JPS6037856B2 - Manufacturing method of H-beam steel without web waves - Google Patents

Manufacturing method of H-beam steel without web waves

Info

Publication number
JPS6037856B2
JPS6037856B2 JP19100781A JP19100781A JPS6037856B2 JP S6037856 B2 JPS6037856 B2 JP S6037856B2 JP 19100781 A JP19100781 A JP 19100781A JP 19100781 A JP19100781 A JP 19100781A JP S6037856 B2 JPS6037856 B2 JP S6037856B2
Authority
JP
Japan
Prior art keywords
web
flange
temperature
section steel
finishing temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19100781A
Other languages
Japanese (ja)
Other versions
JPS5893819A (en
Inventor
博 吉田
健二 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19100781A priority Critical patent/JPS6037856B2/en
Publication of JPS5893819A publication Critical patent/JPS5893819A/en
Publication of JPS6037856B2 publication Critical patent/JPS6037856B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明はゥェブ波のないH形鋼製造方法に係り特に仕上
圧延温度を調整することによりゥェブ波のないH形鋼を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an H-section steel without web waves, and particularly to a method for manufacturing an H-section steel without web waves by adjusting the finish rolling temperature.

H形鋼の断面性状は第1図に示す如く通常フランジーの
厚さがゥェブ2の厚さよりも厚くなっているため、熱延
過程でウェブ2の冷却速度がフランジーに比較して遠く
なり、仕上圧延終了時にはフランジ温度がゥェブ温度よ
りも200℃以上も高くなる場合がある。
As shown in Figure 1, the cross-sectional properties of H-section steel are usually such that the thickness of the flange is thicker than the thickness of the web 2, so the cooling rate of the web 2 during the hot rolling process is slower than that of the flange, resulting in poor finish. At the end of rolling, the flange temperature may be 200° C. or more higher than the web temperature.

この圧延終了時のフランジ1とウェブ2の仕上温度条件
および圧延後のフランジ1とウェブ2の冷却速度差のた
め室温まで冷却された状態においては、フランジ1がゥ
ェブ2に比べて相対的に短くなり、第2図に示すように
フランジ1に引張り、ウェブ2に圧縮の長手方向残留応
力が発生する。而してウェブ2の圧縮残留応力が臨界座
屈応力を越えるというウェブ波の形状不良となり製品と
て使用できなくなる。従ってウェブ波を防止するために
はウェブの圧縮残留応力を臨界座屈応力以下に抑制すれ
ばよい。残留応力を軽減させる方法として従来多くの提
案がされており、特公昭41一20330 47一31
481、47−32164 51一5607、54−5
0442、特関昭50−13311拍等がある。
Due to the finishing temperature conditions of flange 1 and web 2 at the end of rolling and the difference in cooling rate between flange 1 and web 2 after rolling, flange 1 is relatively shorter than web 2 when cooled to room temperature. As a result, as shown in FIG. 2, tensile residual stress is generated in the flange 1 and compressive longitudinal residual stress is generated in the web 2. As a result, the compressive residual stress of the web 2 exceeds the critical buckling stress, resulting in a defect in the shape of the web waves, which makes the web 2 unusable as a product. Therefore, in order to prevent web waves, it is sufficient to suppress the compressive residual stress of the web to below the critical buckling stress. Many proposals have been made in the past as methods for reducing residual stress, and Japanese Patent Publication No. 41-20330 47-31
481, 47-32164 51-5607, 54-5
0442, Tokusekki Showa 50-13311 beat, etc.

これらの中で作業能率の点ですぐれているのは圧延時に
フランジを冷却するかゥェブを保温する樽公昭41−2
0336および特開昭50−13311の方法である。
しかしこれらの方法を使用するためには、フランジおよ
びウェブの仕上温度を具体的に設定する必要があり、こ
れについて従来法においては明確にされていなかった。
本発明の目的は上記従来術の問題点を解決し、具体的に
フランジおよびウェブの仕上温度を設定できるゥェブ波
のないH形鋼の製造方法を提供するにある。本発明の要
旨とするところは次のとおりである。
Among these, the one that is superior in terms of work efficiency is Taruko Sho 41-2, which cools the flange or keeps the web warm during rolling.
0336 and the method of Japanese Patent Application Laid-Open No. 13311/1983.
However, in order to use these methods, it is necessary to specifically set the finishing temperatures of the flange and web, and this has not been clearly defined in conventional methods.
An object of the present invention is to solve the problems of the conventional methods described above and to provide a method for manufacturing an H-section steel without web waves, which allows the finishing temperature of the flange and web to be specifically set. The gist of the present invention is as follows.

