JPS6038671B2 - Crystal clock with fully automatic speed control circuit - Google Patents

Crystal clock with fully automatic speed control circuit

Info

Publication number
JPS6038671B2
JPS6038671B2 JP70475A JP70475A JPS6038671B2 JP S6038671 B2 JPS6038671 B2 JP S6038671B2 JP 70475 A JP70475 A JP 70475A JP 70475 A JP70475 A JP 70475A JP S6038671 B2 JPS6038671 B2 JP S6038671B2
Authority
JP
Japan
Prior art keywords
circuit
signal
frequency deviation
frequency
standard time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP70475A
Other languages
Japanese (ja)
Other versions
JPS5175563A (en
Inventor
仁美 沼部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP70475A priority Critical patent/JPS6038671B2/en
Publication of JPS5175563A publication Critical patent/JPS5175563A/en
Publication of JPS6038671B2 publication Critical patent/JPS6038671B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)

Description

【発明の詳細な説明】 本発明は、水晶時計の歩度緩急に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to rate regulation of a quartz watch.

本発明は、水晶発振器の信号を分周する分周回路の分周
比を可変する緩急方式において、緩急量の設定を自動的
に行なう構成を与え、しかも製品化に際して最も問題と
なる雑音に対する誤動作を防止する構成を与えるもので
ある。
The present invention provides a configuration for automatically setting the amount of adjustment in a adjustment method that varies the frequency division ratio of a frequency dividing circuit that divides the signal of a crystal oscillator, and furthermore, it provides a configuration for automatically setting the adjustment amount. This provides a configuration to prevent this.

第1図に、全自動緩急回路を有する従来の水晶時計のブ
ロック図を示す。
FIG. 1 shows a block diagram of a conventional quartz watch having a fully automatic speed control circuit.

1は水晶発振器、2は分周回路、3は表示手段、4は前
記水晶発振器の発振周波数の標準時間に対する周波数偏
差を測定する周波数偏差測定回路、5は周波数偏差測定
回路で測定された周波数偏差、或いはコード変換された
周波数偏差を記憶する周波数偏差記憶回路、6は前記周
波数偏差記憶回路5に記憶されたデータ一によって分周
比を制御して歩度緩急を行なう歩度緩急回路、7は時計
体外部から入力される標準時間信号を受信する受信手段
、8は前記各々の回路及び手段を制御する制御回路、9
は緩急状態ではない時に前記受信手段7に信号が入って
も回路を動作させないための緩急ロックスイッチである
1 is a crystal oscillator, 2 is a frequency dividing circuit, 3 is a display means, 4 is a frequency deviation measuring circuit for measuring the frequency deviation of the oscillation frequency of the crystal oscillator with respect to standard time, and 5 is a frequency deviation measured by the frequency deviation measuring circuit. , or a frequency deviation storage circuit that stores the code-converted frequency deviation; 6 a rate adjustment circuit that controls the frequency division ratio according to the data stored in the frequency deviation storage circuit 5 to adjust the rate; and 7 a clock body; receiving means for receiving a standard time signal input from the outside; 8 a control circuit for controlling each of the circuits and means; 9;
is a speed/speed lock switch for not operating the circuit even if a signal is input to the receiving means 7 when the system is not in the speed/speed state.

