JPS6038070B2 - solid-state imaging device - Google Patents

solid-state imaging device

Info

Publication number
JPS6038070B2
JPS6038070B2 JP55030301A JP3030180A JPS6038070B2 JP S6038070 B2 JPS6038070 B2 JP S6038070B2 JP 55030301 A JP55030301 A JP 55030301A JP 3030180 A JP3030180 A JP 3030180A JP S6038070 B2 JPS6038070 B2 JP S6038070B2
Authority
JP
Japan
Prior art keywords
electrode
photoconductor
voltage
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55030301A
Other languages
Japanese (ja)
Other versions
JPS56128072A (en
Inventor
興夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55030301A priority Critical patent/JPS6038070B2/en
Publication of JPS56128072A publication Critical patent/JPS56128072A/en
Publication of JPS6038070B2 publication Critical patent/JPS6038070B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は光導電体と自己走査機能を有する素子とを組み
合わせた固体撮隊装置において光導軍体に電圧を印放す
る電極を複数個配列し、かつ、所定の電圧波形を与える
ことにより光導蟹体の光電特性を改良した固体撮擬装檀
に関する。
Detailed Description of the Invention The present invention provides a solid-state imaging device that combines a photoconductor and an element having a self-scanning function, in which a plurality of electrodes are arranged to apply a voltage to the light guide, and a predetermined voltage is applied. This invention relates to a solid-state imaging device that improves the photoelectric characteristics of a light guide by providing a waveform.

従釆の多くの固体糠像装置はシーリコン(Si)半導体
基板上に感光部とこれに隣接して該感光部に蓄積した信
号電荷を読出すための読出し部とを有している。
Many conventional solid-state image devices have a photosensitive section on a silicon (Si) semiconductor substrate and a readout section adjacent to the photosensitive section for reading out signal charges accumulated in the photosensitive section.

このような固体撮像装置の光電変換のダイナミックレン
ジを広げる着目点の1つは前記感光部と読出し部の扱い
得る最大信号電荷量を大きくすることである。この量は
前記感光部と議出し部の形状及びそこの不純物濃度、酸
化膜厚等の物理量で決められる。しかしこのような間体
撮擬装直に例えば前記扱い得る最大信号電荷量の信号電
荷が前記半導体基板内に発生せしめるごとき非常に強い
光スポットが入射するとブルーミングが発生しやすい。
第1図はこのような不具合を解決するための従来例であ
る。即ち、例えばP型半導体基板1上にMOS電界効果
トランジスタのドレィン及びソースに相当したN+層2
,3が設けられる。ここで第1のN十層2は信号電荷議
出し線であり、第1のN十層2と第2のN+層3間にゲ
ート酸化膜4を介してゲート電極5が設けられる。そし
てこのゲート電極5には信号電荷を読出す際、ゲート電
極5下の半導体基板1表面を導適状態にせしめる電圧が
印加される。第2のN+層3に接続して例えばアルミニ
ウムMによる電極6が設けられる。このAI電極6は第
1のN十層2、ゲート電極5上をも覆うがごとく形成さ
れている。そして第1のN+層2と第2のN十層3そし
てゲート電極5で形成されているMOS電界効果トラン
ジス夕の周囲には厚い酸化膜9一1,9−2が形成され
ている。この酸化膜9−】,9一2、そして前記A!電
極6上には光導電体層7が形成されている。そしてこの
光導電体層7上に透明電極8が形成される。上記のよう
な固体緑擬装層では光電変換は前記光導電体層7内で行
なわれるために前記半導体基板1内で発生する信号電荷
を非常に少なくすることができ、従って前述したごとき
ブルーミングを軽減することができる。又この固体撮像
装置では感光領域が固体撮像装置全面になるため高感度
である利点もある。このように光導電体と自己走査機能
を有する素子との組み合わせからなる固体撮像素子は従
来の固体撮像素子の欠点を改良することができる。
One of the points of interest in expanding the dynamic range of photoelectric conversion of such a solid-state imaging device is to increase the maximum amount of signal charge that the photosensitive section and the reading section can handle. This amount is determined by physical quantities such as the shape of the photosensitive area and the extension area, impurity concentration there, and oxide film thickness. However, if a very strong light spot, such as one that causes signal charges of the maximum handleable amount to be generated in the semiconductor substrate, is incident directly on such an interbody imaging device, blooming is likely to occur.
FIG. 1 shows a conventional example for solving such problems. That is, for example, an N+ layer 2 corresponding to the drain and source of a MOS field effect transistor is formed on a P-type semiconductor substrate 1.
, 3 are provided. Here, the first N0 layer 2 is a signal charge output line, and a gate electrode 5 is provided between the first N0 layer 2 and the second N+ layer 3 with a gate oxide film 4 interposed therebetween. When reading signal charges, a voltage is applied to the gate electrode 5 to bring the surface of the semiconductor substrate 1 under the gate electrode 5 into a conductive state. An electrode 6 made of aluminum M, for example, is provided connected to the second N+ layer 3. This AI electrode 6 is formed so as to cover the first N+ layer 2 and the gate electrode 5 as well. Thick oxide films 9-1 and 9-2 are formed around the MOS field effect transistor formed by the first N+ layer 2, the second N+ layer 3, and the gate electrode 5. This oxide film 9-], 9-2, and the above A! A photoconductor layer 7 is formed on the electrode 6 . A transparent electrode 8 is then formed on this photoconductor layer 7. In the solid green camouflage layer as described above, since photoelectric conversion is performed within the photoconductor layer 7, the signal charge generated within the semiconductor substrate 1 can be extremely reduced, and therefore, the above-mentioned blooming can be reduced. can do. Furthermore, this solid-state imaging device has the advantage of high sensitivity because the photosensitive region covers the entire surface of the solid-state imaging device. In this way, a solid-state image sensor made of a combination of a photoconductor and an element having a self-scanning function can improve the drawbacks of conventional solid-state image sensors.

