JPS6038740A - Optical head for photothermic magnetic recording medium - Google Patents

Optical head for photothermic magnetic recording medium

Info

Publication number
JPS6038740A
JPS6038740A JP14503983A JP14503983A JPS6038740A JP S6038740 A JPS6038740 A JP S6038740A JP 14503983 A JP14503983 A JP 14503983A JP 14503983 A JP14503983 A JP 14503983A JP S6038740 A JPS6038740 A JP S6038740A
Authority
JP
Japan
Prior art keywords
light
signal
recording medium
optical head
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14503983A
Other languages
Japanese (ja)
Inventor
Kiyonobu Endo
遠藤 清伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14503983A priority Critical patent/JPS6038740A/en
Priority to DE19843429382 priority patent/DE3429382A1/en
Priority to US06/640,084 priority patent/US4654839A/en
Publication of JPS6038740A publication Critical patent/JPS6038740A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection

Abstract

PURPOSE:To attain a small and simple structure of the titled optical head by receiving two divided luminous fluxes by a photodetector after transmitting them through polarizing plates respectively to perform the focusing control with the differential signal of those luminous fluxes and then perform the tracking control by detecting the change of an optical distribution in the direction orthogonal to a signal track. CONSTITUTION:A light splitter 22 contains transmitting parts 18 and 18A and a reflecting part 19 for a luminous flux 20. The reflected luminous flux given from a recording medium 16 is divided into two parts by the splitter 22 and transmits through polarizing plates 70 and 71 to reach 2-split photodetectors 23 and 24 respectively. A differential signal between (A+B) and (C+D) obtained from photodetecting elements A and B and C and D of both detectors 23 and 24 is transmitted through a frequency discriminator to extract a low frequency component. Thus the focusing control is performed. While the differential is obtained between electric signals (A+C) and (B+D), and the change of an optical distribution in the direction orthogonal to a signal track is detected to perform the tracking control.

Description

【発明の詳細な説明】 〔技術分野」 本発明は光熱磁気記録体用光ヘッドの構造に関し、特に
、記録体からの反射光を光検出器(光電素子など)で受
光し、その光束の光量或は形状変化で光ヘッドとの相対
的位置ずれを検出し、その電気信号に基すいてフォーカ
シング制御(自動焦点制御)或はトラッキング制御(自
動追跡制御)を行う光熱磁気記録体用光ヘッドの構造に
関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to the structure of an optical head for a photothermal magnetic recording medium, and in particular, the present invention relates to the structure of an optical head for a photothermal magnetic recording medium. Alternatively, an optical head for a photothermal magnetic recording medium that detects a relative positional deviation with the optical head due to a change in shape and performs focusing control (automatic focus control) or tracking control (automatic tracking control) based on the detected electrical signal. Regarding structure.

〔従来技術〕[Prior art]

光の微小スポットを集光させて記録或社再生を行う記録
体の具体例として、ビデオディスクやrノタルオーディ
オディスクの如く予じめ映像や音声などの信号を記録し
たもの、更には光又は光による熱エネルギーで変化する
記録材l疎を持グボAW用の記録体や光磁気記録体など
がある。
Specific examples of recording media in which recording or reproduction is performed by condensing a minute spot of light include those on which signals such as video and audio are recorded in advance, such as video discs and audio discs, as well as those on which signals such as video and audio are recorded in advance. There are recording materials for Gobo AW, magneto-optical recording materials, etc., which have a recording material whose sparsity changes with the thermal energy caused by the recording material.

前者の記録体は何月の11生のみに使用される記録体で
あるが、後者の記録体はユーザにおいて信号の記録も可
能なものでちるつ又、光磁気記録体は信号消去が可能で
あシ繰返し記録再生出来るという便利さヲ宿している。
The former recording medium is used only for 11th graders, but the latter recording medium allows the user to record signals, and the magneto-optical recording medium allows signals to be erased. It has the convenience of being able to record and play back repeatedly.

回転振動などによルこのような記録体を走行させながら
該記録体上に微小な光ス)1ξツトを結像さぜ、信号を
記録再生する場合、記録体には面振れ等による縦振動及
び横変移が生じ、光スボツ)を結像する光ヘッドと記録
体との間に相対的な位変動が生じる。この結果、記録媒
体上のスポットの大きさが変動したシスポットの照射位
置が信号トシソクからはずれたシし、取シ出される信号
及び記録されるツクターンが不鮮明なものになる。
When recording and reproducing signals by imaging a minute light spot on the recording body while running such a recording body due to rotational vibration, etc., the recording body is subject to longitudinal vibration due to surface runout, etc. and lateral displacement occur, and a relative positional change occurs between the optical head that images the optical slit (optical slit) and the recording medium. As a result, the irradiation position of the spot whose size has changed on the recording medium deviates from the signal pulse, and the output signal and the recorded trace become unclear.

このような問題を解決するため、記録体からの反射光を
光電検出器で受光し、その光束の光量や形状変化によル
光ヘッドと記録体との相対的位置ずれを検出し、フォー
カス誤差信号或はトラッキング誤差信号として光ヘッド
又は光ヘツド構成部品の1部にフィードバックし、これ
に基いて両者間の間隔及び横変移などの位置ずれを補正
することが行われている。
In order to solve these problems, a photoelectric detector receives the reflected light from the recording medium, detects the relative positional deviation between the optical head and the recording medium based on changes in the intensity and shape of the light beam, and detects focus errors. A signal or a tracking error signal is fed back to the optical head or a part of the optical head components, and based on this feedback, positional deviations such as the distance and lateral displacement between the two are corrected.

このような従来の光ヘッドの構造例を第1図を参照して
説明する。
An example of the structure of such a conventional optical head will be explained with reference to FIG.

第1図において、記録体1上に光スポットを集光するた
めの集光レンズ2は駆動手段3によシ光軸方向に移動可
能に装着されている。符号4は光束を偏光するための回
動ミ2−(ビポッティングミラ)であ)、符号5は1/
4波長板、符号6はコリメータレンズ、符号7は偏光ビ
ームスシリツタ−1符号8は半導体レーザなどの光源、
符号9はシリンドリカルレンズ、符号10は4分割光検
出器を夫々示す。
In FIG. 1, a condensing lens 2 for condensing a light spot onto a recording medium 1 is mounted movably in the optical axis direction by a driving means 3. As shown in FIG. Reference numeral 4 is a rotating mirror (bipotting mirror) for polarizing the luminous flux, and reference numeral 5 is a 1/
4 wavelength plate, 6 is a collimator lens, 7 is a polarizing beam sinter, 1 is a light source such as a semiconductor laser,
Reference numeral 9 indicates a cylindrical lens, and reference numeral 10 indicates a four-part photodetector.

光源8から発せられる光束は偏光ビームスゲ1ノツター
7を通過した後平行光束となる。この場合、光源8から
発せられる光束の偏光面は紙面に平行となるように調整
されており、前記偏光ビームスシリツタ−7はこのよう
な偏光面の光束をl’Lとんど損失なく通過させる。平
行光束は1/4波長板5を通過することにより1円又は
楕円偏光光束となり、続いて支軸を中心に回転可能なピ
ボツテイングミラ−(回動ミラー)4で反射された後、
集光レンズ2によυ記録体1上に微小スポットとして集
光される。
The light beam emitted from the light source 8 becomes a parallel light beam after passing through the polarization beam notter 7. In this case, the polarization plane of the light beam emitted from the light source 8 is adjusted to be parallel to the plane of the paper, and the polarization beam sinter 7 passes the light beam with such a polarization plane almost without loss. let The parallel light flux becomes a circularly or elliptically polarized light flux by passing through the quarter-wave plate 5, and is then reflected by a pivoting mirror (rotating mirror) 4 that can be rotated around a supporting axis.
The condensing lens 2 condenses the light onto the υ recording medium 1 as a minute spot.