緩急ロックスイッチをON‘こするとロック状態が解除
され、制御回路8のaからリセット信号が出て周波数偏
差測定回路4がリセットされる。この状態で外部から時
間間隔が1秒或いは2秒等の標準時間信号を受信手段7
に送ってやると、bの周波数偏差測定指令信号により周
波数偏差測定回路4で標準時間信号の1秒あるいは2秒
間の間に発生する水晶発振器の発振周波数を計測し、標
準周波数に対する周波数偏差を測定する。次に、cの記
憶指令信号により周波数偏差測定回路の値を周波数偏差
記憶回路5に書き込み、緩急の設定が終了する。ここで
緩急ロックスイッチ9をoffにすることにより、雑音
による緩急量の謀設定が避けられ、周波数偏差記憶回路
5に記憶されたデータ一にみあう分だけ歩度緩急回路6
で分周比を可変して、歩度緩急を行なうのである。この
ように、全自動緩急回路を有する水晶時計では、標準時
間信号を発生する装置さえ用意すれば、容易なる操作に
よって外部標準時間信号を受けて、全自動的に歩度緩急
が行なえる。かかる構成の詳しい説明は、同一出願人の
先機に係る特公昭斑−5397号公報に示されている。
しかし、緩急ロックスイッチ9をOFFすることにより
ロックスイッチ9がOFFの期間は、緩急量の誤設定が
避けられるのであるが、緩急ロックスイッチ9がONの
状態では「標準時間信号と区別し得ない雑音信号による
緩急量の誤設定は防止することができない。
When the slow/fast lock switch is rubbed ON', the locked state is released, a reset signal is output from a of the control circuit 8, and the frequency deviation measuring circuit 4 is reset. In this state, the receiving means 7 receives a standard time signal with a time interval of 1 second or 2 seconds from the outside.
When the frequency deviation measurement command signal b is sent, the frequency deviation measurement circuit 4 measures the oscillation frequency of the crystal oscillator that occurs during 1 or 2 seconds of the standard time signal, and measures the frequency deviation with respect to the standard frequency. do. Next, the value of the frequency deviation measurement circuit is written into the frequency deviation storage circuit 5 by the storage command signal c, and the adjustment of speed is completed. Here, by turning off the adjustment lock switch 9, it is possible to avoid setting the adjustment amount due to noise, and the rate adjustment circuit 6 can be adjusted by the amount that matches the data stored in the frequency deviation storage circuit 5.
The rate is adjusted by varying the frequency division ratio. In this manner, in a crystal watch having a fully automatic adjustment circuit, as long as a device for generating a standard time signal is provided, the rate can be adjusted fully automatically by receiving an external standard time signal through simple operations. A detailed explanation of such a configuration is given in Japanese Patent Publication No. 5397, published by the same applicant.
However, by turning off the slow/sudden lock switch 9, incorrect setting of the slow/sudden amount can be avoided during the period when the lock switch 9 is OFF, but when the slow/sudden lock switch 9 is ON, the signal cannot be distinguished from the standard time signal. It is not possible to prevent incorrect setting of the adjustment amount due to noise signals.

本発明による回路構成の一例を第2図に示す。An example of a circuit configuration according to the present invention is shown in FIG.

以下、これに基づいて説明を行なう。1は水晶発振器、
2は分周回略「 3は表示手段、5は周波数偏差記憶回
路、6は歩度緩急回路、7は標準信号受信手段、8は前
言己各々の回路及び手段を制御する制御回路、9は緩急
ロックスイッチ、10,11はDタイプマスタースレー
ブフリツプフロツプ、12は書き込み指令信号禁止ゲー
ト、13はNORゲートである。
The following explanation will be based on this. 1 is a crystal oscillator,
2 is an abbreviation for frequency division circuit; 3 is a display means; 5 is a frequency deviation storage circuit; 6 is a rate adjustment circuit; 7 is a standard signal receiving means; 8 is a control circuit that controls each of the aforementioned circuits and means; 9 is a adjustment lock. Switches 10 and 11 are D-type master-slave flip-flops, 12 is a write command signal inhibit gate, and 13 is a NOR gate.

この第2図に示す実施例では、第1図周波数偏差測定回
路4を省略し、緩急設定時には特に役割を持たない分周
回路2の一部を周波数測定回路として用いている。尚、
周波数偏差測定回路4を第1図の如く分周回路1とは別
に設けてもよいことは言うまでもない。緩急ロックスイ
ッチ9がONすると、NORゲート13の出力はフリツ
プフロツプ11の出力S2がロウレベルであるので/・
ィレベルとなり、分周回路2(この場合、偏差測定カウ
ンターとして働らいている。
In the embodiment shown in FIG. 2, the frequency deviation measuring circuit 4 shown in FIG. 1 is omitted, and a part of the frequency dividing circuit 2, which has no particular role at the time of setting speed and speed, is used as the frequency measuring circuit. still,
It goes without saying that the frequency deviation measuring circuit 4 may be provided separately from the frequency dividing circuit 1 as shown in FIG. When the slow/fast lock switch 9 is turned on, the output of the NOR gate 13 is at low level since the output S2 of the flip-flop 11 is at low level.
The frequency divider circuit 2 (in this case, functions as a deviation measurement counter).