しかし、一方では逆に光導電体の持っている欠点はその
まま持ち越されているという新しい欠点が生じる。この
欠点の中で最大のものは、いわゆる“焼き付き”と呼ば
れる現象で一担撮像した画像が被写体を取り除いてもそ
のまま残っている現象である。この現象は撮像管では程
度の長い残像とも考えられる場合もあり僅か数秒で無く
なる時もあるが、数十秒から数分またはそれ以上の長期
の場合もある。画質を劣化させる事は勿論であるがひど
いときは連続した撮像そのものを不能にしてしまう事も
ある。このことを図を用いてさらに詳しく説明する。
However, on the other hand, a new drawback arises in that the drawbacks of the photoconductor are carried over as they are. The biggest of these shortcomings is a phenomenon called "burn-in," in which an image captured once remains intact even after the subject is removed. In some cases, this phenomenon can be considered as a long-term afterimage in the image pickup tube, and it may disappear in just a few seconds, but it can also last for a long time, from tens of seconds to several minutes or more. Not only does this degrade image quality, but in severe cases it can even make continuous imaging impossible. This will be explained in more detail using figures.

第2図は第1図の従来の画素を上方から見た場合の図で
あって画素と光導電体層を挟む電極の位置を示す図であ
る。すなわち図中の点線の四角形は第1図のAI電極6
を表わし、画素を構成する。無数の画素上に第1図の光
導電体層7と透明電極8が第2図の実線の曲線内全面に
わたって形成されている。透明電極8には外部から負荷
抵抗Rしを通して例えば正の電圧VTが与えられている
。第1図と関連づけて動作を説明すると、透明電極とA
I電極間で光生成された電荷キャリャによる信号分はテ
レビジョンの画像走査のAフイールド‘こおいて第2図
のA,.〜A,4及びA2,〜A24に相当する画素の
ゲート電極5に所定の期間与えられた電圧により第2の
N+層3に水平方向に転送されて読み出される。
FIG. 2 is a diagram of the conventional pixel of FIG. 1 viewed from above, showing the positions of the electrodes that sandwich the pixel and the photoconductor layer. In other words, the dotted rectangle in the figure is the AI electrode 6 in Figure 1.
represents and constitutes a pixel. The photoconductor layer 7 and transparent electrode 8 shown in FIG. 1 are formed over countless pixels over the entire area within the solid curve shown in FIG. For example, a positive voltage VT is applied to the transparent electrode 8 from the outside through a load resistor R. To explain the operation in relation to Fig. 1, the transparent electrode and the
The signal component due to the charge carriers photogenerated between the I electrodes is transmitted to the A field of the television image scan and is transmitted to A, . The voltages applied for a predetermined period to the gate electrodes 5 of the pixels corresponding to ~A, 4 and A2, ~A24 are transferred horizontally to the second N+ layer 3 and read out.

次のBフィールドではB,.〜B4及び&,〜珍4に相
当する画素から同様に読み出される。この間透明電極に
与えられる電圧は常に一定に保たれている。光導露体が
極めて良好な光電特性を持っていれば、ブルーミングも
無く感度の高い緑像袋簿が実現できる。しかし、自己走
査機能素子は光導電体層で変換された信号を忠実に外部
へ転送する役目をしているので光導電体層で焼き付きや
光導電性の残像が生じれば、そのまま出力画像にあらわ
れる。本発明は上記の点に鑑みなされたものである。
In the next B field, B, . The pixels corresponding to ~B4 and &, ~Chin4 are similarly read out. During this time, the voltage applied to the transparent electrode is always kept constant. If the photoconductor has extremely good photoelectric properties, a green image recorder with high sensitivity without blooming can be realized. However, since the self-scanning function element has the role of faithfully transmitting the signal converted by the photoconductor layer to the outside, if burn-in or photoconductive afterimage occurs in the photoconductor layer, it will not be reflected in the output image. Appears. The present invention has been made in view of the above points.

