JPS6038016B2 - Simulated winding device for testing transformer windings - Google Patents

Simulated winding device for testing transformer windings

Info

Publication number
JPS6038016B2
JPS6038016B2 JP54164738A JP16473879A JPS6038016B2 JP S6038016 B2 JPS6038016 B2 JP S6038016B2 JP 54164738 A JP54164738 A JP 54164738A JP 16473879 A JP16473879 A JP 16473879A JP S6038016 B2 JPS6038016 B2 JP S6038016B2
Authority
JP
Japan
Prior art keywords
winding
simulated
voltage divider
winding device
testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164738A
Other languages
Japanese (ja)
Other versions
JPS5688310A (en
Inventor
守 山田
芳武 仲神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP54164738A priority Critical patent/JPS6038016B2/en
Publication of JPS5688310A publication Critical patent/JPS5688310A/en
Publication of JPS6038016B2 publication Critical patent/JPS6038016B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】 この発明は、高電圧油入変圧器の巻線の絶縁信頼性を確
認するために巻線模型を使用して破壊試験を行う場合、
実変圧器と同等な初期電位分布を与えるための模擬巻線
装置に関するものである。
[Detailed Description of the Invention] This invention provides a method for performing a destructive test using a winding model to confirm the insulation reliability of the windings of a high voltage oil-immersed transformer.
This invention relates to a simulated winding device for providing an initial potential distribution equivalent to that of an actual transformer.

一般に、変圧器巻線の電位分布は、第1図に示す等価回
路で表わされる。第1図において、Lは巻線の単位長さ
毎に分布されたィンダクタンス、Kはコイル間ターン間
等の直列分布容量、Cは巻線の鉄D、タンク、他巻線等
に対する対地分布容量である。この種の等価回路では、
商用周波数に対し静電容量C,Kの影響は少なく、巻線
内電位分布は主にィンダクタンスLのみによって決まり
、従って巻線の電位は巻線の巻回数に比例した均等分布
を示す。しかしながら、変圧器巻線に外雷による急峻な
雷パルスが印加された場合には、インダクタンスLは極
めて高い反抗起電力を示すため、電圧印加当初の電位分
布(初期電位分布)は、静電容量のみによって決まり、
巻線の入口端近倭のコイルに集中した電位が加わること
になる。
Generally, the potential distribution of a transformer winding is represented by an equivalent circuit shown in FIG. In Figure 1, L is the inductance distributed for each unit length of the winding, K is the series distributed capacitance between turns between coils, etc., and C is the distribution of the winding to the ground with respect to the iron D, tank, other windings, etc. capacity. In this kind of equivalent circuit,
The influence of the capacitances C and K on the commercial frequency is small, and the potential distribution within the winding is mainly determined only by the inductance L. Therefore, the potential of the winding exhibits a uniform distribution proportional to the number of turns of the winding. However, when a steep lightning pulse from external lightning is applied to the transformer winding, the inductance L exhibits an extremely high counter-electromotive force, so the potential distribution at the beginning of voltage application (initial potential distribution) is Determined only by
A concentrated potential is applied to the coil near the entrance end of the winding.

この電位集中の度合Qは、次式で表わされ、第2図に示
す特性曲線となる。。
The degree of potential concentration Q is expressed by the following equation, resulting in a characteristic curve shown in FIG. .