一方、記録体1からの反射光束は、集光レンズ2及び回
動ミラー4を経由して1/4波長板5にitt達する。
On the other hand, the reflected light beam from the recording medium 1 passes through the condenser lens 2 and the rotary mirror 4 and reaches the quarter-wave plate 5 .

この174波長板5を通過した光束はその偏光面が入射
時と直交した方向となり、#1とんどの光束が偏光ビー
ムスプリッタ−7で反射され、シリンドリカルレンズ9
をdで4分割光検出器10へ入射する。この場合、反射
光は、コリメーターレンズ6及びシリンドリカルレンズ
9で構成される非点収差発生光学系によシ前記光検出器
10上で非点収差分布形状の光束を形成する・従って、
その分布状態によシ記録体1上のスポットのFocus
状態を検出することができる。
The light flux that has passed through this 174-wavelength plate 5 has its polarization plane perpendicular to the direction of incidence, and most of the #1 light flux is reflected by the polarizing beam splitter 7 and is reflected by the cylindrical lens 9.
is incident on the photodetector 10 divided into four parts at d. In this case, the reflected light forms a light beam with an astigmatism distribution shape on the photodetector 10 by an astigmatism generating optical system composed of a collimator lens 6 and a cylindrical lens 9. Therefore,
Focus of the spot on the recording medium 1 depending on its distribution state.
state can be detected.

第2図(4)、 (B) 、 (C)はスポットの各種
フォーカス状態における光検出器10上の光分布の状態
を例示する図であり、第2図(6)は前ビン状態におけ
る光分布を、第2図(B)は合焦状態での光分布を、第
2図(C>は後ビン状態での光分布を夫々例示する。
FIGS. 2(4), (B), and (C) are diagrams illustrating the state of light distribution on the photodetector 10 in various focusing states of the spot, and FIG. FIG. 2(B) illustrates the light distribution in the focused state, and FIG. 2(C>) illustrates the light distribution in the rear bin state.

4分割光検出器lOの夫々の光電素子を第2図(5)〜
(C)に示す如(A、B、C,Dとすれば、各素子の受
光量に基ずいて(A−)−C)−(B+D )の出力値
を検出し、その出力値が負、零、正のいずれであるかに
よp前ピン、合焦、後ピンのいずれの状態であるかt判
別することができる。又、この出力値kM当なダインを
持つ電気処理系を介してIgk動装置、3にフィードバ
ックすることによシ、集光レンズと記録体1との距離変
動の修正即ち自動焦点制御(フォーカシング制御)を行
うことができる。
Each photoelectric element of the 4-split photodetector lO is shown in Figure 2 (5) ~
As shown in (C), (A, B, C, D), the output value of (A-)-C)-(B+D) is detected based on the amount of light received by each element, and the output value is negative. , zero, or positive, it can be determined whether the state is p-front focus, in-focus, or rear-focus. In addition, by feeding back to the Igk operating device 3 via an electric processing system having a dyne of this output value kM, correction of distance fluctuations between the condenser lens and the recording medium 1, that is, automatic focusing control (focusing control) is performed. )It can be performed.

記録体の信号トラック上を正しく追跡する為の自動追跡
制御(オートトラッキング)は次の方法で行われる。
Automatic tracking control (auto tracking) for correctly tracking the signal track of the recording medium is performed in the following manner.

即ち、トラック方向を破線で示すとともに光検出器lO
の分割線と該トラック方向との相対関係を示す第2図(
ロ)の如く、トラック方向を4分割光検出器10の分割
線に沿うように配置する。こうすれば、記録体1の偏心
などの影響で光スポットが信号トラックからずれると第
2図(ロ)に示す如く光束の強度分布に左右方向の偏シ
が生じ、(A十D)−(B+C)の出力値の変化として
トラックズレの信号が得られる。この信号を電気処理し
た後回動ミラー4の駆動系に7(−トノ?yりすること
に↓シ、オートトラッキングが可能となる。
That is, the track direction is indicated by a broken line, and the photodetector lO
FIG. 2 (
As shown in b), the track direction is arranged along the dividing line of the 4-split photodetector 10. In this way, if the light spot deviates from the signal track due to the eccentricity of the recording medium 1, the intensity distribution of the light beam will be shifted in the left-right direction as shown in FIG. A track deviation signal is obtained as a change in the output value of B+C). After electrically processing this signal, it is applied to the drive system of the rotating mirror 4, and auto-tracking becomes possible.

即ち、集光レンズの焦点距離((fとすると、第3図囚
に示す如く、回動ミラー4を角度0だけ回転させると記
録体l上のスポットは2fθだけ横に移動する。このた
め、反射光束が集光レンズ2゜回動ミラー4及びシリン
ドリカルレンズ9を介して4分割光検出器10に到達す
る時、その光軸がずれ、光検出器10上の光分布は第3
図(B)に示す如く1点鎖線の円から破線の円へ横方向
へ移動する。この場合、フォーカシング信号としての(
人士C)−(B+D)の出力値は、光分布が原点対称の
分布形状で且つ分割線に沿っての移動であれば、前記ト
ラッキング信号の出力値の変動に伴なう変化は微小であ
るが、実際にはシリンドリカル光学系の為、その動き及
び形状とも理想的にすることは極めて困難であシ、トラ
ッキング信号の出力値変化がフォーカシング信号の出力
値に影響を及ばずことになる。従って、トラッキング動
作によって引き起こされる光束移動はフォーカス信号に
影響を与えない程度に押える必要があシ、このためト2
ソキング制御範囲も制限する必要がある。
That is, if the focal length of the condensing lens ((f) is shown in Figure 3, when the rotary mirror 4 is rotated by an angle of 0, the spot on the recording medium l will move laterally by 2fθ. Therefore, When the reflected light flux passes through the condenser lens 2, rotating mirror 4, and cylindrical lens 9 and reaches the 4-split photodetector 10, its optical axis is shifted, and the light distribution on the photodetector 10 is
As shown in Figure (B), it moves in the horizontal direction from the circle indicated by a chain line to the circle indicated by a broken line. In this case, (
If the light distribution is symmetrical to the origin and moves along the dividing line, the output value of C)-(B+D) will change only slightly due to fluctuations in the output value of the tracking signal. However, since it is actually a cylindrical optical system, it is extremely difficult to make its movement and shape ideal, and changes in the output value of the tracking signal do not affect the output value of the focusing signal. Therefore, it is necessary to suppress the movement of the light flux caused by the tracking operation to the extent that it does not affect the focus signal.
It is also necessary to limit the soaking control range.

以上の説明からも明らかな如く、第1図〜第3図のよう
な従来の光ヘッドにあっては、4分割光検出器10及び
シリンドリカルレンズ9の母線衷−向の位置合わせを厳
密に行う必要があり、このため光ヘツド組立て時に時間
がかがシコスト高になるという欠点がある。又、トラッ
キング作動時に回動ミラー4を回動させる時、これによ
ってFocua信号に影響が生じ、7オーカシング制御
を正確に行い得ないという欠点がある。
As is clear from the above explanation, in the conventional optical head shown in FIGS. 1 to 3, the positioning of the four-split photodetector 10 and the cylindrical lens 9 in the generatrix direction is strictly performed. Therefore, there is a disadvantage that it is time consuming and costly when assembling the optical head. Furthermore, when the rotating mirror 4 is rotated during the tracking operation, this affects the focus signal, and there is a drawback that the focus control cannot be performed accurately.

このような欠点を解決するための従来技術として、例え
ば、フーコー法(ナイフェツジ法)でフォーカス信号【
得るとともに、光検出器を光源と共役配置(第3図(4
)中の場所11)することによシトラッキング時の光束
ずれを除去する方法が提案されているが、このような方
法では、光路中のナイフェツジで光束奮遮えぎるため光
量損失が大きいという欠点がある。
As a conventional technique to solve such drawbacks, for example, the Foucault method (Naifezi method) is used to generate a focus signal [
At the same time, the photodetector is arranged conjugately with the light source (Fig. 3 (4)
) A method has been proposed to remove the deviation of the luminous flux at the time of tracking by adjusting the position 11), but such a method has the disadvantage that the luminous flux is blocked by the knife in the optical path, resulting in a large loss of light quantity. There is.