即ち本発明は従来光導電体層上に一様に形成していた透
明電極を複数個に分割した構造とし、かつ従釆一定の電
圧を与えていたのを所定の期間にわたり、電圧を変化さ
せることにより上記欠点を除くようにし、さらに、光感
度や光電変換特性を制御する機能をも附加することを可
能にしたものである。以下図面により本発明を詳細に説
明する。
That is, the present invention has a structure in which the transparent electrode, which was conventionally formed uniformly on the photoconductor layer, is divided into a plurality of parts, and the voltage is changed over a predetermined period instead of applying a constant voltage. This eliminates the above-mentioned drawbacks and also makes it possible to add a function to control photosensitivity and photoelectric conversion characteristics. The present invention will be explained in detail below with reference to the drawings.

第3図は本発明に係る固体濠像装置の光導電体層部の電
極配置を示す。
FIG. 3 shows the electrode arrangement of the photoconductor layer portion of the solid state imaging device according to the present invention.

従来の装置の構成と異なる点は、上部の透明電極が全面
一様では無く図示したようにA−1,A−2,B−1,
B−2と複数に分離されている点である。自己走査機能
素子部は第1図と同じとする。第4図は第3図の装置に
供繋舎する電圧波形を示す。
The difference from the conventional device configuration is that the upper transparent electrodes are not uniform over the entire surface, but are arranged in A-1, A-2, B-1,
This point is that it is separated into multiple parts from B-2. The self-scanning functional element section is the same as in FIG. FIG. 4 shows the voltage waveforms connected to the device of FIG. 3.

以下第3図と第4図を用いて本発明の固体撮像装置の動
作を説明する。自己走査機能素子が第1図のMOS構造
のX−Yアドレス形とする。垂直方向に走査線相当を選
択するためのパルスVY,によりA−1に相当するYア
ドレスが与えられ、さらにパルスVx,によりA,.〜
A,4の各アドレスが与えられたとする。水平方向の画
素をアドレスするパルスの数は省略して示してある。パ
ルスVY・は水平走査期間のIH期間にわたりONの状
態にありパルスVx,により各画素A,.〜A,4の信
号が順次読み出される。この間A−1の透明電極にはV
^‐,に示す如く例えば正の電圧VTが与えられている
が水平の各画素の読み出しが行なわれた後図中のT8で
示す適当時間(以下消去期間と呼ぶ)にわたりOVに設
定され、この後再びVTに戻される。この間、次の走査
線に相当するA−2の部分でX一Yアドレスによる信号
読み出しが行なわれA−2の透明電極にはV^‐2なる
VTと0とを往復する電圧が与えられる。この走査を垂
直方向に繰り返し、次のBフィールドではB−1,B−
2の順で同じ動作を繰り返した後、1フレーム後に再び
AフィールドのA−1,A−2に戻る。消去期間TEに
おいて透明電極の電圧をOVに設定する事により、騒き
付きは無くなる。従来光導電体を用いた撮像管において
は、焼き付きが生じると撮像操作をあきらめターゲット
電圧の印加をやめてターゲット全面に一様な光を照射し
て焼き付きを除き、あらためてターゲット電圧を印加し
て再度撮像することがしばしば行なわれていた。しかし
本発明は擬俵操作を中断せずに連続的に出画しながら焼
き付きを消すことができる。
The operation of the solid-state imaging device of the present invention will be described below with reference to FIGS. 3 and 4. The self-scanning functional element has an X-Y address type MOS structure as shown in FIG. The pulse VY for selecting the scanning line in the vertical direction gives the Y address corresponding to A-1, and the pulse Vx gives the Y address corresponding to A, . ~
Assume that addresses A and 4 are given. The number of pulses that address pixels in the horizontal direction is omitted. The pulse VY remains on during the IH period of the horizontal scanning period, and the pulse Vx causes each pixel A, . -A, 4 signals are read out sequentially. During this time, the transparent electrode of A-1 has V
As shown in ^-, for example, a positive voltage VT is applied, but after each horizontal pixel is read out, it is set to OV for an appropriate time (hereinafter referred to as the erase period) shown as T8 in the figure. After that, you will be returned to VT again. During this time, signals are read out using the X-Y address in the portion A-2 corresponding to the next scanning line, and a voltage of V^-2 that goes back and forth between VT and 0 is applied to the transparent electrode of A-2. This scanning is repeated in the vertical direction, and in the next B field, B-1, B-
After repeating the same operation in the order of 2, the process returns to A-1 and A-2 of the A field after one frame. By setting the voltage of the transparent electrode to OV during the erasing period TE, the noise is eliminated. In conventional image pickup tubes that use photoconductors, when image sticking occurs, the imaging operation is abandoned, the application of the target voltage is stopped, and the entire surface of the target is irradiated with uniform light to remove the image sticking, and the target voltage is applied again and the image is taken again. It was often done. However, the present invention can eliminate burn-in while continuously outputting images without interrupting the pseudo bale operation.