:ノC/K=ゾ妻馨罰諺電墓萱‐‐‐‐‐‐(・1第2
図から明らかなように、Qが大きい巻線程入口端コイル
に電位や集中するため、変圧器の設計においては、対地
静電容量Cをなるべく小さくし、直列静電容量Kを極力
大きくするよう工夫がなされる。しかも、油入変圧器は
、高電圧化、大容量化が要求されており、これらの要求
に沿って絶縁寸法の縮小化が重要な課題となっている。
従って、この種の変圧器においては、コイル数、絶縁の
寸法および材料等の構成を種々変更して絶縁性能を検証
する試験および研究が必要とされる。すなわち、変圧器
における絶縁性能を検証する試験研究としては、与えら
れた雪ィンパルス、開閉ィンパルス等の電圧に対し、初
期電位分布を始めとし、主絶縁寸法、コイル間寸法、タ
ーン間絶縁寸法等の主要絶縁寸法並びに使用絶縁材料を
種々変化させたり、コイル数やターン数等も変化させ、
夫々の要因が絶縁耐力にどのような影響を与えているか
を解明することが必要とされる。そこで、従来この種の
試験研究を行う手段として、鉄0や対向巻線のみ簡単な
電極に置き換えた実変圧器に近い巻線模型を使用し、そ
の初期電位分布は主としてターン間の静電容量で調整す
る方法が採用されていた。しかしながら、このような従
来の方法によれば、初期電位分布の変化幅が小さく、ま
た逆に鉄心や対向巻線の寸法および構造のいずれを変更
しても初期電位分布が変ってしまうため、絶縁耐力に及
ぼす要因の分析を精度よく行うことが困難であった。さ
らに、実変圧器巻線に近似した模型を使用するために高
価な模型となり、しかも数多〈の試験条件を設定するこ
とが困難となり技術の進歩を妨げる等多くの難点があっ
た。前述した多くの問題を有する従来の試験方法を改善
すべく、本発明者等は種々検討並びに試作を重ねた結果
、互いに絶縁された複数のコイルを主絶縁を介して電極
に巻回配置した模擬巻線と無誘導抵抗分圧器とを組合せ
てこれらを試験用油タンク内に収納し、模擬巻線の各コ
イルから導出したりード線を抵抗分圧器に夫々接続し、
所定の初期電位分布が抵抗分圧器によって強制的に各コ
イルに与えられるよう横成することにより、巻線の構造
や寸法に係りなく巻線に所定の初期電位分布を与えるこ
とができ、任意の初期電位分布、絶縁の構造および寸法
、コイル数、ターン数等で夫々詳細な試験を行うことが
できることを突き止めた。
:ノC/K=Zo Tsuma Kaoru punishment proverb Den grave 萱 ‐‐‐‐‐‐(・1 2nd
As is clear from the figure, the larger the winding Q, the more potential is concentrated at the inlet end coil, so when designing a transformer, it is necessary to make efforts to minimize the ground capacitance C and increase the series capacitance K as much as possible. will be done. Moreover, oil-immersed transformers are required to have higher voltage and larger capacity, and in line with these demands, reduction of insulation dimensions has become an important issue.
Therefore, in this type of transformer, tests and research are required to verify the insulation performance by variously changing the configuration such as the number of coils, insulation dimensions, and materials. In other words, test research to verify the insulation performance of transformers involves measuring the initial potential distribution, main insulation dimensions, coil-to-coil dimensions, inter-turn insulation dimensions, etc. for a given snow impulse, switching impulse, etc. voltage. By changing the main insulation dimensions and the insulation materials used, and by changing the number of coils and turns,
It is necessary to clarify how each factor affects dielectric strength. Therefore, as a conventional means of conducting this type of test research, a winding model close to an actual transformer is used in which only the iron 0 and opposing windings are replaced with simple electrodes, and the initial potential distribution is mainly determined by the capacitance between turns. A method of adjustment was adopted. However, according to such conventional methods, the range of change in the initial potential distribution is small, and conversely, the initial potential distribution changes even if the dimensions and structure of the core or opposing windings are changed. It has been difficult to accurately analyze the factors that affect yield strength. Furthermore, since a model that approximates the actual transformer winding is used, the model becomes expensive, and it is difficult to set a large number of test conditions, which hinders technological progress. In order to improve the conventional test method that has many of the problems mentioned above, the present inventors conducted various studies and made prototypes, and as a result, they developed a simulation method in which multiple coils insulated from each other are wound around an electrode via the main insulation. Combine the winding and a non-inductive resistive voltage divider, store them in a test oil tank, lead out each coil of the simulated winding, and connect the lead wires to the resistive voltage divider, respectively.
By forcing a predetermined initial potential distribution to be applied to each coil using a resistive voltage divider, it is possible to give a predetermined initial potential distribution to the windings regardless of the structure and dimensions of the windings. It was found that detailed tests could be conducted based on the initial potential distribution, insulation structure and dimensions, number of coils, number of turns, etc.