)がリセット状態となる。この状態で外部標準時間信号
が受信手段7に入力されると、フリツプフロツプ10の
出力S,はハイレベルとなる。次段のフリップフロップ
11は発振器1の出力でトリガーされており、出力S2
がハイレベルとなり、NORゲートり入力されているの
で、NORゲートの出力はロウレベルとなって分周器2
のリセットは解除され、偏差測定カウンターとして働く
分周回路2による発振器1の信号の測定が始まる。この
状態で外部標準時間信号の2発目が1発目からある標準
時間T後(通常は1〜2秒後)に入力されると、フリツ
プフ1コップ10の出力S,がロウレベルとなり、フリ
ツプフロツプ11の出力Mから書き込み信号が出て、そ
の時の分周回路2の値が偏差記憶回路5に書き込まれ記
憶が行なわれる。この時の分周回路2の値は標準時間T
の間に発生する発振器1の発振周波数に対応し、正規の
周波数との偏差が測定できる。次に出力Mに少し遅れて
S2がロウレベルとなり、書き込み終了後に分周回路2
はリセット状態となる。ここで正規の2発目の標準時間
信号が入力される前に雑音信号が入力されてしまうと、
正しい緩急設定を行なうことができなくなってしまう。
本発明では、禁0止ゲート12を設け謀設定を防止して
いる。フリップフロップ11の出力Mから出る書き込み
信号は禁止ゲート12に入力されており、禁止ゲート1
2には分周回路2で構成された信号も禁止信号として入
力されている。このため、書き込み信号夕が偏差記憶回
路5に入力されて、データ−が書き込まれるのは禁止ゲ
ート12に入力される分周回路で構成された禁止信号が
禁止状態のロウレベルから全て禁止解除状態のハィレベ
ルになった場合に限られる。つまり、標準時間信号の周
期Tに合0わせて、分周回路で構成された禁止信号を禁
止ゲートに入力しておけば、1発目の信号から正規の2
発目の信号よりかなり早く2発目の信号が誤入力された
場合には、書き込み信号Mは禁止ゲート軍2で禁止され
て出力されないので、緩急量の誤設定は防げる。例えば
、分周回路2から禁止ゲート12に入力される信号を、
公eC、ISeC、0.$eC周期の3つの信号とする
と、禁止信号は第3図bのようになり、1.79秒〜2
.0鼠秒の間だけ禁止ゲ−トを開くことになり、2発目
の信号は1発目の外部信号が入力されてから1.79秒
から2秒までの間に入力されないと、偏差記憶回路5に
書き込み指令信号として入力されない。第2図に示す本
発明による実施例は、発振回路1の発振周波数が遅れ方
向で進み方向の調整をする場合の例であるが、発振周波
数が進み方向の場合にも分周回路2の後段に1ビット加
えて信号を形成すれば、同様に標準時間TからT+Qの
時間内に入力される信号を通過させる事が可能となる。
) is in the reset state. When the external standard time signal is input to the receiving means 7 in this state, the output S of the flip-flop 10 becomes high level. The next stage flip-flop 11 is triggered by the output of the oscillator 1, and the output S2
becomes a high level and is input to the NOR gate, so the output of the NOR gate becomes a low level and is input to the frequency divider 2.
The reset of oscillator 1 is released, and measurement of the signal of oscillator 1 by frequency divider circuit 2, which functions as a deviation measurement counter, begins. In this state, when the second external standard time signal is input a certain standard time T after the first signal (usually 1 to 2 seconds later), the output S of flip-flop 1 becomes low level, and the output of flip-flop 11 becomes low level. A write signal is output from the output M of , and the value of the frequency divider circuit 2 at that time is written and stored in the deviation storage circuit 5. The value of frequency divider circuit 2 at this time is standard time T
Corresponding to the oscillation frequency of the oscillator 1 that occurs during this period, the deviation from the normal frequency can be measured. Next, a little later than the output M, S2 becomes low level, and after the writing is completed, the frequency dividing circuit 2
is in a reset state. If a noise signal is input before the second regular standard time signal is input,
It becomes impossible to set the correct speed and speed.
In the present invention, a prohibition gate 12 is provided to prevent deliberate setting. The write signal output from the output M of the flip-flop 11 is input to the inhibit gate 12, and the inhibit gate 1
2, a signal formed by the frequency dividing circuit 2 is also input as an inhibition signal. Therefore, when the write signal 1 is input to the deviation storage circuit 5 and the data is written, the prohibition signal formed by the frequency dividing circuit input to the prohibition gate 12 changes from the low level of the prohibition state to the prohibition release state. Only if you reach a high level. In other words, if the prohibition signal configured by the frequency divider circuit is input to the prohibition gate in accordance with the period T of the standard time signal, the normal 2
If the second signal is erroneously input much earlier than the first signal, the write signal M is prohibited by the prohibition gate group 2 and is not output, so that erroneous setting of the adjustment amount can be prevented. For example, the signal input from the frequency dividing circuit 2 to the inhibition gate 12 is
Public eC, ISeC, 0. If there are three signals with a $eC period, the prohibition signal will be as shown in Figure 3b, and the period will be 1.79 seconds to 2 seconds.
.. The prohibition gate will be opened only for 0 mouse seconds, and if the second signal is not input between 1.79 seconds and 2 seconds after the first external signal is input, the deviation will be stored. It is not input to the circuit 5 as a write command signal. The embodiment according to the present invention shown in FIG. 2 is an example in which the oscillation frequency of the oscillation circuit 1 is adjusted in the delay direction and in the advance direction, but even when the oscillation frequency is in the advance direction, the downstream stage of the frequency dividing circuit 2 By adding 1 bit to the signal to form a signal, it becomes possible to similarly pass a signal input within the time period from standard time T to T+Q.