このJ利点は従来は全面に形成されていた透明電極を分
割したためであり、その場所の信号を読み出した後でそ
の部分の印加電圧を除き焼き付きの消去を行ないながら
次の場所での信号読み出しを行なっているためである。
Zなお撮像管でもターゲットの
透明電極を分割すれば、本発明が適用できるように思わ
れるが、殆んど不可能である。すなわち第1図のAI電
極6に相当する部分はターゲットの光導電体の電子ビー
ム走査面であり、固定電位面では無いので、分割した透
明電極の電位をVTさらOVに下げると、走査表面は相
対的に−VTまで降下する。再び、分割した透明電極を
VTに戻すと表面電位も元に戻り、光導電体中には結果
的に何等の電界変化も起らなかったことになる。焼き付
き等が消去できるのは光導電体層の内部電界が弱まるか
、無くなるか、あるいは逆電界となった時である。した
がって、撮像管では焼き付きの消去は撮像操作中にはで
きない。固体撮像装置においては第1図の第2のN+層
3は電位としては浮いているが透明電極の電圧をVTか
らOVとした時に撮像管のターゲット表面電位と同じよ
うには下降しない。
This J advantage is due to the fact that the transparent electrode, which was conventionally formed on the entire surface, is divided, and after reading out the signal at that location, the voltage applied to that part is removed and the burn-in is erased, while the signal is read out at the next location. This is because they are doing it.
It would seem that the present invention could be applied to an image pickup tube by dividing the transparent electrode of the target, but this is almost impossible. In other words, the part corresponding to the AI electrode 6 in FIG. 1 is the electron beam scanning surface of the target photoconductor and is not a fixed potential surface, so when the potential of the divided transparent electrode is lowered from VT to OV, the scanning surface becomes It falls relatively to -VT. When the divided transparent electrode was returned to VT again, the surface potential returned to its original value, and as a result, no change in the electric field occurred in the photoconductor. Burn-in and the like can be erased when the internal electric field of the photoconductor layer weakens, disappears, or becomes a reverse electric field. Therefore, in the image pickup tube, it is not possible to erase burn-in during the imaging operation. In the solid-state imaging device, the potential of the second N+ layer 3 in FIG. 1 is floating, but when the voltage of the transparent electrode is changed from VT to OV, it does not fall as much as the target surface potential of the image pickup tube.

多少の変化分はあるにしろ信号を読みとられた後に設定
された電位又は、基板電位附近に止まるので光導電体中
の電界を弱めるか、ほぼ0にするのは容易である。なお
、焼き付きの消去のためには透明電極の電圧をOVにす
る必要は無く、電界を窮める意味では常時印加していた
VTよりも少し低い値であっても良く、さらには逆電界
を形成するような電位に設定しても良い。焼き付きが消
去されるのは電界が変化したことで光導電体内に分極し
てトラツプされていたキヤリャの再結合が促進されたた
めと考えられる。
Although there is some variation, the potential remains near the set potential after the signal is read or the substrate potential, so it is easy to weaken the electric field in the photoconductor or make it almost zero. In addition, in order to erase burn-in, it is not necessary to set the voltage of the transparent electrode to OV, and in the sense of limiting the electric field, it may be a value slightly lower than the VT that is constantly applied, and furthermore, it is possible to create a reverse electric field. The potential may be set as follows. It is thought that the burn-in is erased because the change in the electric field promotes the recombination of the carriers that were polarized and trapped inside the photoconductor.

又逆電界の時には電極から注入されたキャリヤが再結合
に有効に利くので焼き付きが短時間で消去できると考え
られる。さらに本発明によれば以下の利点が生じる。
Furthermore, it is thought that when a reverse electric field is applied, carriers injected from the electrodes are effective for recombination, so that burn-in can be eliminated in a short time. Furthermore, the present invention provides the following advantages.