このような欠点はビデオディスクやデジタルオーディオ
ディスクの如き予め映像や背戸等の信号が記録され、ユ
ーザにおいて信号再生のみを行う形式の記録体のみなら
ず、光又は光による熱エネルギーで変化する記録材層を
有しユーザにおいて信号再生及び信号記録の両方を行い
うる記録体についても同様であった。
These drawbacks are not limited to recording media such as video discs and digital audio discs in which images and backdoor signals are recorded in advance and the user only plays back the signals, as well as recording media that change with light or thermal energy caused by light. The same applies to recording bodies that have layers and allow the user to perform both signal reproduction and signal recording.

ところで前記光による熱エネルギーで変化する記録材層
を有し記録及び再生の両方が可能な記録体(光熱磁気記
録体)例えばMnB i+ GdTbFe HTbFe
 +TbDyFe + MnCuB1 + GdTbF
eCo等を使用するものが提案され、その開発が行われ
ている。このような光熱磁気記録体の記録プロセス金以
下第10図を参照して説明する。
By the way, recording bodies (photothermal magnetic recording bodies) having a recording material layer that changes with the thermal energy of the light and capable of both recording and reproduction, such as MnB i+ GdTbFe HTbFe
+TbDyFe + MnCuB1 + GdTbF
A system using eCo etc. has been proposed and is under development. The recording process for such a photothermal magnetic recording medium will be explained below with reference to FIG.

第4図(A)において 集光レンズ60で記録体62上
に集光された光束61は、記録体62の局部を温度上昇
させる。この時、光熱磁気記録体の保磁力は温度に対し
第4図(B)に示すように変化する。即ち、第4図(B
)中では横軸に温度りをとシ縦軸に光熱磁気記録体の保
磁力をとれば、このグラフから明らかな如く、記録体の
温度上昇とともに保磁力が低下し、キューリ温度Tcで
は保磁力IIcが零になる。
In FIG. 4(A), a light beam 61 condensed onto a recording medium 62 by a condensing lens 60 causes a local temperature of the recording medium 62 to rise. At this time, the coercive force of the photothermal magnetic recording medium changes with temperature as shown in FIG. 4(B). That is, Fig. 4 (B
), if we take the temperature on the horizontal axis and the coercive force of the photothermal magnetic recording medium on the vertical axis, as is clear from this graph, the coercive force decreases as the temperature of the recording medium increases, and at the Curie temperature Tc, the coercive force decreases. IIc becomes zero.

そこで、記録体が温度Toまで温度上昇し保磁力がH(
lとなった場合、第4図(5)中破線で示すような周囲
の磁束ループ或は外部からかけられている磁界Heの強
さが前記保磁力HO以上であると、第4図(Qに示す如
く当初図面中上向きの磁界を有していた磁区での磁界方
向が下向きに反転する。従って、各磁区における磁界の
上下方向の向きによシ情報信号を記録体(記録媒体)に
記録することができる。
Then, the temperature of the recording medium rises to the temperature To, and the coercive force increases to H(
If the strength of the surrounding magnetic flux loop or the magnetic field He applied from the outside as shown by the broken line in Fig. 4 (5) is greater than the coercive force HO, then the coercive force HO in Fig. 4 (Q As shown in the figure, the direction of the magnetic field in the magnetic domains that initially had an upward magnetic field in the drawing is reversed downward.Therefore, depending on the vertical direction of the magnetic field in each magnetic domain, information signals can be recorded on the recording medium. can do.

一方、書きこまれた情報の再生は、Kerr効果或はF
araday効果として知られたi気光学効果を利用す
ることによシ行うことができる。
On the other hand, the reproduction of written information is achieved by the Kerr effect or F
This can be done by using the optical effect known as the araday effect.

次に第5図(4)を参照してKerr効果について説明
する。
Next, the Kerr effect will be explained with reference to FIG. 5(4).

とのKerr効呆は光束が磁性媒体から反射する時に起
る現象であシ、光束の入射時の偏光面63が図面中符号
64.65で示す如く角度θに、OKだけ回転する。こ
の偏光面の回転方向は磁区の上向き又は下向きで右又は
左回転になる。従って、反射光束中に偏光板を挿入する
ことにより、偏光面の回転を光の強度変化として取り出
すことができる。
The Kerr effect is a phenomenon that occurs when a light beam is reflected from a magnetic medium, and the polarization plane 63 of the light beam upon incidence is rotated by an angle .theta., as shown by reference numeral 64.65 in the drawing. The direction of rotation of this plane of polarization is clockwise or counterclockwise with the magnetic domain facing upward or downward. Therefore, by inserting a polarizing plate into the reflected light beam, the rotation of the polarization plane can be extracted as a change in light intensity.

そこで、偏光板の透過軸方向を第5図(B)中の符号6
6に示す如く入射光束の偏光面から角度ψだけ傾けてお
くと、この場合に得られる光の強度変化IACは次の式
(1)で与えられ、角度θKに比例した強さの信号が得
られる。
Therefore, the direction of the transmission axis of the polarizing plate is set at 6 in FIG. 5(B).
If the polarization plane of the incident light beam is tilted by an angle ψ as shown in Figure 6, the intensity change IAC of the light obtained in this case is given by the following equation (1), and a signal with an intensity proportional to the angle θK is obtained. It will be done.

i AC電♂(ψ−θK) −cos”(ψ+θK)=
虐2ψ龜20K ・・・(1) 従って、信号の記録は光源を信号に従って明暗変に1す
ることにより行うことができ、信号の再生は一定の光量
(記録体の感度以下の光量)を記録媒体に照射しその反
射光を検出することによシ行うことができる。
i AC electric♂(ψ−θK) −cos”(ψ+θK)=
2ψ龜20K...(1) Therefore, signal recording can be performed by changing the light source to brightness or darkness according to the signal, and signal reproduction can be performed by recording a constant light amount (light amount below the sensitivity of the recording medium). This can be done by irradiating the medium and detecting the reflected light.

前述の如く、このような光熱磁気記録体に使用する場合
でも、従来の光ヘッドでは、4分割光検出器10及びシ
リンドリカルレンズ9の母線方向の位置合わせを厳密に
行わなければならず、この為光ヘツド組立に多大の時間
を必要とし、製造コストが高くなる欠点がある。又、ト
ラッキング動作を行う除に回動ミラー4を振ることによ
l) Focus信号にも影響が及び、フォーカシング
制御が不正確になるという欠点もある。
As mentioned above, even when used in such a photothermal magnetic recording medium, the conventional optical head requires strict alignment of the four-split photodetector 10 and the cylindrical lens 9 in the generatrix direction. The drawback is that it takes a lot of time to assemble the optical head and increases manufacturing costs. In addition, there is also the disadvantage that shaking the rotary mirror 4 while performing a tracking operation also affects the focus signal, making focusing control inaccurate.

〔目的〕〔the purpose〕

本発明の目的は以上述べたような従来の光熱磁気記録体
用光へ、ドの欠点を解消し、トラッキング動作によるフ
ォーカシング制御への影響をなくすことができ、しかも
小型で構造が簡単で安価に製造し得る光熱磁気記録体用
光ヘッドを提供することである。
The purpose of the present invention is to eliminate the disadvantages of the conventional light for photothermal magnetic recording media as described above, to eliminate the influence of tracking operation on focusing control, and to provide a compact, simple, and inexpensive structure. An object of the present invention is to provide an optical head for a photothermal magnetic recording medium that can be manufactured.

