JPH06212275A - Low iron loss grain-oriented silicon steel sheet and its production - Google Patents

Low iron loss grain-oriented silicon steel sheet and its production

Info

Publication number
JPH06212275A
JPH06212275A JP5002891A JP289193A JPH06212275A JP H06212275 A JPH06212275 A JP H06212275A JP 5002891 A JP5002891 A JP 5002891A JP 289193 A JP289193 A JP 289193A JP H06212275 A JPH06212275 A JP H06212275A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
grain
regulated
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002891A
Other languages
Japanese (ja)
Other versions
JP2647322B2 (en
Inventor
Yosuke Kurosaki
洋介 黒崎
Kikuji Hirose
喜久司 広瀬
Masahiro Obara
昌弘 小原
Yasunobu Miyazaki
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5002891A priority Critical patent/JP2647322B2/en
Publication of JPH06212275A publication Critical patent/JPH06212275A/en
Application granted granted Critical
Publication of JP2647322B2 publication Critical patent/JP2647322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet holding low iron loss value and good in a space factor after being subjected to stress relief annealing. CONSTITUTION:The low iron loss grain-oriented silicon steel sheet in which the surface layer part of ferrite in a grain-oriented silicon steel sheet coated with a tension-applied insulating film as final product is provided with molten and solidified line parts in which the width is regulated to 50 to 300mum, the depth is regulated to 5 to 35% to the sheet thickness of the steel sheet, the angle is regulated to <=+ or -15 deg. from the right angles to the sheet passing direction and the distance is regulated to 5 to 30mm and excellent in the space factor is produced. Furthermore, the surface of the grain-oriented silicon steel sheet after being subjected to finish annealing or coated with an insulating film and dried after being subjected to finish annealing is irradiated with laser beams to form molten and solidified line parts in which the width is regulated to 50 to 300mum, the depth is regulated to 5 to 35% to the sheet thickness of the steel sheet, the angle is regulated to <=+ or -15 deg. from the right angles to the sheet passing direction and the distance is regulated to 5 to 30mm, and after that, tension-applied insulating film treatment is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主に変圧器その他の電気
機器の鉄心材料として用いられるもので、歪取焼鈍を行
っても磁気特性の劣化がない低鉄損を有する方向性電磁
鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used as an iron core material for transformers and other electric equipment, and has a low iron loss and a magnetic iron sheet having a low iron loss which does not deteriorate the magnetic properties even when strain relief annealing is performed. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】方向性電磁鋼板は変圧器やその他の電気
機器の鉄心として用いられ、磁束密度を高くすることは
勿論であるが、最近の資源、環境問題から派生する省エ
ネルギー化の情勢からも一層の低鉄損化が要請されてい
る。鉄損を改善させるには、よく知られているように、
二次再結晶粒の(110)〔001〕方位の集合組織、
即ち所謂ゴス方位の集積度を高めればよいのであるが、
集積度が高くなるほど結晶粒が大きくなり、その結果、
磁区幅も大きくなって鉄損が劣り、特に渦電流損が増大
することになる。従って、これだけでは相対的に鉄損特
性の向上改善を図ることはそれほど期待できない。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as iron cores for transformers and other electric equipment to increase the magnetic flux density, but also due to the recent trend of energy saving resulting from resource and environmental problems. Further reduction of iron loss is required. To improve iron loss, as is well known,
Texture of (110) [001] orientation of secondary recrystallized grains,
In other words, it is only necessary to increase the so-called Goth orientation integration,
The higher the degree of integration, the larger the crystal grains, and as a result,
The magnetic domain width also increases and iron loss is inferior, and eddy current loss in particular increases. Therefore, this alone cannot be expected to improve the iron loss characteristics relatively.

