JPS6038736A - Optical head - Google Patents

Optical head

Info

Publication number
JPS6038736A
JPS6038736A JP14503883A JP14503883A JPS6038736A JP S6038736 A JPS6038736 A JP S6038736A JP 14503883 A JP14503883 A JP 14503883A JP 14503883 A JP14503883 A JP 14503883A JP S6038736 A JPS6038736 A JP S6038736A
Authority
JP
Japan
Prior art keywords
light
signal
splitter
recording medium
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14503883A
Other languages
Japanese (ja)
Inventor
Kiyonobu Endo
遠藤 清伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14503883A priority Critical patent/JPS6038736A/en
Priority to DE19843429382 priority patent/DE3429382A1/en
Priority to US06/640,084 priority patent/US4654839A/en
Publication of JPS6038736A publication Critical patent/JPS6038736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To perform the tracking compensation by using photodetectors to detect the changes of an optical distribution in the direction orthogonal to the signal tracks of the 1st and 2nd luminous fluxes split by a splitter and at the same time to eliminate the effect of a tracking action on the automatic focus control. CONSTITUTION:The luminous flux reflected by a recording medium 16 goes back along its going path to transmit through a polarized beam splitter 13 and is divided into two parts by a splitter 22 to enter 2-split photodetectors 23 and 24 respectively. The splitter 22 consists of a reflecting part 19 and transmitting parts 18 and 18' of luminous flux. The optical distribution on the detector 23 is divided into upper and lower parts centering on a dividing line 21 which is coincident with a track direction T-T'. The optical distribution on the detector 24 has a capsule section form and divided by the line 21. The focusing state is detected from the difference (A+B)-(C+D) between output values of both detectors 23 and 24. Then a tracking signal is detected from the difference (A+C)-(B+D).

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光ヘッドの構造に関し、特に、光源からの光束
を記録体の縦変位或は横変位に追従して予じめ決められ
た軌跡上に微小スポットを集光させる形式の光ヘッドの
構造に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to the structure of an optical head, and in particular, the present invention relates to the structure of an optical head, and in particular, the present invention relates to the structure of an optical head. The present invention relates to the structure of an optical head that focuses a spot.

〔従来技術〕[Prior art]

前記記録体の具体例としては、ビデオディスクやデジタ
ルオーディオディスクなど予じめ映像或は音声などの信
号が記録されたもの、或は光又は光による熱エネルギー
で変化する記録材層を有するDRAW用の記録体や光磁
気記録体などがある。
Specific examples of the recording medium include those on which video or audio signals are recorded in advance, such as video discs and digital audio discs, or DRAW discs that have a recording material layer that changes with light or thermal energy caused by light. recording media and magneto-optical recording media.

前者は信号再生のみを行う記録体であるが、後者はユー
ザにおいて信号再生及び信号記録の両方が可能な記録体
である。又前記光磁気記録体は信号消去が可能で、繰返
し記録再生出来るという特徴を有している。
The former is a recording medium that only performs signal reproduction, whereas the latter is a recording medium that allows the user to perform both signal reproduction and signal recording. Further, the magneto-optical recording medium has the characteristics that signals can be erased and can be repeatedly recorded and reproduced.

前記記録体を回転(トラッキング走行)させ記録媒体上
に微小の光スポットを集光して信号を記録再生する場合
、記録体の面振れ(縦変移)及び横変移のため微小スポ
ットを集光する光ヘッドと該記録体との相対位置が変化
する。その結果、記録体上のスポットの大きさが変動し
たり、スポットの照射位置が信号トラックからずれたシ
し、その為取シ出される信号及び記録されるパターンが
不鮮明になる。
When recording and reproducing signals by rotating (tracking) the recording medium and focusing a minute light spot on the recording medium, the minute spot is focused due to surface runout (vertical displacement) and lateral displacement of the recording body. The relative position between the optical head and the recording medium changes. As a result, the size of the spot on the recording medium fluctuates, or the irradiation position of the spot may shift from the signal track, making the extracted signal and the recorded pattern unclear.

このような問題を解決する為記録体からの反射光を光検
出器(光電変換素子)で受光し、その光束の光量変化又
は形状変化で光ヘッドと記録体との相対的位置の変化を
検出し、フォーカス誤差信号及びトラッキング誤差信号
としてこれを光ヘッド又は光ヘツド構成部品の1部にフ
ィードバックして振れに伴なう位置ずれを補正すること
が行われている。
To solve this problem, a photodetector (photoelectric conversion element) receives the reflected light from the recording medium, and detects changes in the relative position between the optical head and the recording medium based on changes in the amount or shape of the light beam. However, this is fed back as a focus error signal and a tracking error signal to the optical head or some of the components of the optical head to correct positional deviations caused by shake.

この種の補正手段を有する従来の光ヘッドにつき第1図
〜第3図を参照して以下に説明する。
A conventional optical head having this type of correction means will be described below with reference to FIGS. 1 to 3.

第1図において、1は記録体、2は集光レンズであシ、
この集光レンズは駆動手段3によシ光軸方向に移動可能
である。4は回動ミラーであ多光束を偏向するためのも
のである。5は1/4波長板、6はコリメータレンズ、
7は偏光ビーム2ノリツタ−18は半導体レーザの如き
光源、9はシリンドリカルレンズ、10は4分割光検出
器である。
In FIG. 1, 1 is a recording medium, 2 is a condensing lens,
This condensing lens is movable in the optical axis direction by a driving means 3. Reference numeral 4 denotes a rotating mirror for deflecting multiple beams of light. 5 is a quarter wavelength plate, 6 is a collimator lens,
Reference numeral 7 designates a polarized beam 2-noritter, 18 a light source such as a semiconductor laser, 9 a cylindrical lens, and 10 a four-split photodetector.

