JPS603855A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPS603855A
JPS603855A JP58111305A JP11130583A JPS603855A JP S603855 A JPS603855 A JP S603855A JP 58111305 A JP58111305 A JP 58111305A JP 11130583 A JP11130583 A JP 11130583A JP S603855 A JPS603855 A JP S603855A
Authority
JP
Japan
Prior art keywords
separator
electrolyte
electrode
zinc
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58111305A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58111305A priority Critical patent/JPS603855A/en
Publication of JPS603855A publication Critical patent/JPS603855A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To suppress the deterioration of the performance of an alkaline zinc storage battery and the deterioration of the strength of a separator by using a microporous polypropylene film as a separator touching the negative electrode and a woven fabric, a nonwoven fabric or mixture paper made of vinylon fiber or cellulose-system fiber as a separator touching the positive electrode. CONSTITUTION:In an alkaline zinc storage battery, the amount of electrolyte is restricted so that no liberated electrolyte practically exists and the amount of the electrolyte contained in a separator touching a negative electrode is smaller than that contained in a separator touching a positive electrode. In such a battery, the separator is formed by putting a microporous polypropylene film 3 and a nonwoven vinylon fabric 4 upon each other so that a zinc electrode 1 touches the microporous polypropylene film 3 and a nickel electrode 2 touches the nonwoven vinylon fabric 4. As a result, drying of the surface of the separator is suppressed. Besides, the deterioration of the strength of the separator caused due to concaves and convexes formed on the surface of the zinc electrode as cycles proceeds as well as retention of the electrolyte or gas in the concave areas are suppressed. Consequently, the performance of the battery is improved.

Description

【発明の詳細な説明】 (イ)PCC上上利用分野 末完り田ニッケルー曲鉛蓄電池、銀−亜鉛蓄電池などの
ような負極活物質として亜鉛を用いるアルカリ亜鉛蓄電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of application of PCC The present invention relates to alkaline zinc storage batteries using zinc as a negative electrode active material, such as nickel-curved lead storage batteries, silver-zinc storage batteries, and the like.

(ロ)従来技術 アルカリqIi鉛蓄電IT幌は、即位重爪当りの酌いエ
ネルギー密度、高い作動電圧及び良好な低温特性をイ了
し、且つ経済性や安全性に優れているなどの利点を有す
るが、充、放電によるサイクル寿命が短いという欠点を
有する。この欠点は放電時に負極の亜鉛が電解液中に亜
鉛酸イオンとして溶解し、充電時に負極表面に樹枝状あ
るいは訂棉状に1.IIj鉛が析出し、セパレークを貫
通して短絡を)1μこしたり、負極の変形を起こしたり
することに起因するものであり、活物質の添加剤、集″
屯体、電ftv液、セパレーク等の様々な改良によりl
′jiJ記欠点を解消することが試みられている。
(b) The conventional alkaline qIi lead-acid IT canopy has the advantages of high energy density, high operating voltage, and good low-temperature characteristics, as well as excellent economic efficiency and safety. However, it has the disadvantage of short cycle life due to charging and discharging. This drawback is that zinc in the negative electrode dissolves as zincate ions in the electrolyte during discharge, and during charging, dendritic or cotton-like formations occur on the negative electrode surface. This is caused by lead precipitating and penetrating the separator, causing a short circuit (1μ) or deformation of the negative electrode.
Through various improvements such as tubes, electric FTV liquid, and separate lakes, l
Attempts have been made to overcome the drawbacks described above.