また、模擬巻線はコイル間の接続が不要であり、巻線入
口の数コイルを除いてはターン間絶縁の影響を無視でき
るため、1ターンコイルで模擬することが可能であり、
実巻線を使用する従来技術に比べて巻線の製作工数を大
幅に削減できることが判った。従って、本発明の目的は
、構成が簡単にして廉価に製造することができると共に
より高度の絶縁耐力の検証試験を行うことができる変圧
器巻線の試験用模擬巻線装置を提供するにある。
In addition, the simulated winding does not require connection between coils, and the effect of inter-turn insulation can be ignored except for a few coils at the entrance of the winding, so it is possible to simulate with a one-turn coil.
It has been found that the number of man-hours required to manufacture the windings can be significantly reduced compared to the conventional technology that uses actual windings. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a simulated winding device for testing transformer windings, which has a simple structure, can be manufactured at low cost, and can perform a higher level of dielectric strength verification test. .

前記の目的を達成するため、本発明においては、互いに
絶縁された複数のコイルを主絶縁を介して電極に巻回配
置した模擬巻線と、この模擬巻線を取り巻くように配設
した無誘導抵抗分圧器とからなり、前記抵抗分圧器に電
界シールドを兼ねる端子を複数設け、さらにこの抵抗分
圧器の各端子および/または中間タップに前記模擬巻線
を構成する各コイルを接続することを特徴とする。
In order to achieve the above object, the present invention includes a simulated winding in which a plurality of mutually insulated coils are wound around an electrode via main insulation, and a non-inductive winding arranged around the simulated winding. A resistive voltage divider is provided, and the resistive voltage divider is provided with a plurality of terminals that also serve as electric field shields, and each coil constituting the simulated winding is connected to each terminal and/or intermediate tap of the resistive voltage divider. shall be.

前記の変圧器巻線の試験用模擬巻線装置において、模擬
巻線を構成するコイルは、1乃至複数本の並列絶縁被覆
導体からなる1ターンコイルで構成され、コイル終端部
において各導体を一括短絡または数ブロックに分割して
短絡すると共に接続端子またはリード線を設けて抵抗分
圧器と接続する。また、抵抗分圧器は、架台に一端部を
固定した絶縁棒により夫々電界シールド電極を介して支
持し、抵抗分圧器の高圧端を電圧印加用ブツシングに接
続し、抵抗分圧器の低圧端を低圧端子として構成するか
または接地すれば好適である。
In the above-described simulated winding device for testing transformer windings, the coil constituting the simulated winding is composed of a one-turn coil consisting of one or more parallel insulated conductors, and each conductor is connected together at the end of the coil. Short-circuit or divide into several blocks and short-circuit, provide connection terminals or lead wires, and connect to a resistive voltage divider. In addition, the resistive voltage divider is supported by an insulating rod whose one end is fixed to the pedestal via the electric field shield electrode, and the high voltage end of the resistive voltage divider is connected to the voltage application bushing, and the low voltage end of the resistive voltage divider is connected to the low voltage It is advantageous if it is configured as a terminal or grounded.

さらに、前述した構成からなる模擬巻線および抵抗分圧
器は、油タンクに収納配置すれば好適である。
Further, it is preferable that the simulated winding and the resistive voltage divider having the above-described configuration be housed in an oil tank.

次に、本発明に係る変圧器巻線の試験用模擬巻線装置の
実施例につき添付図面を参照しながら以下詳細に説明す
る。
Next, embodiments of a simulated winding device for testing transformer windings according to the present invention will be described in detail with reference to the accompanying drawings.

第3図は、超高圧もしくは超々高圧クラスの絶縁実験を
対象として構成した模擬巻線装置の実施例を示すもので
ある。
FIG. 3 shows an embodiment of a simulated winding device configured for insulation experiments of ultra-high voltage or ultra-super high voltage class.