光源8から発せられる光束は偏光ビームスシリツタ−7
を通過した後平行光束になる。又、光源8から発せられ
る光束の偏光面は第1図中紙面に平行となるよう調整さ
れておシ、偏光ビームスシリツタ−7はこのような偏光
面を有する光束をほとんど損失なく透過させる。前記平
行光束は1/4波長板5を通過することによシ円又は楕
円偏光光束になる。この光束は、軸を中心に回転可能な
ビ?ツティングミラ−(回転ミラー)4で反射された後
、集光レンズ2によシ記録体1上で微小スポットに集光
される。
The light beam emitted from the light source 8 is polarized by the polarizing beam sinter 7.
After passing through, it becomes a parallel beam of light. Further, the polarization plane of the light beam emitted from the light source 8 is adjusted to be parallel to the plane of the paper in FIG. 1, and the polarization beam sinter 7 transmits the light beam having such a polarization plane with almost no loss. The parallel light flux becomes a circularly or elliptically polarized light flux by passing through the quarter-wave plate 5. This luminous flux is a beam that can be rotated around its axis. After being reflected by a turning mirror (rotating mirror) 4, the light is focused by a condensing lens 2 onto a minute spot on the recording medium 1.

一方、記録体1からの反射光束は、集光レンズ2及びピ
がッティングミラ−4を経由して】/4波長板5に到達
する。1/4波長板5を通過した光束は、その偏光面が
入射時と直交した方向となシ、該光束のほとんどの部分
が偏光ビームスプリッタ−7で反射されシリンドリカル
レンズ9を経て4分割光検出器lOへ入射する。
On the other hand, the reflected light beam from the recording medium 1 reaches the /4 wavelength plate 5 via the condenser lens 2 and the focusing mirror 4. The light flux that has passed through the quarter-wave plate 5 has its polarization plane perpendicular to the direction of incidence, and most of the light flux is reflected by the polarizing beam splitter 7 and passes through the cylindrical lens 9 to be divided into four parts for detection. incident on the vessel lO.

前記反射光は、コリメータレンズ6及びシリンドリカル
レンズ9からなる非点収差発生光学系によシ、光検出器
10上で非点収差分布形状の光束を形成する。従って、
その分布状態により記録体1上のスポットのフォーカス
状態を検出することができる。
The reflected light forms a light beam having an astigmatism distribution shape on the photodetector 10 by an astigmatism generating optical system including a collimator lens 6 and a cylindrical lens 9. Therefore,
The focus state of the spot on the recording medium 1 can be detected based on the distribution state.

前記4分割光検出器10の各素子をA、B、C。Each element of the 4-split photodetector 10 is labeled A, B, and C.

Dとすると、前記スポットのフォーカス(Focus)
状態による該光検出器上の光分布状態は第2図(4)。
If D, the focus of the spot is
The light distribution state on the photodetector depending on the state is shown in FIG. 2 (4).

(B) 、 (C)のようになる。ここで、第2図(4
)は前ピン状態を、第2図(B)は合焦状態を、第2図
(C)は後ピン状態を夫々示す。
(B) and (C). Here, in Figure 2 (4
) shows the front focus state, FIG. 2(B) shows the focused state, and FIG. 2(C) shows the back focus state.

従って、前記4分割光検出器の夫々の素子の光量から(
A+C’) −(B+D )の出力を検出し、その出力
値が負、零、−正のいずれかであるかによシ前ビン状態
2合焦状態、後ピン状態であることを判別することがで
き、この信号を適当なゲインを持つ処理系を介して、駆
動装置3にフィードツマツクすることによシ自動焦点制
御(オートフォーカス)が可能となる。
Therefore, from the light amount of each element of the 4-split photodetector, (
Detecting the output of A+C') -(B+D) and determining whether the output value is negative, zero, or -positive to determine whether it is in the front bin state 2 in-focus state or in the rear focus state. By feeding this signal to the driving device 3 through a processing system having an appropriate gain, automatic focus control (autofocus) becomes possible.

又、信号トラック上を正しく追跡する為の自動追跡制御
(オートトラッキング)は以下の方法で行うことができ
る。
Further, automatic tracking control (auto tracking) for correctly tracking the signal track can be performed by the following method.

即ち、第2図Q))に示すように、4分割光検出器10
の分割線が破線で示すトラック方向T −T’に沿うよ
うに配置する。
That is, as shown in FIG. 2 Q)), the four-split photodetector 10
The dividing line is arranged along the track direction T-T' indicated by a broken line.

回転体である記録体1の偏心等の影響で微小スポットが
信号トラックからはずれると、第2図(D)に示す如く
、光束の強度分布に偏りが生じ、従って各受光素子の光
量から(A+D ) −(B+C’)の出力値の変化と
してトラックズレを検出することができる。このトラッ
クズレの信号は、前述の自動焦点制御時の場合と同様、
電気処理をした後ビデッティングミラ−4の駆動系3に
フィードバックされ・これによって自動追跡制御(オー
トトラッキング)が可能となる。
When a minute spot deviates from the signal track due to the eccentricity of the recording body 1, which is a rotating body, the intensity distribution of the light beam becomes biased, as shown in FIG. ) -(B+C') Track deviation can be detected as a change in the output value. This track deviation signal is similar to the above-mentioned automatic focus control,
After electrical processing, it is fed back to the drive system 3 of the bideting mirror 4, thereby enabling automatic tracking control (auto tracking).