すなわちH形鋼の最終仕上圧延前の工程においてウェブ
保温もしくはフランジ水冷を行うウェブ波のないH形鋼
の製造方法において、前記日形鋼のウェブ波の形状不良
を評価するウェブ波評価指数Wcを前記フランジおよび
ウェブの仕上温度および断面寸法と関数とする下記関数
式で表示し、前記関数式より目標とするゥェブ波評価指
数となるフランジおよびウェブの仕上温度を求め、この
仕上温度になる如く前記ウェブ保温もしくはフランジ水
冷の少くとも一方の温度調整を行うことを特徴とするウ
ェブ波のないH形鋼の製造方法である。WC=a。
That is, in a method for manufacturing an H-section steel without web waves in which web insulation or flange water cooling is performed in the process before the final finish rolling of the H-section steel, the web wave evaluation index Wc for evaluating the shape defects of the web waves of the above-mentioned day section steel is The finishing temperature of the flange and web is expressed as a function of the finishing temperature and the cross-sectional dimension as shown below, and the finishing temperature of the flange and web that gives the target web wave evaluation index is determined from the above functional expression, and the This is a method for manufacturing an H-section steel without web waves, characterized by adjusting the temperature of at least one of web heat retention and flange water cooling. WC=a.

十a,‐△T;1十a2・△T解+a3・ln(T「T
W)+a4・lnも十a5‐侍2本発明者らの研究によ
り、残留応力の大きさはフランジおよびウェブの仕上温
度だけで決まるものではなく、フランジおよび仕上温度
の高低および断面寸法によって変化することが判明した
。また当然のことながら臨界座届応力は断面寸法方特に
ゥェフー厚とウェブ内幅の関数と考えられる。上記の点
にかんがみ、ウェブ波の形状不良の程度を評価するゥェ
ブ波評価指数を設定し、これを仕上温度、断面寸法の関
数で表わし、この評価式よりウェブ波の発生しないフラ
ンジおよびウェブの仕上温度条件を求め、この仕上温度
条件になるように最終圧延前の工程においてウェブ保温
もしくはフランジ水冷の少なくとも一方を行なう方法を
解明した。本発明者らの研究により、ウェブ波評価指数
Wcは仕上温度、断面寸法の次のような要因の関数で精
度よく表わされることが明らかになった。
10a, -△T; 10a2・△T solution + a3・ln (T “T
W) + a4・ln 10 a5 - Samurai 2 The inventors' research has shown that the magnitude of residual stress is not determined only by the finishing temperature of the flange and web, but changes depending on the height of the flange and finishing temperature and the cross-sectional dimensions. It has been found. Naturally, the critical seat stress is considered to be a function of cross-sectional dimensions, particularly wafer thickness and inner web width. In consideration of the above points, we have established a web wave evaluation index that evaluates the degree of shape defects in web waves, and expressed this as a function of finishing temperature and cross-sectional dimensions. From this evaluation formula, we have determined that flanges and webs can be finished without web waves. The temperature conditions were determined, and a method was found to perform at least one of web warming and flange water cooling in the process before final rolling to achieve these finishing temperature conditions. Through research conducted by the present inventors, it has become clear that the web wave evaluation index Wc can be accurately expressed as a function of the following factors such as finishing temperature and cross-sectional dimensions.