この欠点の解消方法のうち、電PJ¥液が過料に存在す
るほど亜鉛酸イオンの生成が促進することに注目したも
のとして、両極間の電気伝導度を保持するのに必要な量
で実質的に遊1i1[L状態のものを存在させない程度
の量の電解液を有し、且つ両極間に複数層のセパレータ
を介し亜鉛負極と接飄するセパレークの電解g量:が正
極と接桑する電解液量より少なく構成する方法がある。
One way to overcome this drawback is to focus on the fact that the more the PJ liquid is present in the supercharge, the more the production of zincate ions is promoted. 1i1 [An electrolytic solution in which the electrolytic solution is in an amount such that no one in the L state exists and is in contact with the zinc negative electrode through a plurality of separators between the two electrodes.] is in contact with the positive electrode. There is a method of configuring the amount to be less than the amount of liquid.

この方法は、亜鉛負極表面の過剰の電解液を除去するこ
とに優れサイクル寿命も向上するが、セパレータの構成
により以下の様な欠点を生ずることがしばしばある。
Although this method is excellent in removing excess electrolyte on the surface of the zinc negative electrode and improves cycle life, it often has the following drawbacks depending on the structure of the separator.

例えば亜鉛負極に接桑するセパレータとして微孔性ポリ
プロピレンフィルムを用い、正極に接するセパレータと
してナイロン不織布を用いて多層セパレークを構成し電
解液の液勾配を正極側に高くした場合には、ポリプロピ
レンフイルムカ疎水性であるためサイタルの進行につれ
て親水性が劣化し表向が乾いてくるため電池の内部抵抗
を増加させ、更にサイクルが進行して11!鉛負極表曲
に樹枝状あるいはn′σ綿状に!1]工鉛が析出し始め
負極表面に凹凸ができると、凹状部に?li解j1りや
カスが曲り?h、池性θ3を劣化させ、また凸状部によ
ってセパレータが押圧aれこの押圧される部分に於いて
セパレークが強度的に急速に劣化してしまう。
For example, if a multilayer separator is constructed by using a microporous polypropylene film as the separator in contact with the zinc negative electrode and a nylon nonwoven fabric as the separator in contact with the positive electrode to increase the electrolyte gradient toward the positive electrode, the polypropylene film Since it is hydrophobic, as the cycle progresses, the hydrophilicity deteriorates and the surface becomes dry, increasing the internal resistance of the battery, and as the cycle progresses further, 11! Lead negative electrode surface curved and dendritic or n'σ cotton-like! 1] When engineered lead begins to precipitate and unevenness forms on the negative electrode surface, does it become a concave part? Li solution j1 Riyakasu is bent? (h) The separator properties θ3 are deteriorated, and since the separator is pressed by the convex portion, the strength of the separator rapidly deteriorates in the pressed portion.

(/→ 発ゆjの目的 本発明はかかる点に鑑み、実質的に遊離のものを存在さ
せない程度に制限された電解液をイJし、負極と接する
セパレークの電解液量が正極と接するセパレークの電解
液量より小となるよう構成したアルカリ亜鉛盾電池に於
ける前記電池性能の劣化及び中パレータの強度的劣化在
抑制することを目的とする。
(/→ Purpose of Development The present invention has been developed in view of the above points, in which the amount of electrolyte in the separate lake in contact with the negative electrode is reduced to the level in which the amount of electrolyte in the separate lake in contact with the positive electrode is The purpose of the present invention is to suppress the deterioration of the battery performance and the strength deterioration of the middle pallet in an alkaline zinc shield battery configured such that the amount of electrolyte is smaller than the amount of electrolyte.