参照符号10は模擬巻線を示し、この模擬巻線1川ま第
4図に示すように、鉄心や池巻線を模擬し、架台12上
に垂直に固定された円筒電極14の外周に主絶縁16を
介して巻回配置されている。また、模擬巻線1川ま、第
5図に示すようなn個の模擬コイル18で構成され、し
かも模擬コイル18からは夫々リード線20が導出され
、各コイル間は電気的に絶縁されている。なお、このよ
うに構成される模擬巻線10は、一般の巻線のように、
各コイルを電気的に接続した状態のものとは異なった状
態のものとなる。前述した構成からなる模擬巻線10の
外周には、これを取り巻くようにして無誘導抵抗分圧器
22が配設され、この無誘導抵抗分圧器22は架台12
に一端部が固定された多数の絶縁棒24により夫々電界
シールド電極26を介して支持されている。
Reference numeral 10 indicates a simulated winding, and as shown in FIG. It is arranged in a winding manner with an insulation 16 interposed therebetween. In addition, each simulated winding consists of n simulated coils 18 as shown in FIG. There is. In addition, the simulated winding 10 configured in this way, like a general winding,
The state is different from the state in which each coil is electrically connected. A non-inductive resistance voltage divider 22 is disposed around the outer periphery of the simulated winding 10 having the above-described configuration, and this non-inductive resistance voltage divider 22 is connected to the mount 12.
It is supported by a large number of insulating rods 24 each having one end fixed thereto via an electric field shield electrode 26 .

また、模擬コイル18から導出されるn本のりード線2
0は、所定の初期電位分布を与える分圧器端子を兼ねる
電界シールド電極26または抵抗分圧器22の中間タッ
プ28に接続する。このように構成された模擬巻線装置
は、絶縁試験用油タンク3川こ収納し.抵抗分圧器22
の高圧端を電圧印加用ブッシング32に接続し、さらに
低圧端を模擬電極14および油タンク30と共に接地す
るかまたは後地した油タンク30の一部に設けた低圧端
子34に接続する。なお、第5図に示すように、本発明
装置において使用される複数個の模擬コイル18は、1
〜複数本の並列絶縁被覆導体で構成し、様子部で短絡さ
れた1ターンコイルで模擬することができ、このため各
模擬コイル18のィンダクタンスは極めて小さくなる。
従って、前述したように試験タンク30に収納された模
擬巻線装置の等価回路は、第1図に示す等価回路におい
て、インダクタンスLを抵抗Rで置き換えた場合に等し
くなる。そこで、本実施例の模擬巻線10に電圧を印加
した際、コイル18の直列分布容量Kおよび並列分布容
量Cを介して流れる充電々流に比べて鯛議導抵抗分圧器
22に流れる電流が遥かに多くなるように抵抗値Rを選
定すれば、模擬巻線1川こ与えられる初期電位分布は抵
抗分圧器22の分圧比で決まる電位分布と等しくなり、
模擬巻線10の直列分布容量Kおよび並列分布容量Cに
係わりなく任意の初期電位分布を模擬巻線10‘こ与え
ることができる。従って、本実施例の模擬巻線1川こよ
れば、所期の目的であるコイル数、巻線の各部絶縁寸法
、絶縁材料および構成等を種々変更して、夫々の要因に
任意の初期電位分布を与えて絶縁耐力に対する影響等を
簡便に検証することができる。また、本実施例の模擬巻
線1川こおいて、各コイル18は複数本の絶縁被覆導体
を並列にして所定の大きさに1回だけ巻いた1ターンコ
イルが使用できることから、隣接する並列導体間に電位
差を与えたい場合には、並列導体を2ブロックに分けて
リード線20を2本導出する構成とすればよい。
In addition, n lead wires 2 derived from the simulated coil 18
0 is connected to the intermediate tap 28 of the resistive voltage divider 22 or the electric field shield electrode 26 which also serves as a voltage divider terminal giving a predetermined initial potential distribution. The simulated winding device constructed in this way is housed in three oil tanks for insulation testing. Resistance voltage divider 22
The high voltage end is connected to the voltage application bushing 32, and the low voltage end is connected to a low voltage terminal 34 that is grounded together with the simulated electrode 14 and the oil tank 30, or is provided on a part of the oil tank 30 located behind it. Note that, as shown in FIG. 5, the plurality of simulated coils 18 used in the device of the present invention are one
- It can be simulated with a one-turn coil that is composed of a plurality of parallel insulated coated conductors and short-circuited at the side, and therefore the inductance of each simulated coil 18 becomes extremely small.
Therefore, as described above, the equivalent circuit of the simulated winding device housed in the test tank 30 is the same as the equivalent circuit shown in FIG. 1 when the inductance L is replaced by the resistance R. Therefore, when a voltage is applied to the simulated winding 10 of this embodiment, the current flowing through the taiwai conductor resistive voltage divider 22 is smaller than the charging current flowing through the series distributed capacitance K and the parallel distributed capacitance C of the coil 18. If the resistance value R is selected to be much larger, the initial potential distribution given to one simulated winding becomes equal to the potential distribution determined by the voltage division ratio of the resistor voltage divider 22,
Regardless of the series distributed capacitance K and the parallel distributed capacitance C of the simulated winding 10, any initial potential distribution can be given to the simulated winding 10'. Therefore, according to the simulated winding of this example, the number of coils, the insulation dimensions of each part of the winding, the insulation material, the structure, etc., which are the intended purpose, are changed in various ways, and each factor is adjusted to an arbitrary initial potential. The influence on dielectric strength can be easily verified by giving a distribution. In addition, in the case of one simulated winding in this embodiment, each coil 18 can be a one-turn coil in which multiple insulated conductors are paralleled and wound only once to a predetermined size. If it is desired to provide a potential difference between the conductors, the parallel conductors may be divided into two blocks and two lead wires 20 may be drawn out.

