JPS6038013B2 - single phase transformer - Google Patents
single phase transformerInfo
- Publication number
- JPS6038013B2 JPS6038013B2 JP2083977A JP2083977A JPS6038013B2 JP S6038013 B2 JPS6038013 B2 JP S6038013B2 JP 2083977 A JP2083977 A JP 2083977A JP 2083977 A JP2083977 A JP 2083977A JP S6038013 B2 JPS6038013 B2 JP S6038013B2
- Authority
- JP
- Japan
- Prior art keywords
- winding unit
- iron core
- main
- voltage winding
- leg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は単相変圧器または複数台の単相変圧器に分割し
てなる多相変圧器の各タップによるインピーダンス変化
を小さくし、かつ各タップのインピーダンス変化傾向を
変化させることができる改良された構造の拳相変圧器に
関するものである。Detailed Description of the Invention The present invention reduces the impedance change due to each tap of a single-phase transformer or a multi-phase transformer divided into a plurality of single-phase transformers, and changes the impedance change tendency of each tap. The present invention relates to a fist-phase transformer with an improved structure that can be used.
送電々圧の高圧化に伴なし、変圧器容量も大きくなって
きているが、裾付場所が山岳地帯になるような場合は特
に、鉄道による輸送はトンネルや駅構内の建築物などに
より重量制限はもとより高さおよび幅方向の寸法制限を
つけることが多い。このため変圧器巻線構成には種々の
工夫が考案されている。第1図a第2図及び第3図は従
来の単相変圧器の巻線構成をしめしたもので、第3図は
(単相4脚鉄心を使用した)従来のもっとも一般的な単
相変圧器の構成例で、鉄心の2個の主脚5A,5Bに、
それぞれ三次巻線単位11A,11B、低圧巻線単位2
A,2B次いで高圧巻線10A,10Bを巻装し、また
側脚6には三次巻線38及びタップ巻線4を巻装して構
成される。第1図aは、第3図の単相変圧器を改良した
従釆の構成図、また第2図は、単相5脚鉄心を使用した
構成例である。第1図aと第2図は、鉄心主脚の数が異
なるのみで、本発明の意図するところを説明するうえで
は、全く同一であるので、第1図aについて簡単に説明
する。2個の主脚と2個の側脚を有する単相4脚鉄心に
おいて、第1の主脚5Aには、鉄心側より低圧巻線単位
2A、次いで線路側高圧巻線単位IAを順次巻装し、第
ロの主脚5Bには鉄心側より三次巻線単位3A、低圧巻
線単位2B次いで中性点側高圧巻線単位IBを順次巻愛
し、かつ前記鉄心の一方の側脚6には鉄心側より三次巻
線単位3B、高圧タップ巻線4を順次巻袋し、第1の主
隣5Aと第0の主胸5Bの低圧巻線単位2A,2Bは並
列に接続し、第ロの主脚5Bと、前記一方の側脚6に巻
菱された三次巻線3A,3Bは並列に接続し、かつ第1
の主脚5Aおよび第0の主隣5Bに巻装された、それぞ
れ線路側および中性点側高圧巻線単位IAおよびIBと
、前記一方の側脚6に巻装された高圧タップ巻線4を直
列に接続した単相3巻線変圧器である。The capacity of transformers is also increasing as the voltage of electricity transmission becomes higher, but transport by rail is subject to weight restrictions due to tunnels, station buildings, etc., especially when the base is located in a mountainous area. Dimensional restrictions are often placed in the height and width directions. For this reason, various ideas have been devised for transformer winding configurations. Figure 1a Figures 2 and 3 show the winding configuration of a conventional single-phase transformer, and Figure 3 shows the most common conventional single-phase transformer (using a single-phase four-legged core). In the configuration example of a transformer, the two main legs 5A and 5B of the iron core are
Tertiary winding unit 11A, 11B, low voltage winding unit 2 respectively
A, 2B are then wound with high voltage windings 10A, 10B, and the side leg 6 is wound with a tertiary winding 38 and a tap winding 4. FIG. 1a is a configuration diagram of a follower which is an improved version of the single-phase transformer shown in FIG. 3, and FIG. 2 is an example of a configuration using a single-phase five-legged core. FIG. 1a and FIG. 2 differ only in the number of core main legs, but are completely the same in explaining the intent of the present invention, so FIG. 1a will be briefly described. In a single-phase four-leg iron core having two main legs and two side legs, the first main leg 5A is sequentially wound with a low-voltage winding unit 2A from the core side, and then with a high-voltage winding unit IA on the track side. Then, the tertiary winding unit 3A, the low voltage winding unit 2B, and the high voltage winding unit IB on the neutral point side are sequentially wound on the main leg 5B from the iron core side, and on one side leg 6 of the iron core. The tertiary winding unit 3B and the high-voltage tap winding 4 are sequentially wound from the iron core side, and the low-voltage winding units 2A and 2B of the first main adjacent 5A and the 0th main breast 5B are connected in parallel, and the The main leg 5B and the tertiary windings 3A and 3B wound on the one side leg 6 are connected in parallel, and
high-voltage winding units IA and IB on the line side and neutral point side, respectively, wound on the main leg 5A and the 0th main neighbor 5B, and the high-voltage tap winding 4 wound on the one side leg 6. This is a single-phase three-winding transformer with two wires connected in series.