第2図のタイミングチャートを第3図a,bに示す。The timing chart of FIG. 2 is shown in FIGS. 3a and 3b.

禁止ゲート12の出力の立上りで偏差記憶回路5に分周
器2のデータ−が書き込まれる。以上述べた様に、本発
明では禁止ゲートを設け、禁止ゲートに分周回路で形成
された禁止信号を入力することにより、外部標準時間信
号の2発目の信号により発生する書き込み信号が所定時
間だけ禁止ゲートを通過するようにしたので、緩急設定
の可能状態で雑音が入力しても緩急量が謀設定されるこ
とが防止できる。
At the rising edge of the output of the inhibit gate 12, the data of the frequency divider 2 is written into the deviation storage circuit 5. As described above, in the present invention, by providing a prohibition gate and inputting a prohibition signal formed by a frequency dividing circuit to the prohibition gate, the write signal generated by the second signal of the external standard time signal is transmitted for a predetermined period of time. Therefore, even if noise is input when the speed/speed setting is enabled, the speed/speed setting can be prevented from being set incorrectly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、全自動緩急回路を有する水晶時計の回路ブロ
ック図である。 第2図は、本発明による標準信号禁止区間が設けられた
全自動緩急回路を有する水晶時計の回路ブロック図であ
る。第3図a,bは、第2図にタイミングチャートであ
る。‐1・・・・・・水晶発振器、2・・・・・・分周
回路、3・・・・・・表示手段、4・・・・・・周波数
偏差測定回路、5・・・・・・周波数偏差記憶回路、6
…・・・歩度綬急回路、T・・・・・・標準時間信号を
受信する受信手段、8・・・・・・制御回路、9・・・
・・・緩急ロックスイッチ、10,11・・・・・・D
タイプマスタースレーブフリツプフロツプ、12・・・
…書き込み指令信号禁止ゲート、13・・・・・・NO
Rゲート。ゲノ凶 了2壇 オ3図
FIG. 1 is a circuit block diagram of a quartz watch having a fully automatic adjustment circuit. FIG. 2 is a circuit block diagram of a quartz watch having a fully automatic speed control circuit provided with a standard signal prohibition section according to the present invention. FIGS. 3a and 3b are timing charts in FIG. 2. -1... Crystal oscillator, 2... Frequency dividing circuit, 3... Display means, 4... Frequency deviation measurement circuit, 5......・Frequency deviation memory circuit, 6
. . . Rate line express circuit, T . . . Receiving means for receiving a standard time signal, 8 . . . Control circuit, 9 . . .
・・・Rapid lock switch, 10, 11...D
Type master-slave flip-flop, 12...
...Write command signal inhibition gate, 13...NO
R gate. Geno Kyouryo 2 Dan O 3 Diagram

Claims (1)