【0003】そのため、高磁束密度一方向性電磁鋼板の
鉄損を改善するために磁区を細分化する方法が開発さ
れ、多くの提案がされている。例えば特公昭58−59
68号、特公昭57−2252号公報等にあるように鋼
板表面に、ボールペン状の小球により線状微小歪みを罫
書き法で導入する方法或いはレーザーを照射して線状歪
みを導入する方法が開示されている。しかし、これらの
方法による磁区細分化した導入歪みは、その後の歪取焼
鈍処理により効果が消失する問題がある。
Therefore, a method of subdividing magnetic domains has been developed and many proposals have been made in order to improve the iron loss of a high magnetic flux density unidirectional electrical steel sheet. For example, Japanese Patent Publication Sho 58-59
No. 68, Japanese Patent Publication No. 57-2252, etc., a method of introducing a linear minute strain into the surface of a steel sheet by a ball-point pen-shaped small ball by a scoring method or a method of introducing a linear strain by irradiating a laser. Is disclosed. However, the introduced strain obtained by subdividing the magnetic domains by these methods has a problem that the effect disappears by the subsequent strain relief annealing treatment.

【0004】最近では、歪取焼鈍にも耐える熱的にも安
定した鉄損特性を改善する方法として、特公昭62−5
3579号公報では、鋼板に歯形ロールで機械的な歪み
を加え、5μm以上の溝深さを形成し、後の熱処理によ
り微細結晶粒を形成させて磁区細分化する方法がある。
しかし、フォルステライト皮膜を有する鋼板表面に溝形
成するため、歯形ロールの歯先磨耗が早く磨耗につれて
鉄損改善が低下するためロールの取り替えを実施する必
要があり、製造コスト費が増加する課題がある。
Recently, as a method for improving the thermally stable iron loss characteristics that can withstand strain relief annealing, Japanese Patent Publication No. 62-5.
In Japanese Patent No. 3579, there is a method in which mechanical distortion is applied to a steel sheet with a tooth profile roll to form a groove depth of 5 μm or more, and fine crystal grains are formed by a subsequent heat treatment to subdivide magnetic domains.
However, since a groove is formed on the surface of the steel plate having a forsterite film, the tooth tip wear of the tooth profile roll is fast and the iron loss improvement decreases as the wear progresses, so it is necessary to replace the roll, which causes an increase in manufacturing cost. is there.

【0005】また特開平2−50918号公報では、フ
ォルステライト皮膜を有する仕上げ焼鈍済鋼板に曲げ応
力を加えた状態で突起付きロールに巻き付け回して鋼板
表面の皮膜を局所的に除去し、電解エッチングして線状
溝を形成する方法が提案されているが、これも上記の技
術課題の他にエッチング工程が必要となり、コスト費が
更に増加するという課題がある。また、特開昭63−7
6819号公報にあるようにフォルステライトを有する
仕上げ焼鈍済鋼板の表面をレーザー或いはナイフ等の機
械的手段で線状に除去するか、予め局所的にフォルステ
ライト皮膜を生成させないようにしてから電解または化
学エッチングを施して鉄損改善をすることを開示してい
るが、この技術も除去および局所塗布処理工程とエッチ
ング工程が必要であることから、当然コスト費の増加お
よび工程が増えることによる操業管理も複雑になるとい
う課題がある。
Further, in Japanese Patent Application Laid-Open No. 2-50918, a finish-annealed steel sheet having a forsterite coating is wound around a roll having protrusions while bending stress is applied to locally remove the coating on the surface of the steel sheet, and electrolytic etching is performed. A method of forming a linear groove has been proposed, but this also has a problem that an etching step is required in addition to the above-mentioned technical problem and the cost cost further increases. Also, JP-A-63-7
No. 6819, the surface of a finish-annealed steel sheet having forsterite is linearly removed by a mechanical means such as a laser or a knife, or a forsterite film is not formed locally before electrolysis or Although it discloses that iron loss is improved by performing chemical etching, this technology also requires a removal and local coating treatment step and an etching step, which naturally increases the cost and operation management due to the increase in the number of steps. Also has the problem of becoming complicated.