これに対し、隣接する並列導体間に電位差を必要として
ない場合は、コイル出口で並列導体を一括短絡し、1本
のりード線20を導出する構成とすればよい。なお、前
述の構成とする場合、巻線の直径等は必要に応じて縮小
して模擬することが可能である。従って、模擬コイルの
製作が簡単となり、模擬巻線の製造コストを大幅に低減
することができる。さらに、前述の実施例において、抵
抗分圧器22の構造は、近接する模擬コイル18のリー
ド線20を円周上の異なる角度から夫々引き出し、端子
間の絶縁距離を充分保つ目的のために必要であり、印加
電圧の高低に応じて種々の構造が実施できることは勿論
である。
On the other hand, if a potential difference between adjacent parallel conductors is not required, a configuration may be adopted in which the parallel conductors are collectively short-circuited at the coil exit and one lead wire 20 is derived. In addition, when setting it as the above-mentioned structure, the diameter etc. of a winding can be reduced and simulated as needed. Therefore, the fabrication of the simulated coil becomes easy, and the manufacturing cost of the simulated winding can be significantly reduced. Furthermore, in the embodiment described above, the structure of the resistive voltage divider 22 is necessary for the purpose of drawing out the lead wires 20 of the adjacent simulated coils 18 from different angles on the circumference and maintaining a sufficient insulation distance between the terminals. Of course, various structures can be implemented depending on the level of applied voltage.

前述した実施例から明らかなように、本発明模擬巻線装
置は、1ターンコイルによって構成された模擬巻線を使
用し、しかもこの模擬巻線と細合せた抵抗分圧器によっ
て任意の初期電位分布を模擬巻線に与えることができる
ため、実在する変圧器巻線の雪ィンパルス、開閉ィンパ
ルス等の応答特性と等価な状態を容易かつ安価に再現す
ることができ、実用巻線の絶縁耐力の検証は勿論のこと
高性能巻線の開発および改良に有効に利用することがで
きる。
As is clear from the above-mentioned embodiments, the simulated winding device of the present invention uses a simulated winding composed of a one-turn coil, and uses a resistive voltage divider finely matched with the simulated winding to generate an arbitrary initial potential distribution. can be applied to the simulated winding, it is possible to easily and inexpensively reproduce conditions equivalent to the response characteristics of an actual transformer winding, such as snow impulses, switching impulses, etc., and to verify the dielectric strength of practical windings. Of course, it can be effectively utilized for the development and improvement of high-performance windings.