この第1図aにしめす巻線構成によれば、第3図の従釆
のように一般的な巻線構成の変圧器に比べ、線路端を有
する高圧巻線が1ケとなるための絶縁縮少化および三次
巻線を第0の主脚5Bにまとめて巻装したことによる低
圧一三次巻線間インピーダンスの合理的な増大が実現で
き、重量および寸法において大中な小形軽量化が達成で
きる。According to the winding configuration shown in Figure 1a, compared to a transformer with a general winding configuration such as the slave in Figure 3, insulation is required because there is only one high-voltage winding with a line end. By reducing the size and winding the tertiary windings together on the 0th main leg 5B, a reasonable increase in the impedance between the low-voltage and tertiary windings can be achieved, resulting in small and medium size reductions in weight and dimensions. It can be achieved.
しかしながら、この第1図aおよび第2図の巻線構成に
は次の欠点があった。即ち、各タップによる高圧−低圧
巻線間ィンピ−ダンスの変化増が、従来の第3図の巻線
構成の場合にもからり大きかったけれども、第1図aお
よび第2図の巻線構成は、これを助長する方向で変化幅
が更に大きくなる傾向があり、これは電力系統運用上の
要求と相反することであった。電力系統運用上ではイン
ピーダンス変化があまり大きいことは好ましくなく、ま
たその変化傾向もいよいよ、従釆のものと逆の傾向が望
まれることがあった。本発明は上記事情に鑑みて、従来
の第1図および第2図の長所を保ったままで、高圧−低
圧巻線間インピーダンスの各タップによる変化幅を小さ
くし、かつその変化傾向を変えることができるようにし
た単相変圧器を提供することを目的とする。However, the winding configurations shown in FIGS. 1a and 2 have the following drawbacks. That is, although the increase in the impedance change between the high voltage and low voltage windings due to each tap was even larger in the case of the conventional winding configuration shown in FIG. There is a tendency for the range of change to become even larger in a direction that promotes this, which conflicts with the requirements for power system operation. In terms of power system operation, it is undesirable for the impedance change to be too large, and it is sometimes desired that the change trend be the opposite of that of the subordinate. In view of the above circumstances, the present invention makes it possible to reduce the range of change in the impedance between the high voltage and low voltage windings due to each tap, and to change the tendency of the change, while maintaining the advantages of the conventional Figures 1 and 2. The purpose is to provide a single-phase transformer that enables
以下本発明の−実施例を第4図aを参照して説明する。An embodiment of the present invention will now be described with reference to FIG. 4a.
大容量変圧器のインピーダンスは、ほぼリアクタンス分
に等しい。即ちインピーダンスは巻線内および主間隙中
に蓄えられる磁気エネルギーに比例して次式で表わされ
る。%口主%IX広′群dV
ここで %P…パーセントインピーダンス%ば…パーセ
ントリアクタンス
B・・・・・・巻線および主間隙各部の磁束密度V・・
・・・・巻線および主間隙各部の体積上式からわかるよ
うに、インピーダンスを変化せるにはJB2dVを変化
させなければならないが、これには一般に磁束密度Bを
主に変化させる方法がとられている。The impedance of a large capacity transformer is approximately equal to the reactance. That is, impedance is proportional to the magnetic energy stored in the winding and in the main gap and is expressed by the following equation. % main % IX wide group dV where %P...% impedance %...% reactance B...magnetic flux density V at each part of the winding and main gap...
...As can be seen from the volumetric equations for each part of the winding and main gap, in order to change the impedance, JB2dV must be changed, but this is generally done by mainly changing the magnetic flux density B. ing.
