JP2671387B2 - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery

Info

Publication number
JP2671387B2
JP2671387B2 JP63136383A JP13638388A JP2671387B2 JP 2671387 B2 JP2671387 B2 JP 2671387B2 JP 63136383 A JP63136383 A JP 63136383A JP 13638388 A JP13638388 A JP 13638388A JP 2671387 B2 JP2671387 B2 JP 2671387B2
Authority
JP
Japan
Prior art keywords
separator
electrode
electrode body
dendrites
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63136383A
Other languages
Japanese (ja)
Other versions
JPH01307176A (en
Inventor
隆文 藤井
真治 浜田
きよみ 小松
善一郎 伊藤
幸男 西川
純一 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63136383A priority Critical patent/JP2671387B2/en
Publication of JPH01307176A publication Critical patent/JPH01307176A/en
Application granted granted Critical
Publication of JP2671387B2 publication Critical patent/JP2671387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属リチウムを活物質とする負極板と、正極
板とを、この両極間にセパレータを介在させて渦巻状に
構成した電極体を有する円筒形リチウム二次電池に関す
るものである。
TECHNICAL FIELD The present invention relates to a cylinder having an electrode body in which a negative electrode plate using metallic lithium as an active material and a positive electrode plate are spirally formed with a separator interposed between the two electrodes. The present invention relates to a lithium secondary battery.

従来の技術 一般に有機電解液リチウム電池は、高エネルギー密度
で長期信頼性に優れ、しかも作動温度範囲が広いなどの
特長がある。
2. Description of the Related Art Generally, an organic electrolyte lithium battery has features such as high energy density, excellent long-term reliability, and a wide operating temperature range.

近年、このような長所を生かしつつ再充電可能ないわ
ゆるリチウム二次電池の開発が活発化してきている。一
般的には、金属リチウムを主活性質とする負極と、二硫
化チタン(TiS2)をはじめとする各種の層間化合物など
を正極活物質として用い、炭酸プロピレンなどの有機溶
媒に過塩素酸リチウムなどを溶解した有機電解液が用い
られる。しかし、負極の充放動サイクルの寿命が短いこ
となどで、現在まで実用化には至っていない。負極活物
質としてのリチウムは、充放電サイクルとともに変形し
て樹枝状析出(デンドライト)を生じ、それが内部短絡
ブリッジを形成するなど困難な問題を含んでいる。特に
デンドライトは、電流密度の高い所に集中して発生し、
リチウム負極面から垂直に成長する性質のもので、充放
電サイクルが進むにつれてデンドライトによる表面の不
均一化は促進され、最終的には脱落してしまう。このよ
うにして負極から脱落したリチウムのデンドライトは、
電解液中を浮遊するので、正極と電気的接触を持ってい
る電池のケースやリード部分に接触する危険性があり、
もし接触すれば、いわゆる内部短絡を起こしてしまい、
電池としての機能は失われてしまう。また、デンドライ
トが脱落しないまでも、その成長が進みセパレータの空
孔部を貫通して内部短絡を起こす危険性は高い。
In recent years, so-called lithium secondary batteries that can be recharged while taking advantage of such advantages have been actively developed. Generally, a negative electrode containing metallic lithium as the main active material and various intercalation compounds such as titanium disulfide (TiS 2 ) are used as the positive electrode active material, and lithium perchlorate is used as an organic solvent such as propylene carbonate. An organic electrolytic solution in which the above is dissolved is used. However, due to the short life of the charge / discharge cycle of the negative electrode, it has not yet been put to practical use. Lithium as a negative electrode active material has a difficult problem such that it deforms with charge / discharge cycles to generate dendritic deposits (dendrites), which form internal short-circuit bridges. In particular, dendrites are concentrated in places with high current density,
It has the property of growing vertically from the lithium negative electrode surface, and as the charge and discharge cycle progresses, the nonuniformity of the surface due to dendrites is promoted, and eventually it falls off. The dendrite of lithium that has fallen off from the negative electrode in this way is
Since it floats in the electrolyte, there is a risk of contact with the battery case or lead that has electrical contact with the positive electrode.
If they come into contact, a so-called internal short circuit will occur,
The function as a battery is lost. Even if the dendrites do not fall off, there is a high risk that the dendrites will grow and penetrate through the holes of the separator to cause an internal short circuit.