本発明の特徴は、反射光を分割して得られた第1の光束
と第2の光束の夫々を偏光板を通した後光検出器で受光
するよう構成し、それらの電気信号の差分信号を周波数
分別器に通し低周波成分tもってフォーカシング制御を
行うとともに、信号トラックと直交する方向の光分布の
変化を検出して得られた電気信号でトラッキング制御す
ることによシ上記目的を達成することである。
A feature of the present invention is that each of the first and second beams obtained by dividing the reflected light is received by a photodetector after passing through a polarizing plate, and a difference signal of the electrical signals is generated. The above objective is achieved by performing focusing control using the low frequency component t passed through a frequency separator, and tracking control using the electrical signal obtained by detecting changes in the light distribution in the direction perpendicular to the signal track. That's true.

〔実施例の説明〕[Explanation of Examples]

以下第6図〜第12図を参照して本発明の詳細な説明す
る。
The present invention will be described in detail below with reference to FIGS. 6 to 12.

第6図(4)は本発明による光熱磁気記録体用光ヘッド
の全体構成を原理的に示す図であシ、半導体レーデの如
き光源12から発せられた光束は、偏光ビームスシリツ
タ−13で反射され、集光レンズ15によシ微小光スポ
ットとして記録体16上に集光する。記録体16によシ
反射された光束は、再び集光レンズ15及び偏光ビーム
スシリツタ−13ft透過し、光分割器22で2分割さ
れた後、夫々の偏光板70.71を通過ししかる後火々
の2分割光検出器23.24に到達する。
FIG. 6 (4) is a diagram showing the principle of the overall structure of the optical head for photothermal magnetic recording medium according to the present invention, in which a light beam emitted from a light source 12 such as a semiconductor radar is transmitted to a polarizing beam sinter 13. The light is reflected and focused by the condenser lens 15 onto the recording medium 16 as a minute light spot. The light beam reflected by the recording medium 16 passes through the condenser lens 15 and the polarizing beam slittor 13ft again, is split into two by the light splitter 22, and then passes through the respective polarizing plates 70 and 71. The flames reach the two-split photodetector 23,24.

前記光分割器22は、第6図(B)に示す如く、光束の
透過部18,18A及び光束の反射部19を有し、光束
2oはこの光分割器22に対し図示のように分布する。
As shown in FIG. 6(B), the light splitter 22 has light flux transmission parts 18, 18A and a light flux reflection part 19, and the light flux 2o is distributed with respect to the light splitter 22 as shown in the figure. .

又、記録体16の信号トラックの方向は同図中T −T
’で示す方向に設定されている。尚、前記光束の反射部
19は全反射ミラーに限定されるものではなく適宜構成
することができる0又、この反射部19と前記透過部1
8,18Aとは互いに入れ換えて構成することもできる
◎第6図(C)及び(ロ)は前記2分割光検出器23゜
24上の光束分布、受光素子の分割線及び信号トラック
方向の関係を示す図である。2分割光検出器23上の光
分布は、第6図(Qに示す如く、光分割器22の透過部
18.18Aを透過してきた光束である為上下に別れた
半円状になる。分割線21は図示の如く光分布が受光素
子A、BVC4たがるように配置され、信号トラック方
向T −T’と一致する方向に配置されている。一方、
2分割光検出器24上の光分布は、第6図(ロ)に示す
如く、光分割器22の反射部19からの反射光である為
カプセル状の断面形状を鳴する。この場合の分割線21
及び信号トラック方向T −T’の1杓係は第6図Ωの
場合と同じである。
Further, the direction of the signal track of the recording body 16 is T-T in the figure.
' is set in the direction shown. Note that the light beam reflecting section 19 is not limited to a total reflection mirror, and may be constructed as appropriate.
8 and 18A can also be configured by replacing them with each other. ◎Figures 6 (C) and (B) show the relationship between the luminous flux distribution on the two-split photodetector 23 and 24, the dividing line of the light receiving element, and the signal track direction. FIG. The light distribution on the two-split photodetector 23, as shown in FIG. The line 21 is arranged so that the light distribution is directed towards the light receiving elements A and BVC4 as shown in the figure, and is arranged in a direction that coincides with the signal track direction T-T'.On the other hand,
The light distribution on the two-split photodetector 24, as shown in FIG. 6(b), has a capsule-like cross-sectional shape because it is the reflected light from the reflection section 19 of the light splitter 22. Parting line 21 in this case
and the signal track direction T-T' are the same as in the case of Ω in FIG.

以上第6図について説明した光年系によシフォ態にある
時、第6図(4)中で実線で示す如く、光臨12で発せ
られた光束は記録体16盆介して2公開光検出器23.
24に到達する。この場合、光分割器22上の光分布は
第6図(B)に示すようになシ、各光検出器23.24
の夫々の受光素子A。
When the light-year system described above in FIG. 23.
Reach 24. In this case, the light distribution on the light splitter 22 is as shown in FIG.
Each light receiving element A.

B及びC,Dの受光量に応じた電気信号に基ずいて(A
+B ) −(C+D )の出力値を演算し、その出力
を合焦時の信号レベルとして設定する0次に、例えば記
録体16が面振れ等の縦振れを起こし第6図(A)中点
纏で示す16′の位置に変移すると反射光束は同図中破
線で示すようになる・この場合には、一方の検出器23
への光景が減じるとともに他方の検出器24への光量が
増加し、従って(A+B )−(C+D )の出力f直
は減じる。
Based on electrical signals according to the amount of light received by B, C, and D (A
+B) -(C+D) The output value is calculated and the output is set as the signal level at the time of focusing. For example, when the recording medium 16 suffers vertical vibration such as surface vibration, the center point of FIG. 6 (A) occurs. When moving to the 16' position shown by the line, the reflected light beam becomes as shown by the broken line in the figure.In this case, one of the detectors 23
As the field of view to the other detector 24 decreases, the amount of light to the other detector 24 increases, and therefore the output f of (A+B)-(C+D) decreases.

これとは逆に、記録体16が前記破線で示す方向とは反
対の方向へ変移した場合には、(A十B)−(C+D)
の出力値は増加する。このように各2分割光検出器23
.24の受光素子A、B及びC,D夫々の受光量に応じ
た電気信号に基すき(A+B )−(C+D )の出力
値を演算することによシFocus誤差の信号が得られ
、これに基いてフォーカス状態を検出することができる
・次に、第6図の光学系によシ信号トラック上からのス
ポットのズレの補正即ちトラッキング信号の検出及びこ
れに基ずくトラッキング制御は、以下第7図について説
明する原理によって行うことができる。第7図は、記録
体の信号トラックが溝部で形成されている場合を示す。
On the contrary, when the recording body 16 moves in the direction opposite to the direction indicated by the broken line, (A + B) - (C + D)
The output value of increases. In this way, each two-split photodetector 23
.. A focus error signal is obtained by calculating the output value of the gap (A+B) - (C+D) based on the electrical signals corresponding to the amount of light received by each of the 24 light receiving elements A, B, C, and D. The focus state can be detected based on the optical system shown in FIG. 6. Next, correction of the spot deviation from the signal track by the optical system shown in FIG. This can be done according to the principles described with reference to the figures. FIG. 7 shows a case where the signal tracks of the recording medium are formed by grooves.

第7図中、上欄は各2分割光検出器23.24の受光面
、中欄はこれらファーフィルド中に現造された検出器上
の光量分布、下′41■は光ス4?ットと信号トランク
との相対位置関係を夫々示す。
In Fig. 7, the upper column shows the light-receiving surface of each of the two-split photodetectors 23 and 24, the middle column shows the light intensity distribution on the detectors fabricated in these far fields, and the lower column shows the light beam 4? The relative positional relationship between the cut and the signal trunk is shown respectively.