ただしWcはウェブの平均圧縮残留応力と臨界座屈応力
の比で定義されるもので、この値が1より大きくなるウ
ェブ波を発生すると考えられる。Wc=F(△Tf,△
Tw,Tf−Twtf/tM Hw/tW)
・・…・{1’ここで、Tr,Tw:フランジおよ
びウェプの仕上温度(0〇)tf,tw:フランジおよ
びウヱブの厚み(風)Hw:ウェブ内幅(帆)T^・,
T^3:フェライト変態開始および終了温度(0〇)△
Tf: TrとT^3のとき O Tf<T^3のとき T^3−Tf △Tw: TwとT^,のとき Tw−T^.Tw<T
^,のとき 0また、鋼種(化学成分)、広幅、中幅、
細幅等のH形鋼のタイプ、大形、中形、小形等の断面寸
法の大きさ等を固定すれば(1}式は次のような形の‘
2}式で近似できる。
However, Wc is defined by the ratio of the average compressive residual stress of the web to the critical buckling stress, and it is considered that this value is greater than 1 to generate web waves. Wc=F(△Tf, △
Tw, Tf-Twtf/tM Hw/tW)
......{1'Here, Tr, Tw: Finishing temperature of flange and web (0〇) tf, tw: Thickness of flange and web (wind) Hw: Inner web width (sail) T^・,
T^3: Ferrite transformation start and end temperature (0〇)△
Tf: When Tr and T^3 O When Tf<T^3 T^3-Tf △Tw: When Tw and T^, Tw-T^. Tw<T
When ^, 0 Also, steel type (chemical composition), wide width, medium width,
If we fix the type of H-shaped steel such as narrow width, and the size of the cross-sectional dimensions such as large, medium, and small, then the formula (1) becomes '
2} can be approximated by formula.

Wc=ao+a.・△T;1十も・△T済+a3・ln
(Tf−TW) 十a小馬十a5‐侍2 ‐.・‐‐.【21ここで、
ao〜も,n,,n2は定数である。
Wc=ao+a.・△T; 10 too・△T completed + a3・ln
(Tf-TW) 10a Kouma 10a5-Samurai 2-.・--. [21 Here,
ao~, n, , n2 are constants.

■式よりWcが1以下になるようにフランジおよびウェ
ブの仕上温度Tf、Twを求める。次に求めた仕上温度
Tr、Twになる如く仕上圧延前の工程で第3図に示す
如く放熱防止板3を使用してウェブ保温をするか、ある
いは第4図に示す如くフランジ水冷装置4を使用してフ
ランジ水冷をするか、少なくとも一方の処理を行なうこ
とによってゥェブ波のないH形鋼を製造することができ
る。実施例次の如き代表的な細幅の大形サイズ日形鋼を
製造した。
(2) From the formula, determine the finishing temperatures Tf and Tw of the flange and web so that Wc is 1 or less. Next, in order to achieve the finishing temperatures Tr and Tw, the web is kept warm by using a heat radiation prevention plate 3 as shown in FIG. 3 in the process before finishing rolling, or by installing a flange water cooling device 4 as shown in FIG. H-section steel without web waves can be manufactured by using water cooling at the flange or by performing at least one of these treatments. EXAMPLE A typical narrow large-sized Japanese section steel as shown below was manufactured.

鋼種 SS41 (JISG3101)ウェブ高さ 9
0仇肌 フランジ幅 30仇奴 ウェブ陣 16肋 フランジ厚 28肋 すなわち仕上圧延前のフランジおよびゥェブについて、
ウェブ保温、フランジ水冷あるいは無処理などによりウ
ェブおよびフランジの仕上圧延温度の組合せを種々変更
して仕上圧延を行い、フランジ仕上温度、ウェブ仕上温
度と仕上圧延したH形鋼のウェプ波との関係を第5図に
示した。
Steel type SS41 (JISG3101) Web height 9
0 rib flange width 30 rib web formation 16 rib flange thickness 28 ribs, that is, the flange and web before finish rolling,
Finish rolling was performed with various combinations of web and flange finish rolling temperatures, such as web insulation, flange water cooling, or no treatment. It is shown in Figure 5.

一方この場合のウェブ波評価指数は次の形で具体的に表
示できる。Wc=−1.94−0.0000196△T
f−0.0284ノ△Tw+。
On the other hand, the web wave evaluation index in this case can be specifically expressed in the following form. Wc=-1.94-0.0000196△T
f-0.0284ノΔTw+.