このような負極の欠点を改良するため、サイクル寿命
という観点から、電解液にデンドライトの発生を抑制す
る添加剤を加える方法、あるいはリチウムとの合金を用
いる方法などの検討がなされているものの、さらに信頼
性の向上、特に安全性という観点からの検討は遅れてい
るといえる。
In order to improve such a defect of the negative electrode, from the viewpoint of cycle life, although a method of adding an additive that suppresses the generation of dendrite to the electrolytic solution or a method of using an alloy with lithium has been studied, It can be said that the examination from the viewpoint of improvement of reliability, especially safety is delayed.

すなわち、デンドライトが発生した場合、これをセパ
レータ空孔部に貫通および電解液に浮遊させないことが
重要である。そのためには、高信頼性でかつエネルギー
密度を極力低下させないようなセパレータの最適構成化
を図らなければならない。
That is, when dendrites are generated, it is important that they do not penetrate through the separator holes and float in the electrolyte. For that purpose, it is necessary to optimize the structure of the separator so as to have high reliability and to reduce the energy density as much as possible.

しかしながら、従来のこの種電極体のセパレータは、
断面形状が第4図のような不織布または第5図のような
二次元的空孔構造の微孔性フィルムが用いられる。そし
てこれらの構成方法は次の2通りあり、各電極体の構成
断面図は第6図および第7図に示すように、既存のリチ
ウム一次電池の構成方法をそのまま採用したものであ
る。第1の方法は、第6図に示すごとくエキスパンデッ
ドメタルやネットなどの芯材に二硫化チタンなどを活物
質とする合剤を充填、乾燥してなる正極板1と金属リチ
ウムを活物質とする負極板2との間に帯状セパレータ3
を介在させて全体を渦巻状に構成する方法である。
However, the conventional separator of this kind of electrode body,
A nonwoven fabric having a cross-sectional shape as shown in FIG. 4 or a microporous film having a two-dimensional pore structure as shown in FIG. 5 is used. There are the following two methods of construction, and the sectional views of the constitution of each electrode body are the same as the constitution method of the existing lithium primary battery as shown in FIGS. 6 and 7. In the first method, as shown in FIG. 6, a positive electrode plate 1 formed by filling a core material such as expanded metal or a net with a mixture containing titanium disulfide as an active material and drying the active material contains lithium metal as an active material. Band separator 3 between the negative electrode plate 2 and
This is a method in which the whole is formed in a spiral shape by interposing.

第2の方法は、第7図の如く正負極板1,2それぞれを
セパレータ3で包被して渦巻状に構成したものである。
In the second method, as shown in FIG. 7, the positive and negative electrode plates 1 and 2 are covered with a separator 3 to form a spiral shape.

発明が解決しようとする課題 従来の構成ではセパレータの形状および構成方法の両
面で、以下の課題を有していた。
Problems to be Solved by the Invention The conventional structure has the following problems in terms of the shape of the separator and the method of forming the separator.

まず、セパレータの形状は次の4つの特性が要求され
る。
First, the shape of the separator is required to have the following four characteristics.

(1) 均一な充放電反応を進行させるために、セパレ
ータの表面形状が平滑であること。
(1) The surface shape of the separator is smooth in order to allow a uniform charge / discharge reaction to proceed.

(2) デンドライトの成長によってセパレータの空孔
を貫通しない空孔構造を有すること。
(2) It has a pore structure that does not penetrate the pores of the separator due to the growth of dendrites.

(3) 電池の短絡などの異常が生じた際、電極反応を
瞬時に遮断し得ることのできるセパレータの高温閉孔性
を有すること。
(3) The separator has a high temperature pore-closing property capable of instantaneously interrupting the electrode reaction when an abnormality such as a battery short circuit occurs.

(4) 電解液の保液性に優れていること。(4) Excellent electrolyte retention.

以上の特性に対して不織布の場合は、繊維状の樹脂が
不規則に形成されているので表面形状が粗くしかも空孔
も大きく不均一なため、上記4の特性を除いていずれも
充足できない課題がある。
In contrast to the above characteristics, in the case of a non-woven fabric, since the fibrous resin is irregularly formed, the surface shape is rough and the pores are large and non-uniform, so that none of the above four characteristics can be satisfied. There is.

また、二次元的空孔構造の微孔性フィルムの場合は、
上記1と3の特性は備えているが、空孔の構造から保液
性に乏しく、デンドライトが成長した際に空孔を貫通し
て内部短絡を起こし易いという課題がある。
In the case of a microporous film having a two-dimensional pore structure,
Although the characteristics 1 and 3 described above are provided, there is a problem that the structure of the pores is poor in liquid retaining property, and when the dendrite grows, it easily penetrates the pores to cause an internal short circuit.