第7図■は光スポットが信号トラック上に乗っている場
合のこれらの状態を示す図であり、第7図(B)は光ス
=f’yトが左側にずれた場合、第7図(C>は光ス;
J?ソ)が右側にずれた場合の夫々の状態を示す図でお
る。図から明らかな如く、光スポットと信号トラックと
の位置関係により光検出器23゜24上の光強度分布は
夫々の中欄に示すように変化する。これらの変化は、す
でに周知であるため特に説明上行なわない。従って、各
光検出器の受光素子の光量に応じて(A+C)−(B+
D )の出力値を演算することにより、これをトラッキ
ング信号として使用することができる。
Fig. 7 (■) shows these states when the light spot is on the signal track, and Fig. 7 (B) shows the state in which the light spot is shifted to the left. (C> is light;
J? This is a diagram showing the respective states when (g) is shifted to the right. As is clear from the figure, the light intensity distribution on the photodetectors 23 and 24 changes as shown in the respective middle columns depending on the positional relationship between the light spot and the signal track. Since these changes are already well known, they will not be described specifically. Therefore, depending on the light intensity of the light receiving element of each photodetector, (A+C) - (B+
By calculating the output value of D), this can be used as a tracking signal.

又、溝でトラックが形成されない場合、上記溝部からの
光学変化は得られないので、各光検出器23.24を記
録体の結像面即ち第6図囚中符号72.73で示す位置
に配置し、信号パターy像の動きによる第7図の中欄に
示す如き光分面強度の変化を検出することによシ、トラ
ッキング制御を行う乙ともできる。
Furthermore, if no track is formed by the groove, no optical change can be obtained from the groove, so each photodetector 23, 24 is placed at the imaging plane of the recording medium, that is, at the position indicated by numerals 72, 73 in FIG. 6. It is also possible to perform tracking control by detecting changes in the optical plane intensity as shown in the middle column of FIG. 7 due to the movement of the signal pattern image.

尚、以上第6図及び第7図について説明しまた本発明の
光ヘッドの構成配置のうち、フォーカクンダ信号・の検
出方法についてはこれと類似した方法が特公昭53−4
3302号に記載されている。しかしながら、この従来
技術では2個の光検出器へ向う元旦の差が零の時合焦と
なるように設定されている。従って、フォーカシング信
号検出法のみ対比したとしても、このような従来技術で
は、光量を各光検出器に等分に分ける必要があり、光分
割器の非反射部及び反射部の面積比の許容誤差(+:極
めて小さく押えなければならないという問題がある。こ
の為、製作が困難でコスト高になる欠点がおる。又、光
分割器の位置指度についても厳しい精度が要求され、製
造及び組立が困難であるとい更に、前記の如くこの従来
技術ではトラッキング信号検出手段を備えておらず、光
学的情報記録体用の光ヘッドとしては極めて不充分なも
のであるO これに対し、第6図及び第7図の実施例では、光分割器
の反射面が第6図(B)に示す如くストライプ上であシ
、その方向はトラック方向と垂直であるので、次のよう
な従来技術に比べ極めて有利な作用効果を奏することが
できる。
6 and 7 above, and a method similar to this for detecting the focusakunda signal in the configuration and arrangement of the optical head of the present invention is described in Japanese Patent Publication No. 53-4.
No. 3302. However, in this prior art, the setting is such that focusing occurs when the difference between the two photodetectors on New Year's Day is zero. Therefore, even if only the focusing signal detection method is compared, in such conventional technology, it is necessary to equally divide the amount of light to each photodetector, and the tolerance of the area ratio of the non-reflective part and the reflective part of the light splitter is limited. (+: There is a problem that it must be kept extremely small. This has the disadvantage of making it difficult to manufacture and increasing the cost. Also, strict accuracy is required for the positional index of the light splitter, making it difficult to manufacture and assemble. In addition, as mentioned above, this conventional technology does not have a tracking signal detection means, and is extremely inadequate as an optical head for an optical information recording medium.In contrast, as shown in FIGS. In the embodiment shown in FIG. 7, the reflective surface of the light splitter is on a stripe as shown in FIG. Advantageous effects can be achieved.

即ち、トラッキング信号により集光レンズ15をトラッ
クに対し直交方向に移動させながらトラッキングを行う
場合、第3図の場合と類似した原理により光分割器22
上で光束の移動が生じるが、本実施例によれば、第8図
に示す如く、光束が実線の位置から破線の位置へ動いた
としても、反射面ストライブ方向、信号トラック方向T
 −T’、及び集光レンズ15の位置補正方向が第6図
で説明したような位置関係におかれているので、各光検
出器23.24に分割される光量には変化が生じ動が生
じても、フォーカス信号の検出を(A十B)−(C+D
)の出力値の変化に基すいて行うので、光束防各光検出
器から飛びださない限シ、トラッキング動作はフォーカ
ス信号に何らの影響をも与えない。従って、トラッキン
グ信号検出とフォーカス信号検出と何ら制約を受けるこ
となく所望の条件下で行うことができ、これらの検出信
号の精度を高めることができ、信頼性に優れた制御を容
易に実現することができる。
That is, when tracking is performed by moving the condensing lens 15 in a direction perpendicular to the track based on a tracking signal, the light splitter 22 is
However, according to this embodiment, as shown in FIG. 8, even if the light flux moves from the position of the solid line to the position of the broken line, the movement of the light flux occurs in the reflection surface stripe direction and the signal track direction T.
-T' and the position correction direction of the condensing lens 15 are placed in the positional relationship as explained in FIG. Even if the focus signal is detected by (A + B) - (C + D
), the tracking operation has no effect on the focus signal unless the light beam jumps out of each photodetector. Therefore, tracking signal detection and focus signal detection can be performed under desired conditions without any restrictions, the accuracy of these detection signals can be increased, and highly reliable control can be easily realized. I can do it.

以上の如く、第6図及び第7図について説明した本発明
の光学系によれば、自動焦点制御(オートフォーカス)
及び自動信号トラック追従制御(オートトラッキング)
の相方を容易にしかも高い精度で行いうる光熱磁気記録
体用光ヘッドが得られる。
As described above, according to the optical system of the present invention explained with reference to FIGS. 6 and 7, automatic focus control (autofocus)
and automatic signal track following control (auto tracking)
An optical head for a photothermal magnetic recording medium is obtained which can easily perform the above operations with high accuracy.

第9図は本発明の光熱磁気記録体用光ヘッドの他の実施
例を示す図であシ、特に小型化が可能な構成配置を例示
する図である。
FIG. 9 is a diagram showing another embodiment of the optical head for a photothermal magnetic recording medium of the present invention, and in particular is a diagram illustrating a configuration arrangement that allows miniaturization.

第9図において、光源3oがらの光束は偏光ビー ムス
f !Jツター31にょシ反射され、集光レンズ33で
記録体34上に微小光スポットとして集光される。反射
光束は集光レンズ33を通シ、偏光ビームスノリツタ−
31f、透過する。この偏光ビームスシリツタ−31の
端面(出側端面)には例えばプリズムの如き光分割素子
35が一体的に設けられておシ、光束の一部はこの光分
割素子(前記光分割器と同じ機能を有する)35によシ
進行方向金変え、残シの光束は当初の進行方向のま\偏
光ビームスプリッター31全通過する。これら微小角度
進行方向を変えた光束(第1の光束及び第2の光束)が
夫々別の偏光板75.76に通過した後1個の4分割光
検出器36に入射する。
In FIG. 9, the light flux from the light source 3o is a polarized beam f! The light is reflected by the J-shaped star 31 and focused by the condenser lens 33 onto the recording medium 34 as a minute light spot. The reflected light flux passes through the condensing lens 33 and is passed through the polarizing beam snoritzer.
31f, transparent. A light splitting element 35 such as a prism is integrally provided on the end face (outgoing end face) of this polarizing beam series filter 31. (having a function) 35 changes the traveling direction, and the remaining light beam remains in the original traveling direction and passes through the polarizing beam splitter 31. These light beams (the first light beam and the second light beam) whose traveling directions are changed by a small angle pass through separate polarizing plates 75 and 76, respectively, and then enter one four-split photodetector 36.