第4図のTEで示す消去期間はIH期間以下としている
が、これに限らず適当期間に延ばしても良い。この期間
を長くとる事により焼き付きの消去が完全になるのは勿
論であるが、光電変f奥椿性の制御が可能になる。すな
わち、消去期間中に電界がない状態になれば、光が入射
しても生成されたキャリャの分離が不十分となり光電変
換は行なわれない。従って従来の信号蓄積期間が1フレ
ームであるのに対して消去期間の分だけ蓄積期間が減少
し、光電感度が減少する。すなわち、消去期間を変化さ
せることにより、感度調整が可能になる。また、消去期
間のTE間にOVとせず、VTより低い電圧に設定した
場合には電界が弱い状態なので感度の悪い光電変換が行
なわれ、TE期間後にVTに戻すと通常の感度となるの
で光電変換特性のy直を制御することが出来る。
Although the erasing period indicated by TE in FIG. 4 is set to be shorter than the IH period, it is not limited to this and may be extended to an appropriate period. By making this period longer, not only the burn-in can be completely erased, but also the photoelectric change characteristics can be controlled. That is, if there is no electric field during the erasing period, even if light is incident, the separation of generated carriers will be insufficient and photoelectric conversion will not occur. Therefore, while the conventional signal accumulation period is one frame, the accumulation period is reduced by the erasing period, and the photoelectric sensitivity is reduced. That is, sensitivity adjustment becomes possible by changing the erasing period. In addition, if the voltage is not set to OV during the TE period of the erase period and is set to a voltage lower than VT, the electric field is weak, so photoelectric conversion with poor sensitivity is performed, and when the voltage is returned to VT after the TE period, the sensitivity returns to normal, so photoelectric conversion is performed. The y axis of the conversion characteristic can be controlled.

同じ効果を得るためには電圧の変化分と消去期間TEは
ほぼ反比例の関係になる。また、1回の電圧変化ではな
く、複数個のパルスで電圧を変化させても良い。このよ
うに透明電極を分割し、印加する電圧を制御する事によ
り、光導電体の光電特性を改善することができる。なお
第3図、第4図のように自己走査機能素子がMOS構成
のX−Yアドレス形であると分割した電極のそれぞれに
時間をずらして消去用の電圧を与えねばならない。
In order to obtain the same effect, the voltage change and the erase period TE are almost inversely proportional. Further, the voltage may be changed not by one voltage change but by a plurality of pulses. By dividing the transparent electrode in this way and controlling the applied voltage, the photoelectric properties of the photoconductor can be improved. Note that when the self-scanning functional element is of the X-Y address type with a MOS configuration as shown in FIGS. 3 and 4, it is necessary to apply an erasing voltage to each of the divided electrodes at different times.

このため走査線を選択するためのYアドレスと同じよう
な走査回路が必要になるが、自己走査機能素子が例えば
インターライン転送形CCDであれば同様の効果を得る
ための電極の分割と電位の与え方は極めて簡単になる。
このような素子においては、Aフィールド‘こおいてA
,.〜A,4,A2,〜ん4の画素からの信号が転送用
ゲートをONすることにより一時に転送用CCDへ転送
される。したがって、第5図に示す如く、Aフィールド
の場合にはV^r。で示す転送用ゲートの電圧をONに
した後にV^‐,,V^−2等を共通に消去期間を設け
てVTの電位からOVに落せば良い。次のBフィールド
ではB,〜B,4,&,〜B24から一時に信号をVB
Tcに示すように転送した後に、VB‐,,VB‐2等
を共通にして消去動作を行なえば良い。従って鰭極配置
は第6図に示すように水平方向で櫛形に交叉する形とし
ても良い。図では透明電極を実線、画素の電極を点線で
示してある。また、第7図のように垂直方向に交叉する
形でも良い。なお、それぞれの電極の引出しは左右又は
上下の各2ケ所の例を示したが、二層配線を用いて片側
に集めても良い事は勿論である。次に本発明に係る他の
実施例を第8図及び第9図を用いて説明する。まず第8
図において、P型半導体基板1、第1のN+層2、第2
のN十層3、ゲート酸化膜4、ゲート電極5、AI電極
6そしそてこのMOS電界効果トランジスタ周囲の厚い
酸化膜9一1,9−2が各々設けられており、さらに厚
い酸化膜9一1,9−2上に例えばAI電極10−1,
10−2が設けられる。そしてこの上に光導電体層11
が被覆られており、該光導露体層1 1は前記AI電極
6と接続している。上記のごとき固体撮像装鷹において
光電変換されるところは光導電体層11であるが透明電
極が光導電体層11上にないので、この層11で発生し
た信号電荷は、前記AI電極10−1,10−2と前記
AI電極6間の電位差により移動する。このような構成
をとる該光導電体層11にピンホールがあっても直接前
記AI電極1 0一1,1 0−2とN電極6との電気
的短絡を起さない利点がある。このような構成の装置に
も前記した電極を分割して動作させる方法が有効である
。すなわち、透明電極のかわりに10一1や10−2の
山電極が形成されていると考えれば、このN電極を分割
して所定の電圧を与えれば良い。
For this reason, a scanning circuit similar to the Y address for selecting the scanning line is required, but if the self-scanning functional element is, for example, an interline transfer type CCD, it is necessary to divide the electrodes and change the potential to obtain the same effect. It will be extremely easy to give.
In such a device, A field'
、. Signals from pixels ~A, 4, A2, ~4 are transferred to the transfer CCD all at once by turning on the transfer gate. Therefore, as shown in FIG. 5, in the case of A field, V^r. After turning on the voltage of the transfer gate indicated by , it is sufficient to set an erase period in common for V^-, V^-2, etc., and drop the potential from VT to OV. In the next B field, the signals from B, ~B, 4, &, ~B24 are sent to VB at once.
After the transfer as shown in Tc, an erase operation may be performed using VB-, VB-2, etc. in common. Therefore, the fin pole arrangement may be arranged in a comb-like manner in the horizontal direction, as shown in FIG. In the figure, transparent electrodes are shown by solid lines, and pixel electrodes are shown by dotted lines. Alternatively, they may have a shape that intersects in the vertical direction as shown in FIG. Although an example is shown in which each electrode is drawn out at two locations on the left and right or top and bottom, it is of course possible to collect the electrodes on one side using two-layer wiring. Next, another embodiment according to the present invention will be described using FIGS. 8 and 9. First, the 8th
In the figure, a P-type semiconductor substrate 1, a first N+ layer 2, a second
N layer 3, gate oxide film 4, gate electrode 5, AI electrode 6, and thick oxide films 9-1, 9-2 surrounding this MOS field effect transistor are provided, and an even thicker oxide film 9 is provided. For example, the AI electrode 10-1,
10-2 is provided. And on top of this, a photoconductor layer 11
The photoconductor layer 11 is connected to the AI electrode 6. In the above-mentioned solid-state imaging device, the photoconductor layer 11 is where photoelectric conversion is performed, but since there is no transparent electrode on the photoconductor layer 11, the signal charges generated in this layer 11 are transferred to the AI electrode 10- It moves due to the potential difference between 1 and 10-2 and the AI electrode 6. Even if there is a pinhole in the photoconductor layer 11 having such a structure, there is an advantage that an electrical short circuit between the AI electrodes 10-1, 10-2 and the N electrode 6 does not occur directly. The method of dividing the electrodes and operating them as described above is also effective for a device having such a configuration. That is, if we consider that a 10-1 or 10-2 mountain electrode is formed instead of a transparent electrode, it is sufficient to divide this N electrode and apply a predetermined voltage.