次に、セパレータの構成面では以下の2つの条件が重
要である。
Next, the following two conditions are important in terms of the constitution of the separator.

(1) デンドライトの浮遊を防止する構成であるこ
と。
(1) The structure should prevent the dendrites from floating.

(2) エネルギー密度を低下させない構成であるこ
と。
(2) The energy density should not be reduced.

しかし従来の構成では、まず第1の方法の場合、セパ
レータ3の上下部が開口しているため、デンドライトの
浮遊やブリッジによって内部短絡を起こす危険性が極め
て大である。このため、電極体の上下に絶縁板を装着す
る必要がある。しかしながら、電極体の上下に絶縁板を
圧接した際、電極体の上下から突出しているセパレータ
が不均一に折れ曲がる、さらに折れ曲がったセパレータ
の反発作用で絶縁板が押し上げらるため、電極体への絶
縁板の密着性が不均一かつ不十分で、デンドライトによ
る内部短絡の防止は困難であった。また電極体と絶縁板
の密着性を高めるために絶縁板をより強固に圧接した場
合は、極板の脱落が起こり電池性能が低下するばかりで
なく内部短絡の防止ができないという課題があった。
However, in the conventional configuration, in the case of the first method, since the upper and lower portions of the separator 3 are open, there is an extremely high risk of causing an internal short circuit due to floating dendrites or bridges. Therefore, it is necessary to mount insulating plates on the upper and lower sides of the electrode body. However, when the insulating plates are pressed against the upper and lower sides of the electrode body, the separators protruding from the upper and lower sides of the electrode body are bent unevenly, and the insulating plate is pushed up by the repulsive action of the bent separators. The adhesion of the plate was uneven and insufficient, and it was difficult to prevent internal short circuit due to dendrites. Further, when the insulating plate is pressed firmly to increase the adhesion between the electrode body and the insulating plate, there is a problem that the electrode plate may fall off to deteriorate the battery performance and prevent the internal short circuit.

また第2の方法で構成した場合は、渦巻状に巻回する
際に第8図の斜線部Aにセパレータのシワが発生する。
このため電極体の外径が大きくなり、ケースへの挿入が
困難となる。
Further, in the case of the second method, wrinkles of the separator occur in the shaded portion A in FIG. 8 when spirally wound.
Therefore, the outer diameter of the electrode body becomes large, and it becomes difficult to insert the electrode body into the case.

したがって、極板寸法を薄くあるいは短くして対処し
なければならず、放電容量を低下させるという問題を生
じる。また電解液が前記シワの部分に均一に浸透しにく
いため、充放電特性のバラツキを増大させるという課題
も有していた。
Therefore, it is necessary to deal with the electrode plate by making it thin or short, which causes a problem of reducing the discharge capacity. Further, since the electrolytic solution is difficult to uniformly penetrate into the wrinkle portion, there is a problem that the variation in charge / discharge characteristics is increased.

本発明はこのような課題を解決するもので、安全性お
よび充放電特性の向上を目的とするものである。
The present invention solves such problems and aims to improve safety and charge / discharge characteristics.

課題を解決するための手段 これらの課題を解決するために本発明は、三次元的空
孔構造を有する微孔性フィルムからなるセパレータを用
いて前記第1の方法により電極体を構成し、さらに電極
体の上下からはみ出ているセパレータを熱風加熱によっ
て巻芯方向に折曲し正,負、両極板を被覆したものであ
る。
Means for Solving the Problems In order to solve these problems, the present invention configures an electrode body by the first method using a separator made of a microporous film having a three-dimensional pore structure, and further, The separator protruding from the top and bottom of the electrode body is bent in the winding core direction by hot air heating to cover the positive, negative and bipolar plates.

作用 この構成により、電解液の浸透が均一で保液性に優れ
ていることから充放電特性のバラツキが低減できる。し
かもデンドライトが成長した場合にも空孔貫通による内
部短絡が防止できる。さらに微孔性フィルムであるた
め、電池の短絡など異常時の発熱でフィルムが溶けて空
孔を閉塞し、電極反応を瞬時に遮断して安全性を確保す
ることができる。
Action With this configuration, the electrolyte is uniformly permeated and the liquid retaining property is excellent, so that variations in charge / discharge characteristics can be reduced. Moreover, even when the dendrite grows, an internal short circuit due to the hole penetration can be prevented. Further, since it is a microporous film, the film melts due to heat generation during abnormalities such as a short circuit of the battery to block the pores, and the electrode reaction is instantaneously blocked to ensure safety.