【特許請求の範囲】[Claims] 1 水晶発振器、分周回路を含む電子回路、表示手段、
外部信号を受信する受信手段、前記受信手段で受信した
外部標準時間信号に対する水晶発振器の周波数偏差を測
定する周波数偏差測定回路、前記周波数偏差測定回路で
測定した周波数偏差を書き込み信号に基づいて記憶する
周波数偏差記憶回路、前記周波数偏差記憶回路のデータ
ーによつて定まる分周比により、歩度緩急を行なう歩度
緩急回路、緩急量設定を制御する制御回路から構成され
、前記制御回路は前記外部標準時間信号を入力し最初の
前記外部標準時間信号により前記周波数偏差測定回路の
測定を開始すると共に第2回目の前記外部標準時間信号
により前記書き込み信号を発生するフリツプフロツプ及
び前記書き込み信号を禁止する禁止ゲート回路を有し、
前記禁止ゲート回路には前記第2回目の入力信号の発生
時刻に対応する所定期間のみゲートを開き前記書き込み
信号を通過させるための禁止信号が前記分周回路から入
力されることを特徴とする全自動緩急回路を有する水晶
時計。
1 Crystal oscillators, electronic circuits including frequency dividing circuits, display means,
A receiving means for receiving an external signal, a frequency deviation measuring circuit for measuring a frequency deviation of a crystal oscillator with respect to an external standard time signal received by the receiving means, and a frequency deviation measuring circuit for storing the frequency deviation measured by the frequency deviation measuring circuit based on a write signal. It is composed of a frequency deviation storage circuit, a rate adjustment circuit that adjusts the rate according to the frequency division ratio determined by the data in the frequency deviation storage circuit, and a control circuit that controls the adjustment amount setting, and the control circuit receives the external standard time signal. and a flip-flop that starts measurement in the frequency deviation measuring circuit using the first external standard time signal and generates the write signal according to the second external standard time signal, and an inhibit gate circuit that prohibits the write signal. have,
The prohibition gate circuit is characterized in that an prohibition signal for opening the gate only for a predetermined period corresponding to the generation time of the second input signal and allowing the write signal to pass is inputted from the frequency dividing circuit. A crystal clock with an automatic speed control circuit.
JP70475A 1974-12-26 1974-12-26 Crystal clock with fully automatic speed control circuit Expired JPS6038671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP70475A JPS6038671B2 (en) 1974-12-26 1974-12-26 Crystal clock with fully automatic speed control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP70475A JPS6038671B2 (en) 1974-12-26 1974-12-26 Crystal clock with fully automatic speed control circuit

Publications (2)

Publication Number Publication Date
JPS5175563A JPS5175563A (en) 1976-06-30
JPS6038671B2 true JPS6038671B2 (en) 1985-09-02

Family

ID=11481145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP70475A Expired JPS6038671B2 (en) 1974-12-26 1974-12-26 Crystal clock with fully automatic speed control circuit

Country Status (1)

Country Link
JP (1) JPS6038671B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250881A (en) * 2005-03-14 2006-09-21 Omron Corp Time switch
EP3379347B1 (en) * 2017-03-20 2020-01-01 ETA SA Manufacture Horlogère Suisse Method for adjusting the operation frequency of an electronic watch

Also Published As

Publication number Publication date
JPS5175563A (en) 1976-06-30

Similar Documents

Publication Publication Date Title
JPS6010458B2 (en) Phase locked loop circuit
US5371764A (en) Method and apparatus for providing an uninterrupted clock signal in a data processing system
KR100319417B1 (en) Semiconductor device having timing-stabilization circuit and method of testing such a semiconductor device
JPH0311689B2 (en)
US3939438A (en) Phase locked oscillator
US7268600B2 (en) Phase- or frequency-locked loop circuit having a glitch detector for detecting triggering-edge-type glitches in a noisy signal
US7375592B2 (en) System and method for maintaining an accurate frequency on a voltage controlled oscillator
JP2695535B2 (en) Timer input control circuit and counter control circuit
JPH10215174A (en) Pll circuit
US4341950A (en) Method and circuitry for synchronizing the read and update functions of a timer/counter circuit
JPS6038671B2 (en) Crystal clock with fully automatic speed control circuit
JPS5935218B2 (en) PLL circuit
US5734273A (en) Phase lock detector
JPS6093825A (en) Method and circuit for initializing phase lock loop
JPH0621811A (en) Synchronizing circuit of frequency divider
US6657463B2 (en) System for maintaining the stability of a programmable frequency multiplier
KR950001436B1 (en) Reference pulse generated circuit
JP2729815B2 (en) Power consumption reduction method of digital temperature compensated oscillator
JPS6010457B2 (en) Microprocessor controlled PLL
RU1785073C (en) Time-to-code converter
JPH0445296Y2 (en)
JPH0693629B2 (en) Phase locked loop circuit with drift detection function
JPH0677228B2 (en) Clock signal generation circuit
KR20030052667A (en) A delay locked loop circuit
JPS63124623A (en) Unlock detection circuit for pll frequency synthesizer