第9図は上方からみた場合の電極配置を示す。見やすい
ように第8図の10一1と10一2に相当する電極を斜
線で示す。また第8図の6に相当する電極は点線の四角
形で示す。第1図の装置では光導電体の縦方向または垂
直方向に電界が主にかかるのに対して第8図の装置は横
方向又は水平方向に電界がかかる点が異なる。このため
第9図においては、横方向の電界が形成されるような構
成とし、かつ、水平走査線毎に電極を分割している。こ
れらの電極にかける電圧波形は既に説明したように自己
走査機能素子がMOSの×−Yアドレス形の場合には第
4図に示すものとなりCCDによる転送素子の場合には
第6図や第7図の電極分割も可能であり電圧波形は第5
図に示すものとなる。第10図は第8図の変形の実施例
で、分割すべき電極10−1や10一2が光導電体の上
部に形成されている場合である。
FIG. 9 shows the electrode arrangement when viewed from above. For ease of viewing, electrodes corresponding to 10-1 and 10-2 in FIG. 8 are shown with diagonal lines. Further, the electrode corresponding to 6 in FIG. 8 is indicated by a dotted rectangle. The device shown in FIG. 1 is different in that the electric field is mainly applied in the longitudinal or vertical direction of the photoconductor, whereas the device shown in FIG. 8 is applied in the lateral or horizontal direction. For this reason, in FIG. 9, the structure is such that a horizontal electric field is formed, and the electrodes are divided for each horizontal scanning line. As already explained, the voltage waveforms applied to these electrodes are as shown in Figure 4 when the self-scanning function element is a MOS x-Y address type, and as shown in Figures 6 and 7 in the case of a CCD transfer element. It is also possible to divide the electrodes in the figure, and the voltage waveform is the fifth
It will be as shown in the figure. FIG. 10 shows a modification of FIG. 8, in which the electrodes 10-1 and 10-2 to be divided are formed on the top of the photoconductor.

この構成にも第9図の電極分割が適用できることは明ら
かであり、本発明の構成や動作方式にかなう。なお、第
8図と第10図の構成は横方向の光導露を利用するので
各種の電極形状が考えられる。
It is clear that the electrode division shown in FIG. 9 can be applied to this configuration as well, and it corresponds to the configuration and operation method of the present invention. Note that since the configurations shown in FIGS. 8 and 10 utilize lateral light guide, various electrode shapes are possible.