また、電極体の上下部を均一に被覆することができる
のでデンドライトが脱落しにくく、しかもデイドライト
の脱落がおこった場合にも電解液中への浮遊が阻止でき
ることとなる。
Further, since the upper and lower parts of the electrode body can be uniformly covered, the dendrites are unlikely to fall off, and even if the dendrites fall off, they can be prevented from floating in the electrolytic solution.

実 施 例 第1図は本発明の一実施例による円筒形リチウム二次
電池の断面図であり、以下これについて詳述する。
EXAMPLE FIG. 1 is a sectional view of a cylindrical lithium secondary battery according to an example of the present invention, which will be described in detail below.

1図において、正極板1は五二酸化クロム(Cr2O5
を主活物質とする正極合剤をチタニウム製のエキスパン
デッドメタルからなる芯材に充填し、乾燥したものであ
る。4は芯材と同材質からなる正極リード板で芯材にス
ポット溶接したものである。負極2は金属リチウムから
なり、その一側面に負極リード板5が圧着されている。
In FIG. 1, the positive electrode plate 1 is chromium pentaoxide (Cr 2 O 5 ).
Is filled in a core material made of an expanded metal made of titanium and dried. Reference numeral 4 denotes a positive electrode lead plate made of the same material as the core material, which is spot-welded to the core material. The negative electrode 2 is made of metallic lithium, and the negative electrode lead plate 5 is pressure bonded to one side surface thereof.

3は三次元的空孔構造(海綿状)第2図参照を有する
ポリオレフィン系、例えばポリプロピレン,ポリエチレ
ンまたはそれらの共重合体の微孔性フィルム(充放電特
性や安全性の点で孔径は0.01〜0.5μが好ましい)から
なるセパレータで、正負極1,2よりも幅の広い帯状に裁
断したものである。本実施例ではポリプロピレン製の微
孔性フィルムを使用した。第3図は第2図の3a部の拡大
模式図であり、大きな連通空孔があいている。
3 is a microporous film of a polyolefin type, for example, polypropylene, polyethylene or a copolymer thereof having a three-dimensional pore structure (sponge-like structure) as shown in FIG. 0.5 μ is preferable), and the separator is cut into a band shape wider than the positive and negative electrodes 1 and 2. In this example, a microporous film made of polypropylene was used. FIG. 3 is an enlarged schematic view of a portion 3a in FIG. 2, which has a large communication hole.

次に、これらの正負極1,2間にセパレータ3を介在し
て全体を渦巻状に巻回して電極体を構成する。
Next, the separator 3 is interposed between the positive and negative electrodes 1 and 2, and the whole is spirally wound to form an electrode body.

そして電極体を回転させながら電極体の上下部端面、
すなわち正負極1,2から突出したセパレータに熱風を電
極体の巻芯方向にやや斜め上から送風して、前記セパレ
ータの突出部を巻芯方向に収縮させながら折曲させて電
極体を被覆し電極体の構成を完了する。(尚、加熱温度
はセパレータの材質によって異なるが、本実施例の場合
は140〜180℃で行った。また折曲させた部分に平板を適
度に押し当てて密着性をより高めてもよい。) 次に、ケース8上部に段部を形成させた後、電解液
(本実施例では炭酸プロピレンと1,2−ジ・メトキシエ
タンの混合溶媒に溶質として過塩素酸リチウムを溶解さ
せたものを用いた。)を注入する。注液する際、減圧下
で操作すると短時間に均一な含浸状態が得られる。
And while rotating the electrode body, the upper and lower end faces of the electrode body,
That is, hot air is blown to the separator protruding from the positive and negative electrodes 1 and 2 in a direction slightly obliquely above the core of the electrode body, and the protruding part of the separator is bent while contracting in the core direction to cover the electrode body. The configuration of the electrode body is completed. (The heating temperature varies depending on the material of the separator, but in the case of this embodiment, the heating temperature is 140 to 180 ° C. Further, a flat plate may be appropriately pressed against the bent portion to enhance the adhesion. Next, after forming a step on the upper part of the case 8, an electrolytic solution (in this example, a solution obtained by dissolving lithium perchlorate as a solute in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane) was used. Used.) Is injected. When injecting the solution, a uniform impregnation state can be obtained in a short time by operating under reduced pressure.