に)) 発明の構成 本発明は少なくとも一つの亜鉛負、啄、少なくとも一つ
の正極、これらの両様間に配置された多層のセパレータ
並びにこれら両極とセパレークに吸収させかつ実質的に
遊離のものを存在させ摩い程度のアルカリ電解液を・1
〕シ、前記負極と接するセパレータに微孔性ポリプロピ
レンフィルムラlljい、l1rl記正極と接するセパ
レークにビニUン繊A・1[あるいはセルロース系繊維
からなる織布、不織布またはこれらの繊維からなる混抄
紙を用いることで、前記負極と接するセパ]/−りの電
解液量がl1LJ記正極と接するセパレークの電S液量
より小となるよ 1う構成したアルカリ亜鉛蓄電池であ
る。
2)) Structure of the Invention The present invention comprises at least one negative electrode, at least one positive electrode, a multilayer separator disposed between these two electrodes, and a zinc that is absorbed in the two electrodes and the separator and exists in the form of substantially free zinc. Add 1 ml of alkaline electrolyte to the level of rubbing.
] The separator in contact with the negative electrode is a microporous polypropylene film layer, and the separator in contact with the positive electrode is vinyl U fiber A.1 [or a woven fabric made of cellulose fiber, a non-woven fabric, or a blend of these fibers This is an alkaline zinc storage battery configured so that the amount of electrolyte in the separator in contact with the negative electrode is smaller than the amount of electrolyte in the separator in contact with the positive electrode by using papermaking.

(ホ)実施例 木うi’、l;Illの′欠施例を比す(K例と共に以
下に示し説明−)−る。・151図及び第6図h↓木発
りjの一ヂ施例及び他実r、H区例のニッケルー亜鉛、
’r’; ji<池のイy’gt u+8的説明図、第
2図は比較例のニッケルー’Ili fi’i:1蓄′
市1也の概略的説明図である。
(e) Compare the missing example of the example tree i', l; Ill (shown and explained below along with K example).・Figure 151 and Figure 6 h ↓ One example of wood starting j and other examples r, nickel-zinc of H section example,
'r';ji<ike no iy'gt u+8 explanatory diagram, Figure 2 is a comparative example of nickel 'Ili fi'i:1 accumulation'
It is a schematic explanatory diagram of Kazuya Ichi.

本発明の一実施例として第1図に示す様にセパレークを
微孔性ポリプロピレンフィルム(3)とビニロン不織布
(4)とを・東ね合わせ2層蛎造とし、q■鉛+i吸1
1)と微孔性ボリプ[1ピレンフイルム’31とが、ま
たニッケル11? 121とビニロン不織布14)とが
接する梯KL、で、実ヱ′1的に遊離のものを存在させ
ない程度にIrl ji尺されたアlレカリ?有解?l
ぞを・1了する容!「1.: 4 A Hのニッケルー
11ト鉛蓄電池を作製し罠。この4711)をAとする
As an embodiment of the present invention, as shown in FIG. 1, the separator is made of a two-layer structure consisting of a microporous polypropylene film (3) and a vinylon nonwoven fabric (4).
1) and microporous volip [1 pyrene film '31, and nickel 11? In the ladder KL where 121 and the vinylon nonwoven fabric 14) are in contact, the height is set to such an extent that virtually no free material exists. Do you understand? l
It's time to finish the game! "1.: Create a trap by making a nickel-11 lead acid battery of 4 AH. Let this 4711) be A.

−まだ、比Il(として第2図に示す様に前記実施例の
構成のうち、ヒニロン不織布全ナイロン不織布(5)に
かえ、その他の構成は同一で容■け4AHのニッケルー
亜鉛蓄電池を作製し屯aBとし、前記実施例のうちビニ
ロン不織布をセロハン(6)にかえ、微孔性ポリプロピ
レンフィルム+31と七ロノ・ン(6)とrラミネート
したセパレークを用い、その他の構成は同一で容量4 
A Hのニッケルー41+鉛蓄電池1を作製し電池Cと
する。
- As shown in Figure 2, a 4AH nickel-zinc storage battery was fabricated with the same configuration except for the Hinilon non-woven fabric (5) in the configuration of the previous example, as shown in Figure 2. In the above example, the vinylon nonwoven fabric was replaced with cellophane (6), and a separate layer laminated with microporous polypropylene film +31 and Shichironon (6) was used, the other configurations were the same, and the capacity was 4.
A nickel-41+lead acid battery 1 of AH was prepared and designated as battery C.