その例を第11図に示すが、電極10−1や10−2に
相当するものを斜線部、電極6に相当するものを黒点部
で示した。以上詳記したように光導電体と自己走査機能
素子を組み合わせた園体撮像装置において、走査機能素
子に接触する電極と対に形成される光導電体と接触する
電極を分割して設け、該電極に信号読み出し後の適当な
期間にわたり光導露体中の電界を弱めるような電圧を印
加することにより、焼き付き現象を防止し、光電変≠奥
特性や光感度を制御できる新しい固体撮像装置を提供す
ることができる。
An example of this is shown in FIG. 11, where the parts corresponding to electrodes 10-1 and 10-2 are shown by diagonal lines, and the parts corresponding to electrode 6 are shown by black dots. As described in detail above, in a field imaging device that combines a photoconductor and a self-scanning functional element, the electrode that contacts the photoconductor, which is formed in a pair with the electrode that contacts the scanning functional element, is provided separately. By applying a voltage to the electrodes that weakens the electric field in the photoconductor for an appropriate period of time after signal readout, we can prevent burn-in and provide a new solid-state imaging device that can control photoelectric conversion ≠ depth characteristics and photosensitivity. can do.

なお、電極材料は透明電極としてSぬ2,1〜03など
を用いれば良く、N電極の他にMo,Taなどの電極が
使え、目的に応じ、製作プロセスに応じて材料を選べば
良い。
Incidentally, as the electrode material, S-N2,1 to 03 may be used as a transparent electrode, and electrodes such as Mo and Ta may be used in addition to the N electrode, and the material may be selected depending on the purpose and manufacturing process.

光導蚤体には、従来撮像管に用いられている光導電体で
あるSbぶ8系、舵−Se系、As−Se−Te系、C
dSe,ZnxCd,‐xTeあるいは無定形Siなど
、光導電現象があるものは使うことができる。光導電体
は一層でも良く複数の複合層でも良いことは勿論である
。この他、従来は焼き付きがひどいために撮像用として
用いられていなかった材料も、本発明の装置には使うこ
とができる。電極を分割して形成する方法は、蒸着又は
スパッタ一時に適当なマスクを用いて形成しても良いし
、全面に形成した後にエッチングしても良い。
The light guide body includes photoconductors conventionally used in image pickup tubes such as Sb-8 series, rudder-Se series, As-Se-Te series, and C.
Materials that exhibit a photoconductive phenomenon, such as dSe, ZnxCd, -xTe, or amorphous Si, can be used. Of course, the photoconductor may have a single layer or a plurality of composite layers. In addition, materials that have not conventionally been used for imaging due to their severe burn-in can also be used in the apparatus of the present invention. The electrodes may be formed by dividing them by using a suitable mask during vapor deposition or sputtering, or by etching after forming the electrodes over the entire surface.