そして封口板9を装着した後、ケース8開口端をカシ
メ封口することにより電池の組立てを完了する。
Then, after the sealing plate 9 is attached, the opening end of the case 8 is caulked to complete the assembly of the battery.

表1は本発明品と従来品各100個の充放電試験中にお
ける内部短絡による電圧不良数および50サイクル目の放
電容量の最大値,最小値および平均値をまとめたもので
ある。この場合の試験条件は、20℃において50mAの定電
流で正極の充填容量の約80%にあたる600mAhの深さで充
放電を繰り返したものである。
Table 1 summarizes the number of voltage failures due to internal short-circuits and the maximum, minimum, and average values of the discharge capacity at the 50th cycle during the charge / discharge test of 100 products of the present invention and 100 products of the conventional product. The test conditions in this case are repeated charging and discharging at a constant current of 50 mA at 20 ° C. at a depth of 600 mAh, which is about 80% of the filling capacity of the positive electrode.

第9図は本発明品と従来品を前記同一条件で充放電試
験したときの200サイクル目の放電特性の一例を示した
ものである。
FIG. 9 shows an example of the discharge characteristics at the 200th cycle when the product of the present invention and the conventional product were subjected to a charge / discharge test under the same conditions.

これらの結果からも明らかなように、本発明品はセパ
レータの表面形状が平滑なため均一な充放電反応の進行
が可能であり、デンドライトの成長が抑制できる。そし
て三次元的空孔構造を有しているため、電解液の浸透が
均一で保液性にも優れることから充放電特性のバラツキ
が低減できる。しかもデンドライトが成長した場合にも
空孔貫通による内部短絡が防止できる。さらに微孔性フ
ィルムであるため、電池の短絡など異常時の発熱でフィ
ルムが溶けて空孔を閉塞し、電極反応を瞬時に遮断して
安全性を確保することができる。
As is clear from these results, since the surface shape of the separator of the present invention is smooth, the charge / discharge reaction can proceed uniformly, and the growth of dendrites can be suppressed. Further, since it has a three-dimensional pore structure, it has uniform permeation of the electrolytic solution and excellent liquid retention, so that variations in charge / discharge characteristics can be reduced. Moreover, even when the dendrite grows, an internal short circuit due to the hole penetration can be prevented. Further, since it is a microporous film, the film melts due to heat generation during abnormalities such as a short circuit of the battery to block the pores, and the electrode reaction is instantaneously blocked to ensure safety.

また、セパレータ構成においては従来のように極板を
あらかじめ袋状セパレータで包被して渦巻状電極体を構
成した場合のセパレータのシワの発生がないために、電
極体外径が大きくなりケースへの挿入が困難となること
がない。さらに電極体上下に突き出ているセパレータの
上下端面部を熱風加熱することによって、電極体上下の
凹凸に添ってよく馴じむと同時に巻芯方向に折曲して電
極体の上下部を均一に被覆することができるのでデンド
ライトが脱落しにくく、しかもデンドライトの脱落がお
こった場合にも電解液中への浮遊が阻止することができ
るもので、内部短絡の防止および充放電特性の点で優れ
ていることがわかる。
Further, in the separator configuration, since the electrode plate is previously covered with the bag-shaped separator to form the spiral electrode body without the wrinkles of the separator, the outer diameter of the electrode body becomes large and It is not difficult to insert. Furthermore, by heating the upper and lower end surfaces of the separator protruding above and below the electrode body with hot air, it conforms well to the irregularities on the top and bottom of the electrode body and at the same time bends in the winding direction to evenly cover the upper and lower parts of the electrode body. It is possible to prevent dendrites from falling off, and even if dendrites drop out, it is possible to prevent the dendrites from floating in the electrolyte, which is excellent in terms of preventing internal short circuits and charging / discharging characteristics. I understand.