このような特徴を備える本発明模擬巻線装置は、油入変
圧器のリアクトル、油入変成器等の巻線の耐雷インパル
ス、耐開閉ィンパルス、絶縁強度の試験研究をはじめ、
SF6ガス絶縁変圧器等の巻線絶縁強度の試験研究に応
用できる他、異なる電位にある複数個の導体に任意の電
位を与える必要のある高電圧装置のィンパルス絶縁試験
にも好適に利用することができる。
The simulated winding device of the present invention having such features is suitable for testing and researching the lightning resistance impulse, switching impulse resistance, and insulation strength of the windings of oil-immersed transformers, reactors, oil-immersed transformers, etc.
It can be applied to testing and researching the winding insulation strength of SF6 gas-insulated transformers, etc., and can also be suitably used for impulse insulation testing of high-voltage devices that require arbitrary potentials to be applied to multiple conductors at different potentials. I can do it.

以上、本発明の好適な実施例について説明したが、本発
明の精神を逸脱しない範囲内において種々の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は変圧器巻線の電位分布を示す等価回路、第2図
は変圧器巻線の電位集中度特性曲線、第3図は本発明に
係る模擬巻線装置の一実施例を示す構成配置図、第4図
は第3図に示す装置に使用される模擬巻線の取付状態説
明図、第5図は本発明装置に使用される模擬巻線を構成
する模擬コイルの一実施例を示す斜視図である。 10・・・・・・模擬巻線、12・・・・・・架台、1
4・・・・・・円筒電極、16・・…・主絶縁、18・
・・・・・模擬コイル、20・・・・・・リード線、2
2・…・・抵抗分圧器、24…・・・絶縁榛、26・・
・・・・電界シールド電極、28・・・・・・中間タッ
プ、30・…・・油タンク、32・・・・・・電圧印加
用ブツシング、34・・・・・・低圧端子。 FIG.lFIG.2FIG.3 FIG.4 FIG.5
FIG. 1 is an equivalent circuit showing the potential distribution of a transformer winding, FIG. 2 is a potential concentration characteristic curve of the transformer winding, and FIG. 3 is a configuration showing an embodiment of a simulated winding device according to the present invention. 4 is an explanatory diagram of the installation state of the simulated winding used in the device shown in FIG. 3, and FIG. 5 is an example of the simulated coil constituting the simulated winding used in the device of the present invention. FIG. 10... Simulated winding, 12... Frame, 1
4... Cylindrical electrode, 16... Main insulation, 18...
...Mock coil, 20...Lead wire, 2
2... Resistance voltage divider, 24... Insulation shield, 26...
...Electric field shield electrode, 28...Middle tap, 30...Oil tank, 32...Bushing for voltage application, 34...Low voltage terminal. FIG. lFIG. 2FIG. 3 FIG. 4 FIG. 5

Claims (1)

【特許請求の範囲】 1 互いに絶縁された複数のコイルを主絶縁を介して電
極に巻回配置した模擬巻線と、この模擬巻線を取り巻く
ように配設した無誘導抵抗分圧器とからなり、前記抵抗
分圧器に電界シールドを兼ねる端子を複数設け、さらに
この抵抗分圧器の各端子および/または中間タツプに前
記模擬巻線を構成する各コイルを接続することを特徴と
する変圧器巻線の試験用模擬巻線装置。 2 特許請求の範囲第1項記載の試験用模擬巻線装置に
おいて、模擬巻線を構成するコイルは、1乃至複数本の
並列絶縁被覆導体からなる1ターンコイルで構成され、
コイル終端部において各導体を一括短絡または数ブロツ
クに分割して短絡すると共に、接続端子またはリード線
を設けて抵抗分圧器と接続してなる変圧器巻線の試験用
模擬巻線装置。 3 特許請求の範囲第1項または第2項記載の試験用模
擬巻線装置において、抵抗分圧器は架台に一端部を固定
した絶縁棒により夫々電界シールド電極を介して支持し
、抵抗分圧器の高圧端を電圧印加用ブツシングに接続し
、抵抗分圧器の低圧端を低圧端子として構成するかまた
は接地してなる変圧器巻線の試験用模擬巻線装置。 4 特許請求の範囲第1項乃至第3項のいずれかに記載
の試験用模擬巻線装置において、模擬巻線および抵抗分
圧器を油タンクに収納配置してなる変圧器巻線の試験用
模擬巻線装置。
[Claims] 1. Consists of a simulated winding in which a plurality of mutually insulated coils are wound around an electrode via main insulation, and a non-inductive resistance voltage divider arranged to surround this simulated winding. , a transformer winding characterized in that the resistive voltage divider is provided with a plurality of terminals that also serve as electric field shields, and each coil constituting the simulated winding is connected to each terminal and/or intermediate tap of the resistive voltage divider. A simulated winding device for testing. 2. In the test simulated winding device according to claim 1, the coil constituting the simulated winding is composed of a one-turn coil made of one or more parallel insulated conductors,
A simulated winding device for testing transformer windings, in which each conductor is short-circuited all at once or divided into several blocks at the end of the coil, and a connection terminal or lead wire is provided and connected to a resistive voltage divider. 3. In the test simulation winding device according to claim 1 or 2, the resistive voltage divider is supported by an insulating rod whose one end is fixed to a pedestal via an electric field shield electrode, and the resistive voltage divider is A simulated winding device for testing a transformer winding, in which the high voltage end is connected to a voltage application bushing, and the low voltage end of a resistive voltage divider is configured as a low voltage terminal or grounded. 4. In the testing simulation winding device according to any one of claims 1 to 3, the testing simulation of a transformer winding is constructed by storing a simulation winding and a resistance voltage divider in an oil tank. Winding device.
JP54164738A 1979-12-20 1979-12-20 Simulated winding device for testing transformer windings Expired JPS6038016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54164738A JPS6038016B2 (en) 1979-12-20 1979-12-20 Simulated winding device for testing transformer windings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54164738A JPS6038016B2 (en) 1979-12-20 1979-12-20 Simulated winding device for testing transformer windings