【0006】[0006]

【発明が解決しようとする課題】上記に示した熱的に安
定した鉄損改善の従来技術は、いずれも機械的或いは化
学エッチング処理等により溝を形成する方法であり、鋼
板の一部を欠落するために、占積率の低下を招き変圧器
の性能に影響し不利である。更にロール磨耗および工程
が増えることによる製造コスト費の増加がある。本発明
は、これらの課題を解決するもので、占積率低下を抑え
た歪取焼鈍後でも低鉄損を有する方向性電磁鋼板と低コ
ストで上記鋼板を製造する方法を提供するものである。
The above-mentioned prior arts for improving the thermally stable iron loss are all methods of forming grooves by mechanical or chemical etching treatment, and a part of the steel sheet is missing. As a result, the space factor is lowered, which affects the performance of the transformer, which is disadvantageous. Further, there is an increase in manufacturing cost due to roll wear and additional processes. The present invention solves these problems, and provides a grain-oriented electrical steel sheet having a low iron loss even after stress relief annealing that suppresses a reduction in space factor and a method for producing the steel sheet at low cost. .

【0007】[0007]

【課題を解決するための手段】本発明者らは、仕上げ焼
鈍後或いは絶縁皮膜付きの方向性電磁鋼板の表面に、レ
ーザー光束を通板方向に対しほぼ直角に照射することで
鋼板表層に溶融凝固部を形成させることにより、その後
の歪取焼鈍処理でも低鉄損を有し、かつ鋼板表面に凹み
がなく高占積率で歪取焼鈍後に低鉄損を有する方向性電
磁鋼板が得られることを見つけた。このビード部は異な
った鋼成分、組織になり通板方向のある間隔に存在する
ことにより磁区細分化に影響する静磁エネルギーが増加
し、これを減少するために反転磁区が形成し鉄損の改善
が図られたものと考える。上記溶融凝固部の形成は、レ
ーザー照射法のみに限定するものではなく、他の方法で
も構わないが、鉄損改善に影響するビード幅の関係から
レーザーが好ましい。
Means for Solving the Problems The inventors of the present invention melted a surface layer of a steel sheet by irradiating a surface of a grain-oriented electrical steel sheet after finish annealing or with an insulating film with a laser beam almost at right angles to the sheet direction. By forming a solidified portion, a grain-oriented electrical steel sheet that has low iron loss even in the subsequent stress relief annealing treatment and has no dents on the steel sheet surface and has a low iron loss after strain relief annealing with a high space factor is obtained. I found that. This bead part has different steel composition and structure and exists at a certain interval in the strip running direction, so that the magnetostatic energy that affects the subdivision of the magnetic domain increases, and in order to decrease this, the reversed magnetic domain is formed and the iron loss I think that it has been improved. The formation of the melt-solidified portion is not limited to the laser irradiation method, and other methods may be used, but a laser is preferable from the viewpoint of the bead width that affects the improvement of iron loss.

【0008】本発明の要旨は次の通りである。 1)最終製品の張力付加絶縁皮膜付きの方向性電磁鋼板
の地鉄表層部に、幅50〜300μm、深さが鋼板板厚
の5〜35%で、通板方向に対し直角から±15°以内
で間隔が5〜30mmの溶融凝固線部を有し、占積率が優
れたことを特徴とする低鉄損方向性電磁鋼板。
The gist of the present invention is as follows. 1) The width of 50 to 300 μm, the depth of 5 to 35% of the steel plate thickness, and ± 15 ° from the right angle to the sheet passing direction, on the base iron surface layer portion of the grain-oriented electrical steel sheet with the tension-added insulating film of the final product. A low iron loss grain-oriented electrical steel sheet having a melt solidification line portion with an interval of 5 to 30 mm and having an excellent space factor.