このように本実施例では偏光ビームスプリッタ−31及
び光分割器35が第9図(BJに示す如く一体化されて
おシ、これによって光ヘッドの小型化を実現することが
できる・ 前記光検出器36は第9図(C)に示す如く4分割光検
出器であり、各受光累子A、B、C,D上の光束分布(
斜線部で示す部分)、トラック方向T −T’及び各受
光素子間の分割線の相対位置関係は図示の通シである。
As described above, in this embodiment, the polarizing beam splitter 31 and the light splitter 35 are integrated as shown in FIG. 9 (BJ), thereby realizing miniaturization of the optical head. The device 36 is a four-split photodetector as shown in FIG. 9(C), and the luminous flux distribution (
The relative positional relationship between the diagonally shaded portion), the track direction T-T', and the dividing line between each light receiving element is as shown in the figure.

第9図に)に示した各偏光板75.76は、夫々の透過
軸を第5図(B)に示した角度ψの位置及び(90°−
ψ)の各位置に対応するよう配置される。
Each of the polarizing plates 75, 76 shown in FIG. 9) has its transmission axis at the angle ψ shown in FIG.
ψ).

一方の偏光板75の透過軸を前述の如く角度ψに配置し
た時に得られる信号は、バイアス成分も考慮にいれると
次式によって与えられる。
The signal obtained when the transmission axis of one polarizing plate 75 is arranged at the angle ψ as described above is given by the following equation, taking into account the bias component.

I75 = I (1(as”ψ+CQS”(ψ−θK
 )−−2(ψ十θK))= Io (2+ 2cos
2ψ十虐2ψ自20K〕 ・・・(2)又、他方の偏光
板7−6の透過軸t(9o0−ψ)に配置した時に得ら
れる信号は、同じくバイアス成分全考慮すると次式(3
)で与えられる。
I75 = I (1(as"ψ+CQS"(ψ-θK
)−−2(ψ1θK))=Io (2+ 2cos
2ψjuku2ψself20K] ... (2) Also, when the other polarizing plate 7-6 is placed on the transmission axis t (9o0-ψ), the signal obtained when all bias components are taken into consideration is expressed by the following equation (3
) is given by

l76=I’6(cas”(90° 9’)+cos”
(90’−ψ+θx) 005”(90’−ψ−θK)
)=I’o[22cas2 ψ−th2 ψ5in2 
θK 〕 ・・・(3ン上記各式において、Io及び■
I、は光束を分割した後の夫々の光量である。
l76=I'6(cas"(90° 9')+cos"
(90'-ψ+θx) 005"(90'-ψ-θK)
)=I'o[22cas2 ψ−th2 ψ5in2
θK ] ... (3) In each of the above formulas, Io and ■
I is the amount of light after dividing the luminous flux.

これらの光量全光電変換して信号を得る時のゲインを夫
々G 、 G’とすると、前記各光量に対して得られる
電気信号V75及びV76は次の式(4)及び(5)に
よって与えられる。
If the gains when obtaining signals through full photoelectric conversion of these amounts of light are respectively G and G', the electric signals V75 and V76 obtained for each of the above amounts of light are given by the following equations (4) and (5). .

V75=I75−G=I、)G・(2+2CfB2ψ十
龜2ψsin 2θx) =(4)V76=I76・G
’=I’oG’ 〔4−)−ψ−5ln2ψ5ln20
に:] −’(h)θKt時間の関数として考慮して、
これらの式(4)及び(5)によって与えられる電気値
4 V75及びV76の出力をグラフとして示せば第1
0図囚及び(B)のようになる。これらのグラフにおい
ては、横軸に時間をとり、縦軸に電気信号V75及びV
76の電圧値1示す。
V75=I75-G=I,)G・(2+2CfB2ψ1㎜2ψsin 2θx) =(4)V76=I76・G
'=I'oG' [4-)-ψ-5ln2ψ5ln20
:] −'(h)θKt Considering as a function of time,
Electrical value 4 given by these equations (4) and (5) If the outputs of V75 and V76 are shown as a graph, the first
It will look like Figure 0 and (B). In these graphs, the horizontal axis represents time, and the vertical axis represents electrical signals V75 and V.
76 voltage value 1 is shown.

尚、第10図(4)において、振幅aはI。G51n2
ψS石2(lxに等しく、バイアス成分すは工。GC7
+ 2cxs2ψ〕である。又、第10図(B)におい
て振幅a′はI′oGl+I+129龜2θにであ月バ
イアス成分b′は工′。”〔22箕2ψ〕である。
In addition, in FIG. 10 (4), the amplitude a is I. G51n2
ψS stone 2 (equal to lx, bias component sum. GC7
+2cxs2ψ]. In addition, in FIG. 10(B), the amplitude a' is I'oGl+I+129×2θ, and the bias component b' is I′oGl+I+129×2θ. ” [22 min 2 ψ].

ここで注目すべきは式(4)と式(5)とでは、信号振
幅の正負が逆転していることである。そこでこれらの信
号の差■をめると次の式(6)のようになる。
What should be noted here is that the sign of the signal amplitude is reversed between equation (4) and equation (5). Therefore, by calculating the difference (■) between these signals, the following equation (6) is obtained.

V=V75−v76=N I、G−I’6G’) +H
cos2ψ(I。G+I′oG’ )+CIoG+I’
oG’ )gln2ψ廁2θK −(6)ここで、I 
oG ”’ I’6G’ rψ=4°5度とするとこの
信号の差Vは次の式(7)のようになる。
V=V75-v76=N I, G-I'6G') +H
cos2ψ(I.G+I'oG')+CIoG+I'
oG' ) gln2ψ2θK − (6) where, I
oG '''I'6G' When rψ=4°5 degrees, the difference V between these signals is expressed by the following equation (7).

V = 2 I 。G51n2θK ’・・(7)この
式(7)の信号の差■によれば、バイアス成分がなく、
しかも式(4)又は式(5)に比べ信号振幅が2倍の信
号成分のみが得られ、この状態をグラフで示せば第10
図(C)のようになる。
V = 2I. G51n2θK'...(7) According to the signal difference (■) in equation (7), there is no bias component,
Moreover, only a signal component with double the signal amplitude compared to Equation (4) or Equation (5) is obtained.
The result will be as shown in Figure (C).

このようにバイアス成分を消去することにより、記録体
の反射率のムシや光源の光量変動など偏光に関与しない
ノイズ成分が電気信号に及ぼす影響上除去することがで
き、従ってS/Hに優れた信号再生を行うことができる
By erasing the bias component in this way, noise components that are not related to polarization, such as irregularities in the reflectance of the recording medium and fluctuations in the light intensity of the light source, can be removed due to their influence on the electrical signal. Signal regeneration can be performed.

次に、情報信号S、オートフォーカス信号AF及びオー
トトラッキング信号ATを得るための電気処理系の1例
を、第11図+C#照して説明する・即ち、受光素子A
、B、C,Dの夫々から得られる電気18号は次のよう
にして処理される・(’i’f報信号3Q得るに賑して
は、A+11の・信号企増すリ1器80で適当なゲイン
で増幅するとともに、C+Dの信号全増幅器81で適当
なゲインで増幅し、これらの信号を差動増幅器82に入
力してその差分を取り、しかる後周波数分別器83で信
号成分帯域を取り出すことにより情報信号Sが得られる
Next, an example of an electrical processing system for obtaining the information signal S, the autofocus signal AF, and the autotracking signal AT will be explained with reference to FIG.
, B, C, and D are processed in the following manner. In addition to amplifying with an appropriate gain, the C+D signal amplifier 81 amplifies the signal with an appropriate gain. These signals are input to a differential amplifier 82 to take the difference, and then a frequency separator 83 separates the signal component band. By taking it out, an information signal S is obtained.