‐221n(Tf−TW)十1‐63n(美)十o‐o
oo383侍2 ‐・‐‐・‐‘31(3’式
においてウェブ波の発生限界Wc=1とすればその限界
にけるフランジおよびウェブの仕上温度を求めることが
できる。第5図にこのWc=1の線を表示したが、この
線より上の部分はWc〉1の範囲であり、この線より下
の部分はWc<1の範囲である。第5図より明らかな如
く、仕上圧延前の工程において、ウェブ保温あるいはフ
ランジ冷却を行い、ウェブ波発生限界内すなわちWc<
1の範囲に仕上温度を調整することによってH形鋼の製
品のウェブ波の発生を防止できる。
-221n (Tf-TW) 11-63n (Beauty) 10o-o
oo383 Samurai 2 -・--・-'31 (In formula 3', if the web wave generation limit Wc = 1, the finishing temperature of the flange and web at that limit can be determined. Figure 5 shows this Wc = 1 line is displayed, the area above this line is in the range of Wc>1, and the area below this line is in the range of Wc<1.As is clear from Fig. 5, the area before finish rolling is In the process, web heat insulation or flange cooling is performed to keep the web within the wave generation limit, that is, Wc<
By adjusting the finishing temperature within the range of 1, it is possible to prevent the occurrence of web waves in H-section steel products.

上記の実施例からも明らかな如く、ゥェブ波評価指数に
よりフランジおよびウェブの仕上温度を求め、ウェブ保
温もしくはフランジ水袷により温度を調整する本発明法
によって、ウェブ波のないH形鋼を製造することができ
た。
As is clear from the above examples, the finishing temperature of the flange and web is determined by the web wave evaluation index, and the temperature is adjusted by web insulation or flange water padding.H section steel without web waves is manufactured by the method of the present invention. I was able to do that.

熱間圧延により製造される鋼矢板の冷却後の反り予測式
も仕上編度、断面寸法の関数として表現が可能であって
、本発明の技術思想を広く適用することができる。
The equation for predicting warpage after cooling of steel sheet piles manufactured by hot rolling can also be expressed as a function of finished knitting degree and cross-sectional size, and the technical idea of the present invention can be widely applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はH形鋼の断面図、第2図はH形鋼の残留応力の
分布を示す断面図、第3図は本発明によるH形鋼のウェ
ブの保温状況を示す断面図、第4図は本発明によるH形
鋼のフランジの水冷状況を示す断面図、第5図はゥェブ
保温、フランジ水冷および無処理の各実施例におけるフ
ランジ仕上温度、ゥェプ仕上温度とH形鋼のゥェブ波発
生との関係を示す相関図である。 1・・・・・・フランジ、2・・・・・・ウェブ、3・
・・・・・放熱防止板、4・・…・フランジ水冷装置。 第1図第2図 第3図 第4図 第5図
FIG. 1 is a cross-sectional view of the H-beam steel, FIG. 2 is a cross-sectional view showing the distribution of residual stress in the H-beam steel, FIG. 3 is a cross-sectional view showing the heat retention status of the web of the H-beam steel according to the present invention, and FIG. The figure is a sectional view showing the state of water cooling of the flange of the H-section steel according to the present invention, and Fig. 5 is the flange finishing temperature, wet finishing temperature, and web wave generation of the H-section steel in each example of web heat insulation, flange water cooling, and no treatment. FIG. 1...Flange, 2...Web, 3.
... Heat radiation prevention plate, 4 ... Flange water cooling device. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 H形鋼の最終仕上圧延前の工程においてウエブ保温
もしくはフランジ水冷を行うウエブ波のないH形鋼の製
造方法において、前記H形鋼のウエブ波の形状不良を評
価するウエブ波評価指数W_cを前記フランジおよびウ
エブの仕上温度および断面寸法の関数とする下記関係式
で表示し、前記関係式より目標とするウエブ波評価指数
となるフランジおよびウエブの仕上温度を求め、この仕
上温度になる如く前記ウエブ保温もしくはフランジ水冷
の少なくとも一方の温度調整を行うことを特徴とするウ
エブ波のないH形鋼の製造方法。 W_c=a_0+a_1・ΔT^n^1_f+a_2・
ΔT^n^2_w+a_3・ln(T_f−T_w)+
a_4・ln((t_f)/(t_w))+a_5・(
(H_w)/(t_w))^2ここでW_c:ウエブ波
評価指数 T_f,T_w:フランジおよびウエブの仕上温度(℃
)t_f,t_w:フランジおよびウエブの厚み(mm
)H_w:ウエブ内幅(mm)T_A_1,T_A_3
:フエライト変態開始および終了温度(℃)ΔT_f:
T_f≧T_A_3のとき0 T_f<T_A_3のときT_A_3−T_fΔT_w
:T_w≧T_A_1のときT_w−T_A_1T_w
<T_A_1のとき0a_0〜a_5,n_1,n_2
:定数
[Scope of Claims] 1. In a method for manufacturing an H-section steel without web corrugation, in which web insulation or flange water cooling is performed in the process before final finishing rolling of the H-section steel, a defective shape of the web corrugation of the H-section steel is evaluated. The web wave evaluation index W_c is expressed by the following relational expression as a function of the finishing temperature and cross-sectional dimension of the flange and web, and the finishing temperature of the flange and web that becomes the target web wave evaluation index is determined from the above relational expression. A method for manufacturing an H-beam steel without web waves, characterized in that the temperature of at least one of the web insulation and flange water cooling is adjusted to reach the finishing temperature. W_c=a_0+a_1・ΔT^n^1_f+a_2・
ΔT^n^2_w+a_3・ln(T_f-T_w)+
a_4・ln((t_f)/(t_w))+a_5・(
(H_w)/(t_w))^2 where W_c: Web wave evaluation index T_f, T_w: Finishing temperature of flange and web (°C
) t_f, t_w: Thickness of flange and web (mm
)H_w: Web inner width (mm) T_A_1, T_A_3
: Ferrite transformation start and end temperature (°C) ΔT_f:
0 when T_f≧T_A_3 T_A_3−T_fΔT_w when T_f<T_A_3
: When T_w≧T_A_1, T_w-T_A_1T_w
<When T_A_1, 0a_0 to a_5, n_1, n_2
:constant
JP19100781A 1981-11-28 1981-11-28 Manufacturing method of H-beam steel without web waves Expired JPS6037856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19100781A JPS6037856B2 (en) 1981-11-28 1981-11-28 Manufacturing method of H-beam steel without web waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19100781A JPS6037856B2 (en) 1981-11-28 1981-11-28 Manufacturing method of H-beam steel without web waves