【0009】2)仕上げ焼鈍後或いは仕上げ焼鈍後に絶
縁皮膜を塗布乾燥した方向性電磁鋼板の表面に、レーザ
ー光束を照射して幅50〜300μm、深さが鋼板板厚
の5〜35%で通板方向に対し直角から±15°以内で
間隔が5〜30mmの溶融凝固線部を形成させた後に、張
力付加絶縁皮膜処理を施すことを特徴とする低鉄損方向
性電磁鋼板の製造方法。
2) After finishing annealing or after finishing annealing, the surface of the grain-oriented electrical steel sheet on which an insulating film has been applied and dried is irradiated with a laser beam to have a width of 50 to 300 μm and a depth of 5 to 35% of the thickness of the steel sheet. A method for producing a low iron loss grain-oriented electrical steel sheet, which comprises applying a tension-adding insulating film treatment after forming a melt-solidified wire portion having an interval of 5 to 30 mm within ± 15 ° from a right angle to the sheet direction.

【0010】以下に本発明の詳細について説明する。S
i4%以下を含むスラブを加熱した後に、中間板厚まで
熱間圧延し、必要に応じてこの段階で熱処理を行い、1
回或いは中間焼鈍をはさむ2回の冷間圧延を行って最終
板厚にして、得られた冷間板を脱炭焼鈍し、焼鈍分離剤
を塗布した後に高温長時間の仕上げ焼鈍を施し、(11
0)〔001〕方位の二次再結晶粒を発達させた鋼板或
いは、これに張力付与皮膜等の絶縁皮膜コーティング液
を塗布焼き付けした鋼板にも適用可能である。鋼板の表
面に、高密度のレーザー光束を照射することにより鋼板
表面の一部が熱で溶融凝固し、あたかも溶接のビードの
ような状態ができる。この時の溶融凝固部の深さと幅、
通板方向の間隔等が鉄損改善の効果に影響するのであ
る。
The details of the present invention will be described below. S
After heating the slab containing i4% or less, it is hot-rolled to an intermediate plate thickness and heat-treated at this stage if necessary.
Times or two times of intermediate rolling, including cold rolling, to obtain the final plate thickness, the obtained cold plate is decarburized and annealed, after which an annealing separator is applied and finish annealing is performed for a long time at high temperature. 11
0) It is also applicable to a steel sheet having secondary recrystallized grains in the [001] orientation developed, or a steel sheet obtained by applying and baking an insulating coating solution such as a tension-imparting coating on the steel sheet. By irradiating the surface of the steel sheet with a high-density laser beam, a part of the surface of the steel sheet is melted and solidified by heat, and a state like a bead of welding can be formed. At this time, the depth and width of the molten and solidified part,
The spacing in the sheet passing direction affects the effect of improving iron loss.

【0011】本発明の実施における使用するレーザー装
置の種類およびレーザーの発振状態については何ら限定
されるものではなく、例えばレーザー照射の光束の絞り
可能な市販のYAG,Ar,CO2 等のレーザー装置が
使用できまた連続発振、パルス発振のいずれでもよい。
なお、パルス発振の場合には、溶接ビードのように連続
溶融凝固部を形成さすために、レーザー出力および周波
数およびレーザー走査速度を選択組み合わせにより可能
となる。また照射時はアルゴン吹き付けを実施するもの
である。
The type of laser device used in the practice of the present invention and the lasing state of the laser are not limited in any way. For example, commercially available laser devices such as YAG, Ar, and CO 2 capable of narrowing the luminous flux of laser irradiation. Can be used, and either continuous oscillation or pulse oscillation can be used.
In the case of pulse oscillation, in order to form a continuous melt-solidified portion like a weld bead, it is possible to selectively combine the laser output, frequency and laser scanning speed. Argon is sprayed during irradiation.