こうして作製された電池A乃至Cを用い、1Aの電流で
4時間30分充?fj L、1Aの電流で4時間放電す
るというサイクル条件で夫々サイクル試験を行なった。
Using the batteries A to C prepared in this way, they were charged for 4 hours and 30 minutes at a current of 1A. A cycle test was conducted under the cycle conditions of discharging at a current of fj L and 1A for 4 hours.

この結Wを第4図にサイクル特性図として示す。第4図
から末完りJ電池Aは比較電池Bに比し優れた特性を有
し、比較電池Cは本発明電池A及び比較電池Bに比し極
端に特性が劣ることがわかる。この理由は以下の様に考
えられる。
This connection W is shown in FIG. 4 as a cycle characteristic diagram. From FIG. 4, it can be seen that the finished J battery A has superior characteristics compared to the comparative battery B, and the comparative battery C has extremely inferior characteristics compared to the invention battery A and the comparative battery B. The reason for this is thought to be as follows.

まず、本発すJ電池Aが比較電池Bより優れた特性を示
したのは、正極と接するセルロース系繊維及びビニロン
繊維からなる不織布の親水性、保液性が高いため初期の
電池容量と電池電圧を向上びせ、サイクルが進行しても
不織布の繊維がほぐれ合成性が高まり、微孔性ポリプロ
ピレンフィルム表面が乾燥することによる電池性能の劣
化を防止するでき、亜鉛極表面の凸状部がセパレークを
押圧しても、押圧される部分の不織布の層が劣化して抑
圧仏りけない部分、ずなわち「11!鉛極表面の凹状部
にあたる部分に移動するため、押圧力が1吸収されてセ
パレークの強度的劣化が抑制され、且つ移動してきたセ
ルロース系繊維やビニロン繊維によっテ微孔性ポリプロ
ピレンフィルムが亜鉛極表面の凹状部に押しあてられ凹
状部を埋めUl、tい、電解液やカスが凹状部に涌って
電池性能を劣化させるのを防止することによると考えら
れる。
First of all, the reason why the J battery A produced by the present invention showed superior characteristics to the comparative battery B is that the nonwoven fabric made of cellulose fibers and vinylon fibers in contact with the positive electrode has high hydrophilicity and liquid retention properties, which increases the initial battery capacity and battery voltage. As the cycle progresses, the fibers of the non-woven fabric become loose, increasing its synthetic properties, and preventing deterioration of battery performance due to drying of the surface of the microporous polypropylene film. Even when pressed, the nonwoven fabric layer in the pressed area deteriorates and moves to the part where the pressure cannot be removed, that is, the part corresponding to the concave part of the lead electrode surface, so the pressing force is absorbed by 1. This suppresses the strength deterioration of the separator, and the transferred cellulose fibers and vinylon fibers press the microporous polypropylene film against the recesses on the surface of the zinc electrode, filling the recesses and allowing the electrolyte to flow. This is thought to be due to the prevention of dirt and debris from flowing into the concave portions and deteriorating battery performance.

また比較電池Cか本発明「は池A及び比較電池Bに比し
極端に特性か劣るのは、正極側に七ロノ・ンの様なフィ
ルム状のものを配すると正極よシ発生するガスが抜は輯
tく電極間に溜るため電極反応面積が減少するからであ
る。したがって同じセルロース糸でもフィルム状のセロ
ハンは特性が悪く繊A・(「状のレーヨンを用いた織布
、不織布は特性が良くなることになる。
Also, the comparative battery C has extremely inferior characteristics compared to the battery A and the comparative battery B of the present invention.The reason why the characteristics of the comparative battery C are extremely inferior to that of the battery A and the comparative battery B is that when a film-like material such as Nanaronon is placed on the positive electrode side, the gas generated from the positive electrode is The reason for this is that the electrode reaction area decreases as the removal accumulates between the electrodes.Thus, even though the cellulose yarn is the same, film-like cellophane has poor properties.Woven fabrics and non-woven fabrics using rayon of fiber A. will improve.