発明の効果 以上のように本発明によれば、負極リチウムのデンド
ライトの発生に伴う内部短絡の抑制および充放電特性の
低下やバラツキが極めて小さいという効果が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain the effects of suppressing internal short-circuiting due to the generation of dendrites in the negative electrode lithium and reducing or reducing the charge / discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による円筒形リチウム二次電
池の断面図、第2図は本発明の一実施例によるセパレー
タの断面図、第3図は第2図における3a部分拡大図、第
4図および第5図は従来のセパレータの断面形状を示す
図、第6図および第7図は従来の渦巻状電極体の構成を
示す断面図、第8図は従来のセパレータ包被極板を巻回
した場合のシワ発生部分を示す図である。第9図は充放
電試験における200サイクル目の放電特性を示す図であ
る。 1……正極、2……負極、3……セパレータ。
1 is a sectional view of a cylindrical lithium secondary battery according to an embodiment of the present invention, FIG. 2 is a sectional view of a separator according to an embodiment of the present invention, and FIG. 3 is an enlarged view of a portion 3a in FIG. 4 and 5 are views showing the cross-sectional shape of a conventional separator, FIGS. 6 and 7 are cross-sectional views showing the structure of a conventional spirally wound electrode body, and FIG. 8 is a conventional separator-covered electrode plate. It is a figure which shows the wrinkle generation part at the time of winding. FIG. 9 is a diagram showing discharge characteristics at the 200th cycle in the charge / discharge test. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 善一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 西川 幸男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 山浦 純一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−122574(JP,A) 特開 平1−143140(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Zenichiro Ito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yukio Nishikawa 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Junichi Yamaura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-1-122574 (JP, A) JP-A-1-143140 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と負極と、これら両極板よりも幅の広
い帯状で三次元的空孔構造を有するポリオレフィン系の
微孔性フィルムからなるセパレータを極板間に介在させ
て全体を渦巻状に巻回して構成した電極体を備え、かつ
この電極体の上下部に突出しているセパレータの各端面
を熱風加熱によって巻芯方向に折曲せしめて前記正,負
極板を包被したことを特徴とする円筒形リチウム二次電
池。
1. A spirally wound electrode having a positive electrode, a negative electrode, and a separator made of a polyolefin-based microporous film having a three-dimensional pore structure, which is wider than the both electrode plates, and is interposed between the electrode plates. Characterized in that the positive and negative electrode plates are covered by bending the end faces of the separator protruding above and below the electrode body in the winding core direction by hot air heating. And a cylindrical lithium secondary battery.
JP63136383A 1988-06-02 1988-06-02 Cylindrical lithium secondary battery Expired - Lifetime JP2671387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136383A JP2671387B2 (en) 1988-06-02 1988-06-02 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136383A JP2671387B2 (en) 1988-06-02 1988-06-02 Cylindrical lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH01307176A JPH01307176A (en) 1989-12-12
JP2671387B2 true JP2671387B2 (en) 1997-10-29

Family

ID=15173870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136383A Expired - Lifetime JP2671387B2 (en) 1988-06-02 1988-06-02 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2671387B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443999B1 (en) * 2000-03-16 2002-09-03 The Gillette Company Lithium cell with heat formed separator
KR100954590B1 (en) * 2008-02-20 2010-04-26 삼성에스디아이 주식회사 Electrode assembly and secondary battery using the same
EP2394324B1 (en) 2009-02-09 2015-06-10 VARTA Microbattery GmbH Button cells and method for producing same
DE102009060800A1 (en) 2009-06-18 2011-06-09 Varta Microbattery Gmbh Button cell with winding electrode and method for its production
JP7078576B2 (en) * 2019-05-31 2022-05-31 プライムアースEvエナジー株式会社 Method of manufacturing secondary batteries and secondary batteries

Also Published As

Publication number Publication date
JPH01307176A (en) 1989-12-12

Similar Documents

Publication Publication Date Title
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP2001176558A (en) Non-aqueous electrolyte secondary battery
JP2000077061A (en) Lithium ion battery
JPH01122574A (en) Cylindrical lithium secondary cell
JP3717632B2 (en) Battery manufacturing method
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
JP4831937B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JPH05258741A (en) Separator for nonaqueous electrolyte secondary cell
JP2671387B2 (en) Cylindrical lithium secondary battery
US3716411A (en) Rechargeable alkaline manganese cell
JPH07282818A (en) Layered battery
JP3956478B2 (en) Method for manufacturing lithium ion secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP2005063680A (en) Battery equipped with spiral electrode group
JPH0676860A (en) Secondary battery and manufacture thereof
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JPH0210652A (en) Cylindrical lithium secondary battery
US10424776B2 (en) Method for manufacturing electrodes using three-dimensional substrate for electrochemical applied products
JP2757398B2 (en) Non-aqueous electrolyte secondary battery
JPH11135107A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

EXPY Cancellation because of completion of term