オートフォーカス信号AFを得るに際しては、前記差動
増幅器82で得られる差分を前記周波成分別器83に導
びき、該周波成分別器で低周波成分を取シ出すことによ
シオートフォーカス信号AFが得られる。記録体の面精
度及び面ブレを考慮した場合、通常では2KHz程度以
下の周波数成分を取り出すことによシこのオートフォー
カス信号AFが得られる。
When obtaining the autofocus signal AF, the difference obtained by the differential amplifier 82 is guided to the frequency component separator 83, and the low frequency component is extracted by the frequency component separator 83 to obtain the autofocus signal AF. is obtained. Considering the surface accuracy and surface wobbling of the recording medium, this autofocus signal AF is normally obtained by extracting a frequency component of approximately 2 kHz or less.

オートトラッキング信号ATを得るに際しては、光検出
器の受光面上に信号・でターンが結像されている場合に
は、受光素子A、Bと受光素子C,Dとではそれらの面
上の光分布が明暗逆転しているので、(A+C)及びC
B±D )の信号から差動増幅器84でその光分を取る
ことによりオートトラッキング信号が得られる。
When obtaining the auto-tracking signal AT, if a signal turn is imaged on the light-receiving surface of the photodetector, light-receiving elements A and B and light-receiving elements C and D detect the light on those surfaces. Since the distribution is reversed, (A+C) and C
An auto-tracking signal is obtained by extracting the optical component from the signal B±D) using a differential amplifier 84.

尚、記録体上にプレグルーブがある場合には、第7図を
参照して説明した方法と同じ原理で(A−)−C)−(
13+D)の出カイ直を検出することによシトラッキン
グ信号が得られるっ 2139図(B)の偏光ビームスグリツタ−31と光分
割器35と一体化した構造の代9に使用しうるその(l
!+の各1重の捕造例としては、第12図囚〜Φ)に示
すような構造のものがあり、これら第12図にカモすイ
、4造のものによっても第6図及び第7図について説明
した実施例によって得られる作用効果の他、第9図■の
実施例によって得られる光ヘッドの小型化を達成するど
とができる。
If there is a pregroove on the recording medium, (A-)-C)-(
A tracking signal can be obtained by detecting the direct output of (13+D). l
! Examples of single-layer captures of + include structures as shown in Figure 12 - Φ). In addition to the effects obtained by the embodiment described with reference to the figures, it is possible to achieve miniaturization of the optical head obtained by the embodiment shown in FIG.

第121囚は、偏光ビームスプリッタ−50の1面52
の一部に反射鏡51(i−設け、該反射鏡を併設するこ
とによシ光分割を行う構造を示す。
The 121st prisoner is the first surface 52 of the polarizing beam splitter 50.
A structure is shown in which a reflecting mirror 51 (i-) is provided in a part of the area, and light splitting is performed by installing the reflecting mirror.

第12図(B)は、偏光ビームスプリッタ−50の1面
52にブレーズド回折格子53’7設け、この回折作用
r利用して光分割上行う構成を示す。
FIG. 12(B) shows a configuration in which a blazed diffraction grating 53'7 is provided on one surface 52 of the polarizing beam splitter 50, and light is split using this diffraction action r.

第12図(C)は、偏光ビームスプリッタ−50の1面
にホログラフィクな分割素子54を設けて光分割【行う
ものである。この構成においては、光分割器54の端面
にピッチの細かな回折格子55が設りられ、回折光の回
折角を充分大きく取り分割器55の空気との境界面で全
反射を起こさせ、その端面よ)回折光を出射させるよう
構成されている。
In FIG. 12(C), a holographic splitting element 54 is provided on one surface of a polarizing beam splitter 50 to perform light splitting. In this configuration, a fine-pitch diffraction grating 55 is provided on the end face of the light splitter 54, and the diffraction angle of the diffracted light is made sufficiently large to cause total reflection at the interface between the splitter 55 and the air. The end face) is configured to emit diffracted light.

第12図の)は、偏光ビームスプリッタ−50の1面5
2に半レンズ又は半7レネルレンズなどの集光作用のあ
る素子を設けることにより光分割を行うものである。
) in FIG. 12 is one surface 5 of the polarizing beam splitter 50.
Light is divided by providing an element with a light condensing function, such as a half lens or a half 7-lens lens, on the lens 2.

以上第121囚〜(D)に示したような光分割益金使用
することによっても、第6図及び第7図について説明し
た実施例或は第9図について説明した実施例の場合と同
様の作用効果を達成することができ、史に偏光ビームス
グリツタ−と光分割器と一体化することにより光熱磁気
記録体用光ヘッドの小型化忙達成することができる。
By using the light division profits as shown in Sections 121-(D) above, the same effect as in the embodiment explained in FIGS. 6 and 7 or the embodiment explained in FIG. 9 can be obtained. By integrating the polarizing beam sinter and the light splitter, it is possible to achieve miniaturization of the optical head for photothermal magnetic recording media.

尚・第9図(A)に示す実施例の配置において、光源3
0からの発散光を平行光にする為、光源30と偏光ビー
ムスプリッタ−31との間にコリメータレンズを設けた
シ、偏光ビームスグリッター31と光検出器36との間
に他の集光レンズを設けるといった宿成會採用すること
ができ、更に偏光ビームスノリツタ−31と集光レンズ
33との間にコリメータレンズを設けるという配置構成
を採用するとともできる。このような配置構成によって
も、以上説明した各実施例の場合と実質上同様の作用効
果を達成することができる。
In addition, in the arrangement of the embodiment shown in FIG. 9(A), the light source 3
In order to convert the diverging light from zero into parallel light, a collimator lens is provided between the light source 30 and the polarizing beam splitter 31, and another condensing lens is provided between the polarizing beam splitter 31 and the photodetector 36. In addition, a collimator lens may be provided between the polarizing beam snoritzer 31 and the condenser lens 33. With such an arrangement, it is possible to achieve substantially the same effects as in each of the embodiments described above.

以上第6図及び第7図、第9図、並びに第12図を参照
して説明した各実施例によれば、従来の光熱磁気記録体
用光ヘッドに比べ、サーボ(自動制御)系を零メソッド
(光量差が零の時全サーボの目標値に設定する)法を採
用する必要がなく、又シリンドリカルレンズも削除する
ことができるので、各素子の位置精度及び寸法精度を比
較的緩くすることができ、これによって製造コスト?低
減することができる。
According to the embodiments described above with reference to FIG. 6, FIG. 7, FIG. 9, and FIG. There is no need to adopt the method (setting the target value for all servos when the difference in light intensity is zero), and the cylindrical lens can also be removed, so the positional accuracy and dimensional accuracy of each element can be relatively relaxed. Can this reduce manufacturing costs? can be reduced.

又、以上の各実施例では光分子II素子の反射部及び非
反射部ヲ第6図(B)に示す如くストライプ状とすると
ともに信号トラックの方向T−T’iこのストライプと
直交方向に設定したので、トラッキング動作によるフォ
ーカス信号への影響を除去することができ、これによっ
てオートフォーカス及びオートトラッキングの制御を容
易にしかも確実に実施することができる。
Furthermore, in each of the above embodiments, the reflective portion and non-reflective portion of the photomolecular II device are formed into stripes as shown in FIG. 6(B), and the direction of the signal track T-T'i is set perpendicular to the stripe. Therefore, the influence of the tracking operation on the focus signal can be removed, and thereby autofocus and autotracking can be controlled easily and reliably.

更に、第9図及び第12図に示した実施例によれば、偏
光ビームスグリツタ一端面に光分割素子を一体的に設け
たので、独立した光分割器を使用する場合に比べ、必要
スペースを削減することができ、もって光ヘッドの小型
化を達成することができる。
Furthermore, according to the embodiments shown in FIGS. 9 and 12, the light splitting element is integrally provided on one end face of the polarizing beam splitter, which requires less space than when using an independent light splitter. This makes it possible to reduce the size of the optical head.

