship between brightness and oxide film thickness. Figure 7
The figure shows the coordinate value a. b and a diagram showing the relationship between the corrected hue angle H0 and the oxide film thickness,
FIG. 8 is a detailed diagram showing the relationship between the corrected hue angle H0 and the oxide film thickness, and FIG. 9 is a diagram showing the relationship between the estimated value of the oxide film thickness obtained by the method of the present invention and the actually measured value. DESCRIPTION OF SYMBOLS 1... Steel strip, 2... Furnace body, 3... Lighting tube, 4... Light source part, 5... Light receiving part,
6... Optical fiber 7... Color sensor and calculation device, 8... Lamp, 9... Socket, 10... Irradiation light window, 12... Lighting window,
13... Cooling water inlet, 14... Cooling water introduction pipe, 15... Cooling water outlet, 16... Cooling water discharge pipe, 17... Purge gas inlet, 18... Purge gas pipe, 19... ...Inner tube, 20...Lamp power supply port. (Z° brightness and thick oxide film) Brightness L

Claims (1)

【特許請求の範囲】 1、鋼帯の表面に近接して、照射光窓と採光窓を有する
採光管を鋼帯幅へ移動可能に配設し、前記採光窓より鋼
帯表面から発する光を採光して、該光を前記採光管の受
光部と光ファイバーを介してカラーセンサーに送り、し
かして該カラーセンサーで前記光の色彩より前記鋼帯表
面の酸化膜厚を演算することを特徴とする鋼帯の酸化膜
厚測定方法。 2、採光管の一端に光源部と受光部を併設し、該受光部
とカラーセンサー及び演算装置とを光ファイバーを介し
て連結したことを特徴とする鋼帯の酸化膜測定装置。 3、前記採光管に冷却パイプを設けた請求項2記載の装
置。
[Claims] 1. A lighting tube having an irradiation light window and a lighting window is disposed in close proximity to the surface of the steel strip so as to be movable to the width of the steel strip, and light emitted from the surface of the steel strip is transmitted through the lighting window. The method is characterized in that the light is collected and sent to a color sensor through the light receiving part of the light collection tube and an optical fiber, and the color sensor calculates the oxide film thickness on the surface of the steel strip from the color of the light. Method for measuring oxide film thickness on steel strip. 2. An oxide film measuring device for a steel strip, characterized in that a light source section and a light receiving section are provided at one end of a lighting tube, and the light receiving section is connected to a color sensor and a calculation device via an optical fiber. 3. The device according to claim 2, wherein the lighting tube is provided with a cooling pipe.
JP2151504A 1990-06-12 1990-06-12 Method and apparatus for measuring oxide film thickness of steel strip Expired - Lifetime JPH0781842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151504A JPH0781842B2 (en) 1990-06-12 1990-06-12 Method and apparatus for measuring oxide film thickness of steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151504A JPH0781842B2 (en) 1990-06-12 1990-06-12 Method and apparatus for measuring oxide film thickness of steel strip

Publications (2)

Publication Number Publication Date
JPH0443905A true JPH0443905A (en) 1992-02-13
JPH0781842B2 JPH0781842B2 (en) 1995-09-06

Family

ID=15519959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151504A Expired - Lifetime JPH0781842B2 (en) 1990-06-12 1990-06-12 Method and apparatus for measuring oxide film thickness of steel strip

Country Status (1)

Country Link
JP (1) JPH0781842B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276349A (en) * 2009-05-26 2010-12-09 National Maritime Research Institute Method of measuring film thickness, and film thickness measuring device and program
JP2011191252A (en) * 2010-03-16 2011-09-29 Nippon Steel Engineering Co Ltd Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
KR20140053162A (en) * 2011-07-04 2014-05-07 케이엘에이-텐코 코포레이션 Atmospheric molecular contamination control with local purging
JP2014146704A (en) * 2013-01-29 2014-08-14 Fuji Electric Co Ltd Semiconductor device
JP2018066036A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing electromagnetic steel sheet and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586913A (en) * 1981-07-03 1983-01-14 Nippon Steel Corp Method and apparatus for observing interior of blast furnace
JPS61117404A (en) * 1984-11-14 1986-06-04 Toshiba Corp Measuring instrument for film thickness
JPS6344106A (en) * 1986-08-12 1988-02-25 Canon Inc Film thickness measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586913A (en) * 1981-07-03 1983-01-14 Nippon Steel Corp Method and apparatus for observing interior of blast furnace
JPS61117404A (en) * 1984-11-14 1986-06-04 Toshiba Corp Measuring instrument for film thickness
JPS6344106A (en) * 1986-08-12 1988-02-25 Canon Inc Film thickness measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276349A (en) * 2009-05-26 2010-12-09 National Maritime Research Institute Method of measuring film thickness, and film thickness measuring device and program
JP2011191252A (en) * 2010-03-16 2011-09-29 Nippon Steel Engineering Co Ltd Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
KR20140053162A (en) * 2011-07-04 2014-05-07 케이엘에이-텐코 코포레이션 Atmospheric molecular contamination control with local purging
JP2014521072A (en) * 2011-07-04 2014-08-25 ケーエルエー−テンカー コーポレイション Atmospheric molecular pollution control by local purging
JP2014146704A (en) * 2013-01-29 2014-08-14 Fuji Electric Co Ltd Semiconductor device
JP2018066036A (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing electromagnetic steel sheet and manufacturing method therefor
WO2018074531A1 (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Hot-rolled steel sheet for manufacturing electrical steel, and method for manufacturing same
KR20190071745A (en) * 2016-10-18 2019-06-24 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for manufacturing electronic steel sheet and method for manufacturing the same
US11577291B2 (en) 2016-10-18 2023-02-14 Jfe Steel Corporation Hot-rolled steel sheet for electrical steel sheet production and method of producing same

Also Published As

Publication number Publication date
JPH0781842B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US7995195B2 (en) Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body
PT101364B (en) METHOD AND APPARATUS FOR THE MONITORING OF THIN FILM THICKNESS, AND METHOD OF APPLYING A TRANSPARENT COATING IN A SHEET FORM SUBSTRATE
JP2020098214A (en) Method for manufacture of steel product including characterization step for oxide layer on steel base material in process
WO1992019944A1 (en) Non-contact optical techniques for measuring surface conditions
RU2005105310A (en) ANALYTICAL SYSTEM AND METHOD FOR MEASURING AND MANAGING THE PROCESS OF GLASS MANUFACTURE
JPH04252925A (en) Method and apparatus for measuring temperature
JPH0443905A (en) Method and instrument for measuring thickness of oxide film of steel strip
JP2018146567A (en) Surface quality detection method
JP2007010464A (en) Method and apparatus for measuring thickness of oxide film on surface of sheet steel
JP2593016B2 (en) Method for measuring alloying degree of hot-dip galvanized steel strip
ES2713268T3 (en) Procedure for the simultaneous measurement of the thickness and temperature of an oxide layer
JP2007292498A (en) Oxide film thickness measuring method, and instrument therefor
JPH07270130A (en) Method of measuring thickness of oxide film
JPS61210921A (en) Instrument for measuring emissivity and temperature of subject
JPH0371946B2 (en)
JP2960285B2 (en) Method and apparatus for controlling degree of alloying by emissivity
JP7399723B2 (en) Method for estimating average thickness of oxide film
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
JPS62218564A (en) Method for controlling position of edge heater
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
Li et al. Online Compensation Method of Infrared Temperature Measurement Error Based on Fusion of Infrared Vision and Visible Light Vision
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
JPH03287024A (en) Method and device for simultaneous measurement of temperature and emissivity of body