以上説明した従来のオートフォーカス及びオートトラッ
キングにあっては、集光レンズ2の焦点距離をfとする
と、第3図(4)に示す如く、ビ、+jヮティングミラ
ー4をθ度回転することにより記録体1上のスポットを
2fθだけ横に移動し得る。しかし、反射光束が集光レ
ンズ2.ピポッティングミラ−4及びシリンドリカルレ
ンズ9を介して4分割光検出器10に到着する場合、前
記光スポットの横移動によシ光軸がずれ、光検出器10
上の光分布は第3図(B)中の如く1点鎖線の円から破
線の円へ移動する。
In the conventional autofocus and autotracking explained above, when the focal length of the condensing lens 2 is f, the turning mirror 4 is rotated by θ degrees as shown in FIG. 3 (4). The spot on the recording medium 1 can be moved laterally by 2fθ. However, the reflected light beam is reflected by the condenser lens 2. When the light reaches the 4-split photodetector 10 via the pivoting mirror 4 and the cylindrical lens 9, the optical axis is shifted due to the lateral movement of the light spot, and the photodetector 10
The light distribution above moves from the dotted line circle to the broken line circle as shown in FIG. 3(B).

この時の(A十〇)−(B+C)の出力値の変化は、光
分布が原点対称の分布形状であ)しかも分割線に沿って
の移動であれば微小量であるが、実際にはシリンドリカ
ルレンズ9を使用した光学系であるため光分布の動き及
び形状ともこのように理想的にはならない。従って前述
のトラッキング動作によって引き起こされる光束移動は
フォーカス(Focus)信号に影響を与えない程度に
押えねばならず、トラッキング制御範囲が制限されると
いう問題がある。
At this time, the change in the output value of (A10) - (B + C) is a minute amount if the light distribution is symmetrical to the origin) and if it moves along the dividing line, but in reality Since the optical system uses the cylindrical lens 9, the movement and shape of the light distribution are not ideal. Therefore, the movement of the light flux caused by the above-mentioned tracking operation must be suppressed to such an extent that it does not affect the focus signal, resulting in a problem that the tracking control range is limited.

即ち、以上説明した従来の光ヘッドにあっては、トラッ
キングを行う為ビデッティングミラ−4を振った場合フ
ォーカス信号にも影響が及び正確な自動焦点制御が困難
になるという欠点、並びに・4分割光検出器10及び7
リンドリカルレンズ9の母線方向の位置合わせを厳密に
行わなければならず、この為光ヘッドの組立に多大な時
間を要し製造コストが上昇するという欠点がある。
That is, the conventional optical head described above has the disadvantage that when the bideting mirror 4 is shaken for tracking, the focus signal is also affected, making accurate automatic focus control difficult; Split photodetector 10 and 7
The positioning of the lindrical lens 9 in the generatrix direction must be performed strictly, which has the disadvantage that it takes a lot of time to assemble the optical head and increases manufacturing costs.

このような欠点を解消するための従来方法として、例え
ば、フーコー法(ナイフェツジ法)でフォーカス信号を
得るとともに光検出器を光源と共役配置(第3図(A)
中の符号11の場所)にしてトラッキング時の光束ズレ
の問題を解決する方法が提案されているが、このフーコ
ー法でのフォーカス検出では光路中のナイフェツジで光
束を遮えぎる為光量損失を伴なうという欠点がある。
As a conventional method to eliminate such drawbacks, for example, a focus signal is obtained using the Foucault method (Naifezi method), and a photodetector is arranged conjugately with the light source (Fig. 3 (A)).
A method has been proposed to solve the problem of light flux deviation during tracking (location 11 in the center), but focus detection using this Foucault method involves a loss of light quantity because the light flux is blocked by a knife in the optical path. It has the disadvantage of becoming.

〔目的〕〔the purpose〕

本発明の目的は、以上説明した従来の光ヘッドの欠点を
解消し、トラッキング動作によるオートフォーカス(自
動焦点制御)への影響をなくすことができ、しかも光学
系の簡略化により製造コストを低減しうる新規な光ヘッ
ドを提供することである。
An object of the present invention is to eliminate the drawbacks of the conventional optical head described above, to eliminate the influence of tracking operation on autofocus (automatic focus control), and to reduce manufacturing costs by simplifying the optical system. The object of the present invention is to provide a new optical head that is highly effective.

〔実施例の説明〕[Explanation of Examples]

以下第4図〜第9図を参照して本発明の詳細な説明する
The present invention will be described in detail below with reference to FIGS. 4 to 9.

第4図(4)にお騒て、半導体レーザなどの光源12で
発せられた光束は、偏光ビームスプリッタ−13で反射
され、174波長板14を通過した後、集光レンズ15
により微小スポットとして記録体16上に集光する。
As shown in FIG. 4 (4), the light beam emitted by the light source 12 such as a semiconductor laser is reflected by the polarizing beam splitter 13, passes through the 174 wavelength plate 14, and then passes through the condenser lens 15.
The light is focused onto the recording medium 16 as a minute spot.

記録体16によ多反射された光束は、再び集光レンr 
15 、1/4波長板14及び偏光ビームスノリツタ−
13を透過し、光分割器22で2分割された後、夫々の
2分割光検出器23.24に到達する。
The light beam that has been reflected multiple times by the recording medium 16 is returned to the condensing lens r.
15, 1/4 wavelength plate 14 and polarizing beam snoritter
13 and is split into two by the light splitter 22, and then reaches the respective two-split photodetectors 23 and 24.

光束の偏光面と偏光ビームスシリツタ−13及び1/4
波長板4との即係は第1図の従来の光ヘッドの」場合と
同じでおる。
Polarization plane of luminous flux and polarization beam slitters - 13 and 1/4
The immediate relationship with the wave plate 4 is the same as in the conventional optical head shown in FIG.

前記光分割器22は、第4図(B)に示す如く、光束の
反射部19及び透過部18 、18’から成っている。
The light splitter 22, as shown in FIG. 4(B), consists of a light beam reflecting section 19 and transmitting sections 18 and 18'.

第4図(B)中の符号20は光分割器22上の光束の分
布を示す。
Reference numeral 20 in FIG. 4(B) indicates the distribution of light flux on the light splitter 22.