第1図bは、第1図aの巻線構成に対応する高圧−低圧
巻線間の漏れ磁束分布をしめしており、図中の7,8,
9はそれぞれ、最低タップ、中央タップ、最高タップに
おける磁束分布である。Figure 1b shows the leakage magnetic flux distribution between the high voltage and low voltage windings corresponding to the winding configuration shown in Figure 1a.
9 are the magnetic flux distributions at the lowest tap, center tap, and highest tap, respectively.
図からわかるように最高タップにおいては、第1の主脚
5A、第0の主脚5Bともに磁束分布は最小で、反対に
、最低タップにおいては第1の主脚5A、第0の主脚5
Bともに磁束分布は最大となっている。これにより各タ
ップによる高圧−低圧巻線間インピーダンスの変化は第
5図のA曲線の如くなり、タップ位置により大中に変化
する。これに対し本発明の実施例である第4図aの巻線
構成による高圧−低圧巻線間の漏れ磁束分布は第4図b
にしめす如くなり、最高タップにおいてはト第1の主脚
5Aの磁束分布が最小であるのに対し、第Dの主脚5B
のそれは最大であり、また、最低タップにおいては、第
1の主脚5Aの磁束分布が最大であるのに対し、第ロの
主脚5Bのそれは最小となっており、互にその変化を相
殺しあっている。これにより各タップによる高圧−低圧
巻線間のインピーダンス変化は、第5図のB曲線にしめ
すごとく、平坦になる。以上説明の本発明は、単相4脚
鉄心の場合に限らず、単相5脚鉄心の場合の第mの主脚
5Bに対しも全く同機に適用でき、同様の効果が得られ
らることは明白である。As can be seen from the figure, at the highest tap, the magnetic flux distribution is minimum for both the first main landing gear 5A and the zeroth main landing gear 5B, and on the contrary, at the lowest tap, the first main landing gear 5A and the zeroth main landing gear 5
In both cases B, the magnetic flux distribution is maximum. As a result, the impedance between the high-voltage and low-voltage windings changes due to each tap as shown by curve A in FIG. 5, and varies greatly depending on the tap position. On the other hand, the leakage magnetic flux distribution between the high voltage and low voltage windings in the winding configuration shown in FIG. 4a, which is an embodiment of the present invention, is shown in FIG. 4b.
As shown in the figure, at the highest tap, the magnetic flux distribution of the G-1 main leg 5A is the minimum, whereas the D-1 main leg 5B has the smallest magnetic flux distribution.
Also, at the lowest tap, the magnetic flux distribution of the first main landing gear 5A is the maximum, while that of the second main landing gear 5B is the minimum, and the changes are canceled out by each other. We are happy. As a result, the impedance change between the high-voltage and low-voltage windings due to each tap becomes flat, as shown by curve B in FIG. The present invention described above can be applied not only to the case of a single-phase four-legged core but also to the m-th main landing gear 5B in the case of a single-phase five-legged core, and similar effects can be obtained. is obvious.
更により微細なインピーダンス変化を必要とする場合に
は、第6図aにしめすような巻線配置とすることも可能
である。第6図aは、第4図aの巻線構成で、第0の主
脚5Bに巻装される中性点側低圧巻線IBの一部を、高
圧タップ巻線を巻装する側脚6に移したものである。第
6図aの巻線構成によれば、その磁束分布が第6図bの
如くなるので、主脚5A,58の磁束分布との組み合せ
で、例えば側脚6部の巻線構成を第7図aのように変え
れば、各タップのインピーダンス変化後向を任意に変え
ることができる。更に、本発明の実施により、第1図a
、第2図の従来の実施例の長所である低圧一三次巻線間
インピーダンスを大きくできるという特性を更に助長す
るという利点がある。If a more minute impedance change is required, it is also possible to arrange the windings as shown in FIG. 6a. FIG. 6a shows the winding configuration of FIG. 4a, in which a part of the neutral point side low voltage winding IB wound around the 0th main leg 5B is replaced by a part of the side leg around which the high voltage tap winding is wound. This has been moved to 6. According to the winding configuration shown in FIG. 6a, the magnetic flux distribution becomes as shown in FIG. By changing it as shown in Figure a, the direction of impedance change of each tap can be changed arbitrarily. Further, by practicing the present invention, FIG.
This has the advantage of further promoting the characteristic of increasing the impedance between the low-voltage primary and tertiary windings, which is an advantage of the conventional embodiment shown in FIG.