Publications (2)

Publication Number Publication Date
JPS5688310A JPS5688310A (en) 1981-07-17
JPS6038016B2 true JPS6038016B2 (en) 1985-08-29

Family

ID=15798958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54164738A Expired JPS6038016B2 (en) 1979-12-20 1979-12-20 Simulated winding device for testing transformer windings

Country Status (1)

Country Link
JP (1) JPS6038016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727079C1 (en) * 2019-12-23 2020-07-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Device for determination of electric strength
CN112526304A (en) * 2020-12-21 2021-03-19 广东电网有限责任公司电力科学研究院 Transformer winding section insulation characteristic test model

Also Published As

Publication number Publication date
JPS5688310A (en) 1981-07-17

Similar Documents

Publication Publication Date Title
Okabe et al. Development of high frequency circuit model for oil-immersed power transformers and its application for lightning surge analysis
Motoyama et al. Observation and analysis of multiphase back flashover on the Okushishiku test transmission line caused by winter lightning
Kane et al. MTL-based analysis to distinguish high-frequency behavior of interleaved windings in power transformers
US3146417A (en) Transformer
De et al. Part winding resonance: Demerit of interleaved high-voltage transformer winding
Zhang et al. Application of an improved multi-conductor transmission line model in power transformer
JPS6038016B2 (en) Simulated winding device for testing transformer windings
Niasar et al. Impulse voltage distribution on disk winding: calculation of disk series capacitance using analytical method
JPS5895932A (en) Internal voltage glazing for power coil and transient voltage protecting device
US3156866A (en) Method and means for indicating the mode of failure of insulators
Su et al. Analysis of partial discharge pulse distribution along transformer windings using digital filtering techniques
JP2014003607A (en) Line impedance stabilization network
Robles et al. Designing and tuning an air-cored current transformer for partial discharges pulses measurements
Lindblom et al. Pulsed power transmission line transformer based on modern cable technology
Salama A calcualtion method for voltage distribution in a large AIR core power reactor
Okabe et al. Partial discharge signal propagation characteristics inside the winding of oil-immersed power transformer-using the three-winding transformer model in air
Noda et al. Simulation of lightning surge propagation from distribution line to consumer entrance via pole-mounted transformer
JPH09292435A (en) Protecting device for withstand voltage test
Manyahi et al. Transient response of transformer with XLPE insulation cable winding design
Khan Transient Voltage Distribution in Bushing
Hauschild et al. Tests with High Lightning and Switching Impulse Voltages
US2958058A (en) High voltage transformer
JPH0624991Y2 (en) Gas insulated transformer
Sandler et al. Measurement Systems for High Voltage Transients in Power Networks
Alexandru et al. Lighting impulse voltage distribution vs. transformer insulation design