尚前記反射部19は全反射ミラーに限定されるものでは
なく、又、反射部19と透過部18.18’とがこれを
入れ換えることもでき、以下の説明からも理解される如
くこれを入れ換えることによっても同様の作用効果を得
ることができる。更に、第4図(B)中の符号(矢印)
 T −T’は記録体16の信号トラックの方向を示す
Note that the reflecting section 19 is not limited to a total reflection mirror, and the reflecting section 19 and the transmitting section 18, 18' can be interchanged, and as will be understood from the following explanation, they can be interchanged. Similar effects can also be obtained by doing this. Furthermore, the symbol (arrow) in Fig. 4(B)
T-T' indicates the direction of the signal track on the recording medium 16.

前記2分割光検出器23.24上の光束分布と分割線及
び信号トラック方向との関係は第4図(C)。
The relationship between the luminous flux distribution on the two-split photodetectors 23 and 24, the dividing line, and the signal track direction is shown in FIG. 4(C).

の)に示す通シである。).

即ち、一方の2分割検出器23上の光分布は、第4図(
C) K示す如く、光分割器22の透過部18゜18′
を透過してきたものである為、上下に別れた弓形の部分
円形状になる。分割線21又は、図示の如く、光分布が
受光素子A、BKtたがるように配置ぺされ、しかも信
号トラックの方向T−T’と一致する方向に配置されて
いる。
That is, the light distribution on one of the two-split detectors 23 is as shown in FIG.
C) As shown in K, the transparent part 18°18' of the light splitter 22
Because it has passed through the area, it has an arcuate partial circular shape with upper and lower parts. As shown in the dividing line 21 or in the figure, the light receiving elements A and BKt are arranged so that the light distribution is aligned with the light receiving elements A and BKt, and in a direction that coincides with the direction of the signal track TT'.

他方の2分割検出器24上の光分布は、第4図(D)に
示す如く光分割器220反射部19からの反射光である
為カプセル断面状であり、又、分割線21及び信号トラ
ック方向T −T’の関係は前述の第4図(C)の場合
と同じである。
The light distribution on the other two-split detector 24 has a capsule cross-sectional shape because it is the reflected light from the reflection section 19 of the light splitter 220, as shown in FIG. The relationship in direction T-T' is the same as in the case of FIG. 4(C) described above.

記録体16の表面と集光レンズ15とが合焦状態にある
時には、光源12で発せられた光束は第4図(A)中に
実線で示す如く記録体16を介して各2分割光検出器2
3.24に゛到達する。
When the surface of the recording medium 16 and the condensing lens 15 are in focus, the light beam emitted by the light source 12 passes through the recording medium 16 and is divided into two beams for detection, as shown by solid lines in FIG. 4(A). Vessel 2
3. Reach 24.

この合焦状態の時には、光分割器22上の光分布は第4
図(B)に示す通勺であシ、各光検出器23゜24夫々
の受光素子A、B及びC,Dがらの電気信号に基すき(
A+B)−(C+D)の値を演算し、その出力値を合焦
時の信号レベルとすることができる。
In this focused state, the light distribution on the light splitter 22 is
As shown in FIG.
The value of A+B)-(C+D) can be calculated and the output value can be used as the signal level at the time of focusing.

記録媒体16が面振れなどで第4図(4)中の符号16
′の位置に変移した場合には、反射光束は破線で示す状
態になシ、7方の検出器23への光景が減じるとともに
、他方の検出器24への光量が増加する。従って、(A
+B)−(C+D)の出力値が減じる。一方記録体16
が前記符号16′で示す位置とは反対方向へ変位した場
合には、(A+B)−(C+D )の出力値は増加する
。こうしてフォーカス(Focus)誤差の信号が得ら
れ、フォーカス状態を検出することができる。
If the recording medium 16 is shaken or the like, the symbol 16 in FIG. 4 (4)
When shifted to the position ', the reflected light flux remains in the state shown by the broken line, and the sight to the seven detectors 23 decreases, while the amount of light to the other detector 24 increases. Therefore, (A
The output value of +B)-(C+D) is decreased. On the other hand, recording body 16
is displaced in the direction opposite to the position indicated by the reference numeral 16', the output value of (A+B)-(C+D) increases. In this way, a focus error signal is obtained, and the focus state can be detected.

次に、第4図囚〜第4図CD)で説明した光ヘッドによ
シ信号トラック上からのスポットのズレを補正するだめ
の信号即ちトラッキング信号を検出する動作につき、第
5図及び第6図を参照して説明する。
Next, regarding the operation of detecting the tracking signal, that is, the signal for correcting the deviation of the spot from the signal track by the optical head, as explained in FIGS. This will be explained with reference to the figures.

第5図(4)、(B)及び(C)の夫々において、上か
ら2分割光検出器23 、24 、これら検出器上の光
量分布、光スポットと記録体上の信号トラックとの相対
位置関係が夫々示されている。
In each of FIGS. 5(4), (B) and (C), the two-split photodetectors 23 and 24 from the top, the light intensity distribution on these detectors, and the relative position between the light spot and the signal track on the recording medium The relationships are shown.

即ち、第5図(4)はスポットが信号トラック上に乗っ
て込る場合を示し、第5図(B)はスポットが左側にず
れた場合を示し、第5図(C)は右側にずれた場合を示
し、夫々のケースに応じて第5図中の中段の検出器上の
光量分布で示すような光強度分布になる。
That is, Fig. 5 (4) shows the case where the spot rides on the signal track, Fig. 5 (B) shows the case where the spot shifts to the left, and Fig. 5 (C) shows the case where the spot shifts to the right. Depending on each case, the light intensity distribution will be as shown by the light intensity distribution on the middle detector in FIG.