以上説明のように本発明によれば、各タップにおけるイ
ンピーダンスの変化を、従来構造のものより大中に小さ
くでき、また各タップにおけるインピーダンス変化傾向
を任意に変えることができる単相変圧器を得ることがで
きる。As described above, according to the present invention, it is possible to obtain a single-phase transformer in which the change in impedance at each tap can be made much smaller than that of a conventional structure, and the tendency of impedance change at each tap can be arbitrarily changed. be able to.
第1図aは従来の単相変圧器の巻線の配置および結線を
しめす概略図、第1図bは第1図aの巻線構成に対応す
る、高圧−低圧巻線間漏れ滋遠分布をしめす概念図、第
2図および第3図は、他の実施例による従来の単相変圧
器の巻線の配置および結線をしめす概略図、第4図aは
本発明の実施例を説明する単相変圧器の巻線の配置およ
び結線をしめす概略図、第4図bは、第4図aの巻線構
成に対応する高圧−低圧巻線間漏れ磁束分布をしめす概
念図、第5図は、従来の巻線構成による高圧−低圧巻線
間漏れインピーダンスの各タップにおける変化額向と、
本発明によるそれとの差を説明するための概念図、第6
図aは、本発明の他の実施例を説明する単相変圧器の巻
線配置および結線をしめす概略図、第6図bは、第6図
aの巻線構成に対応する高圧−低圧巻線間漏れ磁束分布
をしめす概念図、第7図aは、第6図の部分的な変形実
施例、第7図bは、第7図aの巻線構成に対応する磁束
分布をしめす概念図である。
IA,IB,IA′,10A,10B,IC・・・・・
・高圧巻線単位、2A,28,2A′・・・・・・低圧
巻線単位、3A,3B,11A,11B・・・・・・三
次巻線単位、4・・・・・・高圧タップ巻線、5A,5
8,5A′・・・・・・鉄心主脚、6・・・・・・鉄心
側脚、7,8,9・・・・・・最低タップ、中央タップ
、最高タップにおける巻線間漏れ磁束分布。
第1図
a
第1図
b
第2図
第3図
第4図
a
第4図
b
第5図
第6図
a
第6図
b
第7図Figure 1a is a schematic diagram showing the arrangement and connection of the windings of a conventional single-phase transformer, and Figure 1b is a diagram showing the leakage distribution between the high-voltage and low-voltage windings corresponding to the winding configuration of Figure 1a. 2 and 3 are schematic diagrams showing the winding arrangement and connection of a conventional single-phase transformer according to other embodiments, and FIG. 4a explains an embodiment of the present invention. Fig. 4b is a schematic diagram showing the arrangement and connection of the windings of a single-phase transformer, and Fig. 5 is a conceptual diagram showing the leakage magnetic flux distribution between high voltage and low voltage windings corresponding to the winding configuration of Fig. is the change in the leakage impedance between the high voltage and low voltage windings at each tap due to the conventional winding configuration, and
Conceptual diagram for explaining the difference according to the present invention, No. 6
Figure a is a schematic diagram showing the winding arrangement and connection of a single-phase transformer illustrating another embodiment of the present invention, and Figure 6b is a high-voltage-low-voltage winding corresponding to the winding configuration of Figure 6a. A conceptual diagram showing the leakage magnetic flux distribution between the wires, FIG. 7a is a partial modification example of FIG. 6, and FIG. 7b is a conceptual diagram showing the magnetic flux distribution corresponding to the winding configuration of FIG. 7a. It is. IA, IB, IA', 10A, 10B, IC...