〔効果〕 以上の説明から明らかな如く、本発明によれば、トラッ
キング動作によるフォーカス信号への影響を除去するこ
とができ、もってオートフォーカス及びオートトラッキ
ングの各制御’C8易にしかも正確に行うことができ、
更に各素子の位置精度及び寸法精度につき従来の光ヘッ
ドはど厳しい精度を必要とせず、もって製造コストを低
減しうる光熱磁気記録体用光ヘッドが得られる。
[Effects] As is clear from the above description, according to the present invention, it is possible to eliminate the influence of the tracking operation on the focus signal, and thereby each control of autofocus and autotracking can be performed easily and accurately. is possible,
Furthermore, an optical head for a photothermal magnetic recording medium can be obtained which does not require the positional accuracy and dimensional accuracy of each element to be as severe as conventional optical heads, thereby reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光ヘッドの光学系の配置を例示する説明
図、第2図に)〜(ロ)は従来の光ヘッドにおける4分
割光検出器及びその受光面上の光分布の状態を例示する
説明図、第3図(4)及び(B)は従来の光ヘッドにお
けるトラッキング補正による光束移動の状態を例示する
説明図、第4図(4)〜(C)は光熱磁気記録体への記
録原理を示す説明図、第5図(4)及び(B)は光熱磁
気記録体の再生原理を示す説明図、第6図囚〜(ロ)は
本発明による光熱磁気記録体用光ヘッドの一実施例を示
す説明図、第7図(N〜(C)はトラッキングずれによ
る光検出器面上の光分布の変化を例示する説明図、第8
図は本発明による光熱磁気記録体用光ヘッドに使用する
光分割器を例示する説明図、第9図に)〜(C)は本発
明の光熱磁気記録体用光ヘッドの他の実施例勿示す、第
10図(5)〜(CJは本発明の光熱磁気記録体用光ヘ
ッドにおいて得られる再生信号を例示するグラフ、第1
1図は本発明の光熱磁気記録体用光ヘッドを使用すり図
、第12図(4)〜(ハ)は本発明の光熱磁気記録体用
光へ、ドにおいて使用される光分割器の各種の構造例を
示す説明図である。 16.34・・・光熱磁気記録体、15.33・・・集
光レンズ、13,31.50・・・偏光ビームスプリッ
タ−122,35・・・光分割器、70.71゜75.
76・・・偏光板、23,24.36・・・光検出器、
83・・・周波数分別器、A、B、C,D・・・光検出
器の受光素子、T −T’・・・信号トラックの方向、
AF・・・オートフォーカス信号、AT・・・オートト
ラッキング信号。 第1図 第 2 図 113図 (Bン 第4図 (C) 第5図 第 6 図 1 (B) (C) (D) T T T T’ T’ T’ 第7図 第8図 ■ ↑ 119 図 910図 昨聞 @ 11図 第12図
Fig. 1 is an explanatory diagram illustrating the arrangement of the optical system of a conventional optical head, and Figs. Figures 3 (4) and (B) are explanatory diagrams illustrating the state of light flux movement due to tracking correction in a conventional optical head, and Figures 4 (4) to (C) are diagrams illustrating the movement of light flux to the photothermal magnetic recording medium. FIGS. 5(4) and (B) are explanatory diagrams showing the reproducing principle of a photothermal magnetic recording medium. FIGS. 7 (N to (C) are explanatory diagrams illustrating changes in light distribution on the photodetector surface due to tracking deviation;
The figure is an explanatory diagram illustrating a light splitter used in the optical head for a photothermal magnetic recording medium according to the present invention, and FIGS. 10 (5) to (CJ are graphs illustrating reproduced signals obtained in the optical head for a photothermal magnetic recording medium of the present invention, the first
Figure 1 is a diagram showing the use of the optical head for photothermal magnetic recording media of the present invention, and Figures 12 (4) to (c) are various types of optical splitters used in the optical head for photothermal magnetic recording media of the present invention. FIG. 2 is an explanatory diagram showing an example of the structure. 16.34... Photothermal magnetic recording medium, 15.33... Condenser lens, 13, 31.50... Polarizing beam splitter 122, 35... Light splitter, 70.71° 75.
76...Polarizing plate, 23,24.36...Photodetector,
83... Frequency separator, A, B, C, D... Light receiving element of photodetector, T-T'... Direction of signal track,
AF: autofocus signal, AT: autotracking signal. Figure 1 Figure 2 Figure 113 (B-Figure 4 (C) Figure 5 Figure 6 Figure 1 (B) (C) (D) T T T T'T'T' Figure 7 Figure 8 ■ ↑ 119 Figure 910 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] (1)集光レンズによシ集光した光を記録体に照射し、
記録体からの反射光束を光分割手段で第1の光束と第2
の光束とに分割し、これら第1及び第2の光束の夫々を
偏光板を通過させた後光検出器で受光し、それらの電気
信号の差分信号を周波数分別器に通し低周波成分をもっ
てフォーカシング制御を行い、第1及び第2の光束の記
録体の信号トランクと直焚する方向の元分布の変化を前
記光検出器で検出しその電気信号でトラッキング制御す
ることを特徴とする光熱磁気記録体用光へ。 ド。
(1) Irradiate the recording medium with light focused by a condensing lens,
The light beam reflected from the recording medium is divided into a first beam and a second beam by a light splitting means.
The first and second beams are each passed through a polarizing plate and then received by a photodetector, and the difference signal between these electrical signals is passed through a frequency separator and the low frequency components are focused. The photothermal magnetic recording is characterized in that the photodetector detects changes in the original distribution of the first and second beams of the recording medium in the direction of signal trunk and direct burning, and the tracking control is performed using the electric signal. To body light. Do.
JP14503983A 1983-08-10 1983-08-10 Optical head for photothermic magnetic recording medium Pending JPS6038740A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14503983A JPS6038740A (en) 1983-08-10 1983-08-10 Optical head for photothermic magnetic recording medium
DE19843429382 DE3429382A1 (en) 1983-08-10 1984-08-09 OPTICAL HEAD
US06/640,084 US4654839A (en) 1983-08-10 1984-08-10 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503983A JPS6038740A (en) 1983-08-10 1983-08-10 Optical head for photothermic magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6038740A true JPS6038740A (en) 1985-02-28

Family

ID=15375977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503983A Pending JPS6038740A (en) 1983-08-10 1983-08-10 Optical head for photothermic magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6038740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462848A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Magneto-optical head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343302A (en) * 1976-09-29 1978-04-19 Japanese National Railways<Jnr> Vehicle accelerating apparatus
JPS58161150A (en) * 1982-03-19 1983-09-24 Akai Electric Co Ltd Optical pickup

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343302A (en) * 1976-09-29 1978-04-19 Japanese National Railways<Jnr> Vehicle accelerating apparatus
JPS58161150A (en) * 1982-03-19 1983-09-24 Akai Electric Co Ltd Optical pickup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462848A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Magneto-optical head

Similar Documents

Publication Publication Date Title
JP2902415B2 (en) Optical head
JP2725632B2 (en) Optical head device
US4682316A (en) Optical information processing apparatus for light beam focus detection and control
JP3276132B2 (en) Light head
JPS6117103A (en) Polarizing beam splitter
JPH06101153B2 (en) Signal detector for magneto-optical disk
JPH02265036A (en) Optical head
JPH0690817B2 (en) Light pickup
JP2672618B2 (en) Optical information recording / reproducing device
JPS6038740A (en) Optical head for photothermic magnetic recording medium
JPH0612725A (en) Optical pickup
JPH07169129A (en) Optical head
JPH06267105A (en) Optical head
JP2978269B2 (en) Optical disk drive
JP2594903B2 (en) Focus error detector
JPH0327978B2 (en)
JPH0656673B2 (en) Light pickup
JPH0668540A (en) Optical pickup device
JP2879601B2 (en) Optical information recording / reproducing device
JPS6223373B2 (en)
JP2660523B2 (en) Optical recording / reproducing device
JPH04276335A (en) Optical information recording and reproducing device
JPS641858B2 (en)
JPH08212584A (en) Optical head
JPS6038736A (en) Optical head