従って、第5図に示す状態から明らかな如く、各2分割
光検出器23.24夫々の受光素子A。
Therefore, as is clear from the state shown in FIG. 5, the light receiving elements A of each of the two-split photodetectors 23 and 24.

B 、 C’、 Dの受光量に応じて得られる(A+C
)−(B十D)の出力値がトラッキング信号となシ、こ
の値の変化によ)トラッキング誤差を検出するこ尚、前
述のフォーカス信号に関しては、類似の検出方法が特公
昭53−43302号に記載されているが、これは2個
の光検出器へ向う光量の差が零の場合に合焦状態を検出
し、そうでない場合にフォーカス誤差を検出するもので
ある。従って、公知技術においては、2個の光検出器に
対し光量を等分に分ける為、光分割器の反射部及び非反
射部の面積比の許容が小さく、従って製造が困難である
という欠点がある。又、光分割器の位置精度が極めて厳
しいという欠点もある。更に、この公知技術においては
トラッキング信号検出は何ら行っておらず、単にフえ−
カス信号の検出のみであシ、以上説明した実施例に比べ
、光学的情報記録体用の光ヘッドとしては極めて不充分
なものである。
Obtained according to the amount of light received at B, C', and D (A+C
) - (B0D) is the tracking signal, and the tracking error () is detected by the change in this value.A similar detection method for the above-mentioned focus signal is described in Japanese Patent Publication No. 53-43302. This method detects a focused state when the difference in the amount of light directed to two photodetectors is zero, and detects a focus error when this is not the case. Therefore, in the known technology, since the amount of light is divided equally between the two photodetectors, the tolerance for the area ratio of the reflective part and the non-reflective part of the light splitter is small, and therefore manufacturing is difficult. be. Another drawback is that the positional accuracy of the light splitter is extremely strict. Furthermore, this known technique does not perform any tracking signal detection, but merely detects the tracking signal.
Since the present invention only detects a waste signal, it is extremely insufficient as an optical head for an optical information recording medium compared to the embodiments described above.

以上ε(r、 4図及び第5図について説明した本発明
のりlS施例によれば、光分割器22の反射面が第4図
(lI)に示す如くストライブ上であシ且っその方向が
トンツク方向と壬直である為次のような効果が得られる
According to the embodiment of the glue lS of the present invention explained above with reference to Figs. Since the direction is directly parallel to the tonk direction, the following effects can be obtained.

即ちトラッキング信号によシ集光レンズ15をトラック
に対し直交方向に移動させながらトラッキングを行う場
合光分割器22上では光束の移動が生じるが、第6図に
示す如く実線の位置から破線の位置へ動いたとしても、
反射面19を形成するストライブの方向(信号トラック
の方向T −T’と直角の方向)、信号トラック方向T
−T’、集光レンズ15の位置の補正方向(光軸と平行
)の夫夫を前述の実施例のような関係にすることにより
、各光検出器23.24に分割される光量の変化を防止
することができる。
That is, when tracking is performed by moving the condensing lens 15 in a direction perpendicular to the track based on the tracking signal, a movement of the light beam occurs on the light splitter 22, but as shown in FIG. Even if you move to
The direction of the stripes forming the reflective surface 19 (direction perpendicular to the signal track direction T-T'), the signal track direction T
-T', the amount of light divided into each photodetector 23, 24 is changed by setting the position of the condenser lens 15 in the correcting direction (parallel to the optical axis) in the relationship as in the above embodiment. can be prevented.

又、各光検出器23.24上での光束が生じても光束が
受光面から飛び出さない限シフオーカス信号には何らの
影響も生じない@ こうして、上記実施例によれば、自動焦点制御(オート
フォーカス)、自動信号トラック追従制御(オートトラ
ッキング)の双方を正確にしかも容易に実施しうる光ヘ
ッドの構造が得られる。
Further, even if a light beam is generated on each photodetector 23, 24, as long as the light beam does not jump out of the light receiving surface, no effect will be caused on the focus signal. This provides an optical head structure that can accurately and easily perform both autofocus and automatic signal track following control (autotracking).

第7図(4)〜第7図(C)は本発明による光ヘッドの
変更実施例を示す図である。
FIG. 7(4) to FIG. 7(C) are views showing modified embodiments of the optical head according to the present invention.

本実施例においては、偏光ビームスプリッタ−31、1
/4波長板32及び光分割器(光分割素子)35が一体
化されておシ、光ヘッドの小型化に極めて有利な構造を
有している。
In this embodiment, polarizing beam splitters 31, 1
The /4 wavelength plate 32 and the light splitter (light splitting element) 35 are integrated and have a structure that is extremely advantageous for downsizing the optical head.

即ち、光源30からの光束は偏光ビームスプリッタ−3
1によシ反射され、1/4波長板32を透過した後隼光
レンズ33で記録体34上に微小スポットとして集光さ
れる。記録体からの反射光束は、再び集光レンズ33及
び1/4波長板32を通シ、偏光ビームスプリッタ−3
1を透過する。この偏光ビームスプリッタ−31の出射
側端面には例えばプリズムの如き光分割素子35が設け
られ、光束の一部は進行方向を変え残シの光束は当初の
進行方向のit、これら両方の光束とも一体に形成され
た1個の光検出器(4分割光検出器)36に入射する。
That is, the light beam from the light source 30 is transmitted to the polarizing beam splitter 3.
1, and after passing through a quarter-wave plate 32, it is focused by a ray lens 33 onto a recording medium 34 as a minute spot. The reflected light flux from the recording medium passes through the condensing lens 33 and the quarter-wave plate 32 again, and then passes through the polarizing beam splitter 3.
Transmit 1. A light splitting element 35 such as a prism is provided on the output side end face of the polarizing beam splitter 31, and a part of the light beam changes its traveling direction, and the remaining light beam is in the original traveling direction. The light is incident on one photodetector (four-division photodetector) 36 formed integrally.