尚、本発明の他実施例としてε(′S6図に示す様にセ
パレークを微孔性ポリプロピレンフィルム(3)とビニ
ロン不織布(4)とを互い述いに重ね合わせ4層構造と
し、亜鉛]和1)と微孔性ポリプロピレンフィルム(3
)とがまたニッケル極(2)とビニロン不織布(4)と
が接する様に電池を構成するとより効果的でろる。
In addition, as another embodiment of the present invention, ε (' As shown in Fig. 1) and microporous polypropylene film (3)
) and the nickel electrode (2) and the vinylon nonwoven fabric (4) are in contact with each other to make the battery more effective.

(へ)発明の効果 零発り]は実質的に遊離のものを存在させない程度に制
限された電解液を有し、負極と接するセパレークの電解
液量が正極と接するセパレータの電解液量より小となる
よう構成したアルカリ亜鉛蓄電池に於ける負極と接する
セパレータに微孔性ポリプロピレンフィルムを用い、陽
極と接するセパレークにビニロン繊維あるいはセルロー
ス系繊維からなる織布、不織布寸だは仁れらの繊維から
な・・レーク表面の乾き、サイクルの進行に伴ない生 
1じる亜鉛極表面の凹凸によるセパレータの強度的劣化
及び凹状部への電解液やガス溜りが抑制され、′を昭1
11.性r飴がより向上する効果がある。
(f) Zero effect of the invention] has an electrolytic solution limited to such an extent that no free substance is substantially present, and the amount of electrolytic solution in the separator in contact with the negative electrode is smaller than the amount of electrolytic solution in the separator in contact with the positive electrode. In an alkaline zinc storage battery configured to ...The surface of the rake dries, and as the cycle progresses, the surface of the lake dries.
The strength deterioration of the separator due to the irregularities on the surface of the zinc electrode and the accumulation of electrolyte and gas in the concave parts were suppressed, and
11. It has the effect of further improving sex.

4、図面の1)iflrli−な説りj?151図及び
第51:’、I tよ本宅りJの−しり1巨例及び他実
旋例を示す二ノrルーτ111<t+)腎1啼(1の概
略曲設(17i図、第2図は比収例のニックルー亜鉛、
″11電/lu、の4)!に Fl;5的!!’1gl
−1l1図、ニア+、 4図1−J、サイク/l/ 4
4r性図である。
4. Drawing 1) iflrli- explanation j? Fig. 151 and No. 51: ', I tyomotoyari J's - 2 no r τ111<t+) showing a giant example and another example is a specific yield example of nickle zinc,
``11den/lu, no 4)! to Fl; 5!!'1gl
-1l1 figure, near+, 4 figure 1-J, cyc/l/4
This is a 4r sex diagram.

(1)・・・亜鉛林、(2)・・ニッケル賑、(,3)
・・・nFk孔性孔性ポリプロピランフルム、+51・
・・ナイロン不AV& 75.14)・・・ヒニロン不
Th’に布、(6)・・・セロノ・ン。
(1)...Zinc forest, (2)...Nickel bustle, (,3)
... nFk porous polypropylan film, +51・
...Nylon non-AV & 75.14)...Nylon non-Th' to cloth, (6)...Seronon.

出1ち1.I1人三洋宙1機株式会社・′:、’: 、
’(、:l。
Out 1chi 1. I 1 person Sanyo Sora 1 machine Co., Ltd. ・':,': ,
'(,:l.