また分割すべき電極間に酸化膜や光導電体を厚く形成し
て段差を設けて電極を斜め蒸着して分離形成する方法を
用いても良い。また、自己走査機能素子として実施例で
はMOSのX−Yアドレス形とCCDの例を述べたが、
これに限らずBBDやCIDにも適用できる。
Alternatively, a method may be used in which a thick oxide film or photoconductor is formed between the electrodes to be divided to provide a step, and the electrodes are diagonally deposited and formed separately. In addition, in the embodiment, examples of MOS X-Y address type and CCD were described as self-scanning functional elements.
The present invention is not limited to this, but can also be applied to BBD and CID.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の固体撮像装置を示す図、第2図は従来
例の電極と画素の関係を示す図、第3図は本発明の電極
と画素の関係を示す図、第4図と第5図は本発明による
電極電圧波形の時間関係を示す図、第6図と第7図は本
発明の電極配置の他の実施例を示す図、第8図は電極の
位置を変えた実施例を示す図、第9図は電極の分割例を
示す図、第10図は電極の位置を変えた他の実施例を示
す図、及び第11図は電極の構成例を単位画素について
示した図である。 1:半導体基板、2,3:N十層、4:ゲート酸化膜、
5:ゲート電極、6,10−1,10一2,12:AI
電極、7,11:光導電体、8:透明電極、9一1,9
−2:厚い酸化膜、A−1,A−2,B−1,B−2:
分割領域。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
FIG. 1 is a diagram showing a conventional solid-state imaging device, FIG. 2 is a diagram showing the relationship between electrodes and pixels in the conventional example, FIG. 3 is a diagram showing the relationship between electrodes and pixels in the present invention, and FIG. FIG. 5 is a diagram showing the time relationship of electrode voltage waveforms according to the present invention, FIGS. 6 and 7 are diagrams showing other embodiments of the electrode arrangement of the present invention, and FIG. 8 is a diagram showing an example in which the electrode positions are changed. FIG. 9 is a diagram showing an example of electrode division, FIG. 10 is a diagram showing another embodiment in which the position of the electrode is changed, and FIG. 11 is a diagram showing an example of the configuration of electrodes for a unit pixel. It is a diagram. 1: semiconductor substrate, 2, 3: N ten layer, 4: gate oxide film,
5: Gate electrode, 6, 10-1, 10-2, 12: AI
Electrode, 7, 11: Photoconductor, 8: Transparent electrode, 9-1, 9
-2: Thick oxide film, A-1, A-2, B-1, B-2:
Split area. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1 光導電体と自己走査機能を有する半導体素子とを組
み合わせた固体撮像装置において、前記光導電体に電気
的に結合する電極が複数に分割されて形成され、かつ分
割された電極部の画素の信号が読み出された後に、所定
期間にわたり前記光導電体中に形成されていた電界を少
なくとも弱めるような電圧を前記分割された電極に与え
るようにしたことを特徴とする固体撮像装置。 2 前記光導電体中に形成された電界を、前記分割され
た電極部の画素の信号が読み出された後に、所定期間に
わたりほぼ零にするような電圧を前記分割された電極に
与えるようにしたことを特徴とする特許請求の範囲第1
項記載の固体撮像装置。 3 前記光導電体中に形成された電界を、前記分割され
た電極部の画素の信号が読み出された後に、所定期間に
わたり逆電界とするような電圧を前記分割された電極に
与えるようにしたことを特徴とする特許請求の範囲第1
項記載の固体撮像装置。
[Scope of Claims] 1. In a solid-state imaging device combining a photoconductor and a semiconductor element having a self-scanning function, an electrode electrically coupled to the photoconductor is formed by being divided into a plurality of parts, and the electrode is divided into a plurality of parts. After the signal of the pixel of the divided electrode section is read out, a voltage is applied to the divided electrode to at least weaken the electric field formed in the photoconductor for a predetermined period of time. Solid-state imaging device. 2. Applying a voltage to the divided electrodes such that the electric field formed in the photoconductor becomes almost zero for a predetermined period after the signals of the pixels of the divided electrode portions are read out. Claim 1 characterized in that
The solid-state imaging device described in . 3. Applying a voltage to the divided electrodes such that the electric field formed in the photoconductor is reversed for a predetermined period after the signal of the pixel of the divided electrode portion is read out. Claim 1 characterized in that
The solid-state imaging device described in .
JP55030301A 1980-03-12 1980-03-12 solid-state imaging device Expired JPS6038070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55030301A JPS6038070B2 (en) 1980-03-12 1980-03-12 solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55030301A JPS6038070B2 (en) 1980-03-12 1980-03-12 solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS56128072A JPS56128072A (en) 1981-10-07
JPS6038070B2 true JPS6038070B2 (en) 1985-08-29

Family

ID=12299918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55030301A Expired JPS6038070B2 (en) 1980-03-12 1980-03-12 solid-state imaging device

Country Status (1)

Country Link
JP (1) JPS6038070B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583273A (en) * 1981-06-30 1983-01-10 Toshiba Corp Composite solid state image pickup element and manufacture thereof
JPS59198084A (en) * 1983-04-26 1984-11-09 Toshiba Corp Residual image suppressing system for solid-state image pickup device

Also Published As

Publication number Publication date
JPS56128072A (en) 1981-10-07

Similar Documents

Publication Publication Date Title
EP0046396B1 (en) Solid state image pickup device
US4322753A (en) Smear and/or blooming in a solid state charge transfer image pickup device
US6172369B1 (en) Flat panel detector for radiation imaging with reduced trapped charges
US4040092A (en) Smear reduction in ccd imagers
US4688098A (en) Solid state image sensor with means for removing excess photocharges
JP3180748B2 (en) Solid-state imaging device
JPH05137072A (en) Solid-state image pickup device
JPS614376A (en) Solid-state image pickup device
US4492980A (en) Solid state image-sensing device
JPS5822901B2 (en) solid state imaging device
JPS5926154B2 (en) solid-state imaging device
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPS6038070B2 (en) solid-state imaging device
US5343061A (en) Solid-state imaging device suppressing dark-current noise
JPH05175471A (en) Solid-state image sensing device
JPH08250694A (en) Solid-state image sensor and manufacture thereof
JP2922912B2 (en) Imaging device
JPH02181470A (en) Solid-state image pick-up element
JPH02208974A (en) Solid-state image sensing device
Zarnowski et al. Performance of a large-format charge-injection device
JP2509592B2 (en) Stacked solid-state imaging device
JPH0693505B2 (en) Solid-state image sensor
JPH0650774B2 (en) Solid-state imaging device
JP2862540B2 (en) Solid-state imaging device
JPH04134863A (en) Photoconductive film lamination type solid-state image sensing device