前記4分割光検出器36は、第7図C)に示す如く、4
個の受光面(受光素子)A、B、C,Dから成シ、図示
の如くトラック方向T −T’に沿った垂直分割線と水
平な分割線とによって4分割されている。光分割器35
は第4図(B)の場合と同様の透過部及び反射部を有し
、従って光検出器36上の光束の分布(斜線部分)の各
分割線に対する相対的位置関係は図示の通シである。
The 4-split photodetector 36 has 4 parts as shown in FIG. 7C).
It is composed of light receiving surfaces (light receiving elements) A, B, C, and D, and is divided into four parts by a vertical dividing line along the track direction T-T' and a horizontal dividing line as shown in the figure. Light splitter 35
has a transmitting part and a reflecting part similar to those in FIG. 4(B), so the relative positional relationship of the distribution of light flux on the photodetector 36 (hatched part) to each dividing line is as shown in the figure. be.

この第7図に示す実施例によれば、第4図及び第5図の
実施例の場合と同様の効果が得られる他、偏光ビームス
プリッタ−31、1/4波長板32及び光分割器35を
第7図(B)に示す如く一体化するとともに第4図(4
)中の2個の2分割光検出器23゜24に対応する光検
出器36を4分割光検出器で414成して一体化したの
で光ヘッドを大巾に小型化できるという効果も得られる
According to the embodiment shown in FIG. 7, in addition to obtaining the same effects as in the embodiments shown in FIGS. are integrated as shown in Fig. 7 (B), and as shown in Fig. 4 (4).
) Since the photodetectors 36 corresponding to the two 2-split photodetectors 23 and 24 in 414 are integrated into a 4-split photodetector, it is possible to significantly reduce the size of the optical head. .

以上説明した各実施例における情報信号、オートフォー
カス信号及びオートトラッキング信号を得るための電気
処理系の1例を第8図を参照して説明する。
An example of an electrical processing system for obtaining the information signal, autofocus signal, and autotracking signal in each of the embodiments described above will be described with reference to FIG. 8.

第8図において、受光素子A、B、C,Dの夫夫から得
られる電気信号を以下のように処理することによ多情報
信号、オートフォーカス信号及びオートトラッキング信
号が得られる。
In FIG. 8, a multi-information signal, an autofocus signal, and an autotracking signal are obtained by processing the electrical signals obtained from the husbands of the light receiving elements A, B, C, and D as follows.

即ち、情報信号Sは(A+B )と(C+D )の信号
を加算増幅器40で増幅し、周波数分別器41を通過し
た高周波成分として得られる。
That is, the information signal S is obtained as a high frequency component by amplifying the (A+B) and (C+D) signals by the summing amplifier 40 and passing through the frequency separator 41.

オートフォーカス信号AFは、(A+B)及び(C+D
 )の信号を差動増幅器42でこれらの差分を取シ、割
算器43において周波数分別器41を通過した低周波成
分の信号で割算することKよシ得られる。
The autofocus signal AF is (A+B) and (C+D
) by the differential amplifier 42 and the low frequency component signal passed through the frequency separator 41.

オートトラッキング信号A’lf:、(A+D)及び(
B+C)の信号を差動増幅器44でこれらの差分を取)
、割算器45において前記周波数分別器41を通過した
低周線信号成分の信号で割算した信号として得られる。
Auto tracking signal A'lf:, (A+D) and (
B + C) signals and the difference between them is taken by the differential amplifier 44)
, is obtained as a signal divided by the signal of the low frequency signal component that has passed through the frequency separator 41 in the divider 45.

尚、以上の各信号を得る電気処理系においては、光源の
光量変動或は記録体の反射ムラなどによるノイズ成分の
ほとんどは前記周波数分別器41を通過する低周波成分
に含まれる。
In the electrical processing system for obtaining each of the above-mentioned signals, most of the noise components due to variations in the light amount of the light source or uneven reflection of the recording medium are included in the low frequency components that pass through the frequency separator 41.

しかして、オートフォーカス信号AF及びオートトラッ
キング信号ATK含まれるこのノイズ成分は夫々の割算
器43.45において前記低周波成分で割算を行うこと
にょシ取シ除くことができる。
Therefore, this noise component included in the autofocus signal AF and autotracking signal ATK can be removed by performing division by the low frequency component in the respective dividers 43 and 45.

尚、前記各割算器43.45での割算を行わずに処理す
る方法として、オートフォーカスの場合には光分割を等
光量とすること、又オートトラッキングの場合第7図(
C) Kおける光分布を垂直分割線に対し左右対称とす
ることが考えられる。しかしこのような処理方法では各
素子の寸法精度或は位置精度に対する要求が高く厳しい
ので、好ましい処理方法とはいえない。
In addition, as a method of processing without performing division in each of the dividers 43 and 45, in the case of autofocus, the light is divided into equal amounts of light, and in the case of autotracking, the method shown in FIG. 7 (
C) It is possible to make the light distribution at K symmetrical with respect to the vertical dividing line. However, such a processing method requires high and strict requirements for the dimensional accuracy or positional accuracy of each element, so it cannot be said to be a preferable processing method.

更に、トラッキング信号ATは(A−B)又は(D−C
)のみでも得うることができる。
Furthermore, the tracking signal AT is (A-B) or (D-C
) can also be obtained.

前記第7図囚、(B)に示した偏光ビームスシリツタ−
11/4波長板及び光分割器の一体化構造における該偏
光ビームスシリツタ−と該光分割器との一体化部分は、
第9図(A)〜第9図(2)に示すような各種の偏光構
造によっても実施することができる。
The polarizing beam series shown in FIG. 7 (B)
In the integrated structure of a 11/4 wavelength plate and a light splitter, the integrated part of the polarizing beam splitter and the light splitter is:
It can also be implemented using various polarization structures as shown in FIGS. 9(A) to 9(2).