Publications (2)

Publication Number Publication Date
JPS5893819A JPS5893819A (en) 1983-06-03
JPS6037856B2 true JPS6037856B2 (en) 1985-08-28

Family

ID=16267316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19100781A Expired JPS6037856B2 (en) 1981-11-28 1981-11-28 Manufacturing method of H-beam steel without web waves

Country Status (1)

Country Link
JP (1) JPS6037856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607786B2 (en) * 1991-11-15 1997-05-07 新日本製鐵株式会社 Method for producing thin web H-section steel

Also Published As

Publication number Publication date
JPS5893819A (en) 1983-06-03

Similar Documents

Publication Publication Date Title
JPS6037856B2 (en) Manufacturing method of H-beam steel without web waves
US4768363A (en) Method of levelling two-layered clad metal sheet
CN112296098A (en) Method for improving surface quality of hot-rolled thin strip steel
JP2005153011A (en) Method for predicting metallic sheet shape and method for manufacturing metallic sheet
JPH0217241B2 (en)
JP3591194B2 (en) Operating method of double cold rolling mill for manufacturing ultra-thin steel sheet
JPH0557302A (en) Method and device for manufacturing rolled h-shaped steel
JPS6077927A (en) Manufacture of hot rolled low-carbon steel sheet having superior deep drawability
JPH0756042B2 (en) Method for manufacturing thin web H-section steel
JP2582748B2 (en) Method for manufacturing thin web H-section steel
JPS5833300B2 (en) Manufacturing method of scalene angle shape steel and similar shape steel
JP2607786B2 (en) Method for producing thin web H-section steel
KR100423422B1 (en) Hot Rolling Method for Preparing Taper Bar
JP3283139B2 (en) Flange shape control method for section steel
SU1191232A1 (en) Method of producing bimetallic strips
JP3397967B2 (en) Rolling method for section steel
JPH0813365B2 (en) Method for producing thin web H-section steel
Quy et al. Evaluation of Temperature and Thermal Stress Distributions in a Work Roll Using the Finite-Element Method.(Retroactive Coverage)
JPH06212275A (en) Low iron loss grain-oriented silicon steel sheet and its production
JPS63281701A (en) Manufacture of h-shape steel
JP2004181479A (en) Method and device for manufacturing hot-rolled steel strip
JP2749705B2 (en) Plate shape control method during cold rolling
JP2003275804A (en) Method for manufacturing hot rolled steel strip
Tanikawa et al. Influence of cold rolling with grooved rolls on the texture formation of steel sheets
JPH0234202A (en) Manufacture of hot rolled h-shape steel