・High voltage winding unit, 2A, 28, 2A'...Low voltage winding unit, 3A, 3B, 11A, 11B...Tertiary winding unit, 4...High voltage tap Winding wire, 5A, 5
8, 5A'... Core main leg, 6... Core side leg, 7, 8, 9... Leakage flux between windings at the lowest tap, center tap, and highest tap. distribution. Figure 1a Figure 1b Figure 2Figure 3Figure 4a Figure 4b Figure 5Figure 6a Figure 6b Figure 7
Claims (1)
心と、この鉄心の主脚にそれぞれ巻装され並列接続する
低圧巻線単位と、前記鉄心の一方の主脚に巻装される線
路側高圧巻線単位と、前記鉄心の他方の主脚に巻装され
前記線路側高圧巻線単位に直列接続する中性点側高圧巻
線単位と、この中性点側高圧巻線単位に直列接続され、
前記鉄心の一方の側脚に巻装するタツプ巻線と、前記中
性点側高圧巻線単位を巻装する鉄心の主脚およびタツプ
巻線を巻装する鉄心の側脚にそれぞれ巻装して並列接続
する三次巻線単位とにより構成する単相変圧器において
、前記鉄心の一方の主脚には鉄心側より、低圧巻線単位
次いで線路側高圧巻線単位の順に巻装し、前記鉄心の他
方の主脚には、鉄心側より、三次巻線単位、中性点側高
圧巻線単位次いで低圧巻線単位の順に巻装したことを特
徴とする単相変圧器。 2 側脚に中性点側高圧巻線単位の1部を巻装し、この
高圧巻線の一部を主脚に巻装された高圧巻線単位と、側
脚に巻装されたタツプ巻線とに直列接続したことを特徴
とする特許請求の範囲第1項記載の単相変圧器。 3 鉄心が3個の主脚および2個の側脚を有する5脚鉄
心であることを特徴とする特許請求の範囲第1項または
第2項記載の単相変圧器。[Scope of Claims] 1. An iron core having at least two main legs and two side legs, a low-voltage winding unit wound around each of the main legs of the iron core and connected in parallel, and one main leg of the iron core. a line-side high-voltage winding unit wound on the other main leg of the iron core and connected in series with the line-side high-voltage winding unit; Connected in series to high voltage winding units,
A tap winding is wound around one side leg of the iron core, a main leg of the iron core around which the neutral point side high voltage winding unit is wound, and a side leg of the iron core around which the tap winding is wound, respectively. In a single-phase transformer configured with a tertiary winding unit and a tertiary winding unit connected in parallel, one main leg of the iron core is wound in order from the iron core side, a low voltage winding unit, and then a high voltage winding unit on the track side. A single-phase transformer characterized in that the other main leg of the transformer is wound with a tertiary winding unit, a neutral point side high voltage winding unit, and then a low voltage winding unit, in this order from the iron core side. 2 A part of the high voltage winding unit on the neutral point side is wound around the side leg, and a part of this high voltage winding is wrapped around the high voltage winding unit wound around the main landing gear, and the tap winding unit is wound around the side leg. A single-phase transformer according to claim 1, characterized in that the single-phase transformer is connected in series with a line. 3. The single-phase transformer according to claim 1 or 2, wherein the iron core is a five-legged iron core having three main legs and two side legs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083977A JPS6038013B2 (en) | 1977-03-01 | 1977-03-01 | single phase transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083977A JPS6038013B2 (en) | 1977-03-01 | 1977-03-01 | single phase transformer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5872478A Division JPS549719A (en) | 1978-05-19 | 1978-05-19 | Single-phase transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53106422A JPS53106422A (en) | 1978-09-16 |
JPS6038013B2 true JPS6038013B2 (en) | 1985-08-29 |
Family
ID=12038233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2083977A Expired JPS6038013B2 (en) | 1977-03-01 | 1977-03-01 | single phase transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6038013B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5563813A (en) * | 1978-11-07 | 1980-05-14 | Toshiba Corp | Single-phase, three-winding transformer |
-
1977
- 1977-03-01 JP JP2083977A patent/JPS6038013B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53106422A (en) | 1978-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11587719B2 (en) | Magnetic integrated hybrid distribution transformer | |
CA2145958A1 (en) | Phase Shifting Transformer with Low Zero Phase Sequence Impedance | |
JPS6038013B2 (en) | single phase transformer | |
JPH06333754A (en) | Transformer for cycloconverter | |
JPS6144418Y2 (en) | ||
JPS6240415Y2 (en) | ||
CN215377167U (en) | Coil structure of phase-shifting rectifier transformer | |
US1765483A (en) | Transformer core-structure | |
JPH0241855Y2 (en) | ||
JPH0588523B2 (en) | ||
JPH11186070A (en) | Single-phase autotransformer | |
KR200279683Y1 (en) | Core structure of power transformer | |
RU26682U1 (en) | WINDING TRANSFORMER | |
JPH02198113A (en) | High-frequency transformer for welding | |
JPS6138169Y2 (en) | ||
CN117747270A (en) | Medium voltage multiport transformer and medium voltage multiport ac coupling converter | |
CN114566367A (en) | On-load tap changer and offshore booster station with same | |
JPS587619Y2 (en) | Single-phase three-wire distribution transformer | |
JPH09293620A (en) | Three winding transformer | |
JP5333412B2 (en) | Light common transformer | |
JPS598053B2 (en) | single phase three winding transformer | |
JPS5952526B2 (en) | transformer | |
JPS6232602B2 (en) | ||
JPH0320891B2 (en) | ||
JPS6039810A (en) | Three phase transformer |