即ち、第9図(A)の場合は、偏光ビームスプリッタ−
50の一面52の一部に反射鏡51を設け、この反射鏡
、51によっそ光分割を行うものである。
That is, in the case of FIG. 9(A), the polarizing beam splitter
A reflecting mirror 51 is provided on a part of one surface 52 of the mirror 50, and light is divided by this reflecting mirror 51.

第9図(B)は偏光ビームスシリツタ−50の一面52
にブレーズド回折格子53を設け、回折作用を利用して
光分割を行うものである。
FIG. 9(B) shows one surface 52 of the polarizing beam slitter 50.
A blazed diffraction grating 53 is provided to perform light splitting using the diffraction effect.

第9図(C)は偏光ビームスシリツタ−50の一面52
にホログラフィックな公開素子54を設けて光分割を行
うものである。この場合、光分割器54の端面にピッチ
の細かな回折格子55を設けて回折光の回折角を充分大
きく取り、これによって分割器54の空気との境界面で
全反射を起こさせ該分割器端面より回折光を出射させる
よう構成することができる。
FIG. 9(C) shows one surface 52 of the polarizing beam sinter 50.
A holographic open element 54 is provided to perform light division. In this case, a fine-pitch diffraction grating 55 is provided on the end face of the light splitter 54 to make the diffraction angle of the diffracted light sufficiently large, thereby causing total reflection at the interface between the splitter 54 and the air. The structure can be such that the diffracted light is emitted from the end face.

第9図0))は偏光ビニムスゾリッター50の一面52
に半レンズ或は半フレネルレンズなど集光作用のある素
子56を設け、該素子によシ光分割を行うものである。
FIG. 9 0)) is one side 52 of the polarized vinyl solitter 50.
A light condensing element 56 such as a half lens or a half Fresnel lens is provided in the lens, and the light is split by this element.

以上第9図(A)〜第9図(D)において例示した構造
を採用することによっても、前記第7図(A)〜第7図
(C)の実施例の場合と実質上同じ作用効果を達成する
ことができる。
Even by employing the structure illustrated in FIGS. 9(A) to 9(D) above, substantially the same effects and effects as in the embodiments shown in FIGS. 7(A) to 7(C) can be obtained. can be achieved.

尚、第7図(5)の本発明の実施例に係わる光学系にお
いては、光源30からの発散光を平行光にする為、光源
30と偏光ビームスシリツタ−31との間にコリメータ
レンズを設けるとともに偏光ビームスシリツタ−31と
光検出器36との間に他の集光用レンズを設ける構造、
或は1/4波長板32と集光レンズ33との間にコリメ
ータレンズを設ける構造を採用することができ、これら
の構造によっても第7図の場合と同様の効果を達成する
ことができる。
In the optical system according to the embodiment of the present invention shown in FIG. 7(5), a collimator lens is provided between the light source 30 and the polarizing beam sinter 31 in order to convert the diverging light from the light source 30 into parallel light. A structure in which another condensing lens is provided between the polarizing beam slittor 31 and the photodetector 36;
Alternatively, a structure in which a collimator lens is provided between the 1/4 wavelength plate 32 and the condenser lens 33 can be adopted, and the same effect as in the case of FIG. 7 can also be achieved with these structures.

以上第4図〜第9図を参照して説明した各実施例によれ
ば、極めて簡単な構造でオートフォーカス及びオートト
ラッキングの両方を容易且つ正確に行いうる光ヘッドが
得られる。
According to each of the embodiments described above with reference to FIGS. 4 to 9, an optical head with an extremely simple structure that can easily and accurately perform both autofocus and autotracking can be obtained.

その他、従来の光ヘッドに比べ、ホープ(自動制御)系
を零メソッド(光量差が零の状態をサーボの目標値に設
定する法)を採用する必要がなく、又シリンドリカルレ
ンズを省略できるので、各素子の位置精度及び寸法精度
を緩めることができ製造コストの低減を図ることができ
る。
In addition, compared to conventional optical heads, there is no need to use the zero method (a method in which the servo target value is set to a state where the difference in light intensity is zero) for the hope (automatic control) system, and the cylindrical lens can be omitted. The positional accuracy and dimensional accuracy of each element can be relaxed, and manufacturing costs can be reduced.

又、光分割器(光分割器22135,5.1゜53.5
4.56)の構造を第4図(B)中の反射部19で示す
如くストライプ形状にしたので、フォーカス信号に対す
るトラッキング動作の影響をなくすことができる。
In addition, a light splitter (light splitter 22135, 5.1°53.5
Since the structure of 4.56) is made into a striped shape as shown by the reflecting portion 19 in FIG. 4(B), the influence of the tracking operation on the focus signal can be eliminated.

更に、第7図及び第9図の各実施例においては、光ビー
ムスシリツタ一端面に光分割器(光分割素子)を一体的
に設けたので、光学系を小さなスペースに納めることが
でき、光ヘッドの小型化を達成することができる。
Furthermore, in each of the embodiments shown in FIGS. 7 and 9, a light splitter (light splitting element) is integrally provided on one end face of the light beam sinter, so the optical system can be housed in a small space. It is possible to achieve miniaturization of the optical head.