、41 代理人弁理士 佐 野 静 夫−ユノ゛第1図 第2図 第3図, 41 Representative Patent Attorney Shizuo Sano - Yuno Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一つの亜鉛負極、少なくとも一つの正
極、これら両4哉間に配置された多層のセパレータ韮ひ
にこれら両極とセパレータに吸収させかつ実質的に遊離
のものを存在させない程度に;);す限されたアルカリ
電#液をイ1し、前記負極と接するセパレータに微孔性
ポリプロピレンフィルムをこれらの繊Mimからなる混
抄紙を用いることで、前記負極と接するセパレータの電
解欣鮭がrifJ記正極と接するセパレークの電解液量
より小となるよう構成したことを特数とするアルカリ亜
鉛蓄電池。
(1) At least one zinc negative electrode, at least one positive electrode, and a multilayer separator disposed between these two electrodes to the extent that zinc is absorbed by these two electrodes and the separator, and substantially no free zinc is present;) ; By using a mixed paper made of these fibers, a microporous polypropylene film is used as the separator in contact with the negative electrode, and the electrolytic liquid in the separator in contact with the negative electrode becomes rifJ. An alkaline zinc storage battery characterized in that the amount of electrolyte is smaller than the amount of electrolyte in the separate electrode in contact with the positive electrode.
JP58111305A 1983-06-20 1983-06-20 Alkaline zinc storage battery Pending JPS603855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111305A JPS603855A (en) 1983-06-20 1983-06-20 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111305A JPS603855A (en) 1983-06-20 1983-06-20 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPS603855A true JPS603855A (en) 1985-01-10

Family

ID=14557851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111305A Pending JPS603855A (en) 1983-06-20 1983-06-20 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS603855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237941A (en) * 1986-04-07 1987-10-17 Daicel Chem Ind Ltd Aqueous composition of inorganic particle
JPS63226888A (en) * 1987-03-16 1988-09-21 Sanyo Electric Co Ltd Alkaline zinc storage battery
FR2628892A1 (en) * 1988-03-15 1989-09-22 Accumulateurs Fixes OPEN NICKEL-CADMIUM ACCUMULATOR
WO2022260045A1 (en) * 2021-06-11 2022-12-15 日本碍子株式会社 Nickel zinc secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237941A (en) * 1986-04-07 1987-10-17 Daicel Chem Ind Ltd Aqueous composition of inorganic particle
JPS63226888A (en) * 1987-03-16 1988-09-21 Sanyo Electric Co Ltd Alkaline zinc storage battery
FR2628892A1 (en) * 1988-03-15 1989-09-22 Accumulateurs Fixes OPEN NICKEL-CADMIUM ACCUMULATOR
US4883727A (en) * 1988-03-15 1989-11-28 Saft, S.A. Vented nickel-cadmium storage cell
WO2022260045A1 (en) * 2021-06-11 2022-12-15 日本碍子株式会社 Nickel zinc secondary battery

Similar Documents

Publication Publication Date Title
CN103035865A (en) Clapboard structural body for battery and lead storage battery with clapboard structural body
JPS603855A (en) Alkaline zinc storage battery
JP4639620B2 (en) Alkaline storage battery
JP2005285499A5 (en)
JPS60170159A (en) Seald type alkaline storage cell
JP2671387B2 (en) Cylindrical lithium secondary battery
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP3332139B2 (en) Sealed alkaline storage battery
JPH03285263A (en) Collector for lead-acid battery
JPS6112342B2 (en)
JP2802427B2 (en) Sealed alkaline storage battery and method of manufacturing the same
JP2755634B2 (en) Alkaline zinc storage battery
JPS6196659A (en) Separator for sealed lead-acid battery
JPS6065449A (en) Sealed type alkaline storage battery
JP2002319387A (en) Separator for alkaline battery
JPS63213265A (en) Enclosed-type lead storage battery
JP2022152915A (en) lead acid battery
JP2022152916A (en) lead acid battery
JPH01211857A (en) Nickel electrode for alkaline storage battery
JP2022152914A (en) lead acid battery
JPH01169869A (en) Lead-acid battery
JP4443842B2 (en) Manufacturing method of battery and separator used therefor
JPH01294353A (en) Alkaline zinc storage battery
JPS60154476A (en) Lead-acid battery
JPH073794B2 (en) Alkaline zinc storage battery