〔効果〕〔effect〕

以上の説明から明らかな如く、本発明によれば、簡単な
構造で自動焦点制御(オートフォーカス)及び自動追跡
制御(オートトラッキング)の双方を容易にしかも正確
に実旋しうる光ヘッドが得られる。
As is clear from the above description, according to the present invention, it is possible to obtain an optical head that has a simple structure and can easily perform both automatic focus control (autofocus) and automatic tracking control (autotracking), and can actually rotate accurately. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ヘッドの光学系を例示する説明図、第
2図は4分割光検出器と光分布の各植状態とを示す説明
図、第3図はトラッキング補正による光束の移動を例示
する説明図、第4図は本発明の光ヘッドの一実施例を示
す説明図、第5図は第4図の光検出器におけるトラッキ
ングズレによる光分布の状態を示す説明図、第6図は第
4図の光分割器における光束の移動を例示する説明図、
第7図は本発明の光ヘッドめ他の実施例を示す説明図、
第8図は本発明の光ヘッドにより各挿信号を得るための
電気処理系の一例を示すブロック図、第9図は第7図の
光ヘッドに使用される光分割器の各種の変更構造を例示
する説明図である。 16.34・・・記録体、15.33・・・集光レンズ
、22.35,51,53,54.56・・・光分割器
、23.24,36・・・光検出器、A、B、C,D・
・・光検出器の受光素子、T −T’・・・信号トラッ
クの方向、S・・・情報信号、AF・・・オートフォー
カス信号、A・T・・・オートトラッキング信号。 第 1 図 第2図 (A) CB) (C) 第3図 (B) 第 4 図 暇 (B) (C) (D) 第5図 第6図 ↑ 第7図 り↓し 第8図
Fig. 1 is an explanatory diagram illustrating the optical system of a conventional optical head, Fig. 2 is an explanatory diagram showing a four-split photodetector and various states of light distribution, and Fig. 3 is an explanatory diagram illustrating the optical system of a conventional optical head. FIG. 4 is an explanatory diagram showing an embodiment of the optical head of the present invention. FIG. 5 is an explanatory diagram showing the state of light distribution due to tracking deviation in the photodetector of FIG. 4. FIG. is an explanatory diagram illustrating the movement of the light beam in the light splitter of FIG. 4,
FIG. 7 is an explanatory diagram showing another embodiment of the optical head of the present invention;
FIG. 8 is a block diagram showing an example of an electrical processing system for obtaining each injected signal using the optical head of the present invention, and FIG. 9 shows various modified structures of the optical splitter used in the optical head of FIG. It is an explanatory diagram to illustrate. 16.34... Recording body, 15.33... Condensing lens, 22.35, 51, 53, 54.56... Light splitter, 23.24, 36... Photodetector, A ,B,C,D・
... Light receiving element of photodetector, T - T' ... Signal track direction, S ... Information signal, AF ... Autofocus signal, A.T. ... Auto tracking signal. Figure 1 Figure 2 (A) CB) (C) Figure 3 (B) Figure 4 Time (B) (C) (D) Figure 5 Figure 6 ↑ Figure 7 ↓ and Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1) 集光レンズにより集光された光を記録体に照射
し、該記録体で反射した光束を光分割器で第1の光束と
第2の光束とに分割し、第1の光束及び第2の光束を光
検出器で受光してそれらの電気信号の差分て記録体と集
光レンズとの間隔を補正し、第1の光束及び第2の光束
の信号トラックと直交する方向の光分布の変化を前記光
検出器で検出しその電気信号でトラッキング補正を行う
ことを特徴とする光ヘッド。
(1) A recording medium is irradiated with light focused by a condensing lens, and a beam reflected by the recording medium is split into a first beam and a second beam by a light splitter, and the first beam and The second light beam is received by a photodetector, and the distance between the recording medium and the condensing lens is corrected based on the difference between the electric signals, and the light beam in the direction orthogonal to the signal track of the first light beam and the second light beam is generated. An optical head characterized in that a change in distribution is detected by the photodetector and tracking correction is performed using the electrical signal.
JP14503883A 1983-08-10 1983-08-10 Optical head Pending JPS6038736A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14503883A JPS6038736A (en) 1983-08-10 1983-08-10 Optical head
DE19843429382 DE3429382A1 (en) 1983-08-10 1984-08-09 OPTICAL HEAD
US06/640,084 US4654839A (en) 1983-08-10 1984-08-10 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503883A JPS6038736A (en) 1983-08-10 1983-08-10 Optical head

Publications (1)

Publication Number Publication Date
JPS6038736A true JPS6038736A (en) 1985-02-28

Family

ID=15375956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503883A Pending JPS6038736A (en) 1983-08-10 1983-08-10 Optical head

Country Status (1)

Country Link
JP (1) JPS6038736A (en)

Similar Documents

Publication Publication Date Title
JP3548259B2 (en) Magneto-optical head device
JPH047016B2 (en)
KR100691661B1 (en) Optical head, light-emitting/receiving device, and apparatus for recording/reproducing optical recording/recorded medium
JPH0638291B2 (en) Optical information recording / reproducing device
US20010024417A1 (en) Optical pickup for recording or reproducing system
JPS6117103A (en) Polarizing beam splitter
US6426933B1 (en) Optical pickup apparatus having polarizing phase plates
KR20070068290A (en) Optical pickup apparatus and optical disk apparatus
JPH06101138B2 (en) Optical head device
JPH0690817B2 (en) Light pickup
JP2672618B2 (en) Optical information recording / reproducing device
JPH06195728A (en) Optical head
JPS6038736A (en) Optical head
JPS63249942A (en) Reproducing device for optical disk signal
JP2978269B2 (en) Optical disk drive
JPS6093647A (en) Reproducing optical system control means of optical type disc player
JP2594903B2 (en) Focus error detector
JPH083908B2 (en) Photodetector alignment method and optical pickup head device
JPH05151593A (en) Optical pickup
JPH0580051B2 (en)
JPH0227736B2 (en)
JPS6038740A (en) Optical head for photothermic magnetic recording medium
JP2001209964A (en) Optical head device
JPS6111951A (en) Optical head device
JPH05266500A (en) Optical pickup device