【0012】図1は、CO2 レーザーで発振出力400
W、走査速度40cm/sにて照射した後の断面写真の模式
図を示すもので、この溶融凝固部の幅は250μmで、
深さは鋼板板厚の20%程度である。鋼板表層部に明ら
かに溶融凝固部が認められ、当然であるが凹みがないこ
とから、従来技術の公報等のように凹みを形成した鋼板
よりも、占積率の低下がないことは明らかで変圧器の小
型化および特性に対し優位である。また、凹み形成がな
いことから曲率半径の小さな曲げ加工に対してもノッチ
効果がないことからも有利な点である。
FIG. 1 shows an oscillation output 400 of a CO 2 laser.
A schematic view of a cross-sectional photograph after irradiation with W at a scanning speed of 40 cm / s is shown. The width of the melt-solidified portion is 250 μm,
The depth is about 20% of the steel plate thickness. A melt-solidified portion is clearly observed in the steel sheet surface layer, and of course, there is no dent, so it is clear that the space factor does not decrease as compared with the steel sheet having a dent as in the prior art publication. It is superior to miniaturization and characteristics of transformers. In addition, since there is no depression, there is no notch effect even for bending work with a small radius of curvature, which is an advantage.

【0013】図2には、本発明の処理工程における鉄損
の推移を示したが、レーザー照射により形成した溶融凝
固線部による熱歪みの影響で一旦著しく悪化するが、そ
の後の張力付加絶縁皮膜処理により歪みが解放され、異
なった鋼成分、組織の溶融凝固部の存在で素材よりも鉄
損を改善することが可能となる。
FIG. 2 shows the transition of iron loss in the treatment process of the present invention. Although it is remarkably deteriorated once by the influence of thermal strain due to the melt solidification line portion formed by laser irradiation, the tension-added insulating film thereafter. The strain is released by the treatment, and it becomes possible to improve the iron loss more than the material by the presence of different steel components and the melt-solidified portion of the structure.

【0014】ところで、レーザー照射の通板方向に対し
直角からの角度は、±15°の範囲内であるなら鉄損の
改善代が大きく好ましい。これ以上の角度の場合でも、
改善効果はあるが小さくなる傾向にあり不利である。通
板方向の溶融凝固線部の間隔は、5〜30mmにした理由
は、鉄損改善が最も大きいためで、5mm未満を除外した
のは、鉄損の改善効果代はあるが極端な効果が得られな
いためである。30mmを超えると、改善効果が減少傾向
にある。
By the way, if the angle of the laser irradiation from the right angle with respect to the plate passing direction is within a range of ± 15 °, it is preferable because the iron loss improvement margin is large. Even if the angle is larger than this,
There is an improvement effect, but it tends to become smaller, which is disadvantageous. The reason why the interval between the melted and solidified line portions in the sheet passing direction is 5 to 30 mm is that the improvement in iron loss is the largest, and the reason for excluding less than 5 mm is that there is a margin for improving iron loss, but there is an extreme effect. This is because it cannot be obtained. If it exceeds 30 mm, the improvement effect tends to decrease.

【0015】また溶融凝固線部の幅は50〜300μm
の範囲が適正である。その理由は300μmを超えると
磁束密度の低下が大きい。また50μm未満の場合は改
善効果があるが低減効果が小さくなる傾向になる。更に
溶融凝固部の適正深さは板厚に対し5〜35%の範囲で
ある。5%未満では鉄損改善が小さい。また35%を超
えると板厚方向の溶融ビード部の占有が高くなることで
磁束の流れに影響し磁束密度の低下が大きくなる。
Further, the width of the melted and solidified line portion is 50 to 300 μm.
The range is appropriate. The reason is that if it exceeds 300 μm, the decrease in magnetic flux density is large. On the other hand, when it is less than 50 μm, there is an improvement effect but the reduction effect tends to be small. Further, the appropriate depth of the melt-solidified portion is in the range of 5 to 35% with respect to the plate thickness. If it is less than 5%, the improvement in iron loss is small. On the other hand, if it exceeds 35%, the occupancy of the molten bead portion in the plate thickness direction becomes high, which affects the flow of the magnetic flux and causes a large decrease in the magnetic flux density.

【0016】このレーザー照射による溶融部は皮膜成分
も巻き込み溶融することから、当然高温仕上げ焼鈍済鋼
板の場合は、通常の無機系の張力付加用の絶縁皮膜処理
を施せば何ら問題はないし、絶縁皮膜付きの場合も、再
度張力付加用の絶縁皮膜を薄く塗布乾燥処理すれば、溶
融凝固部が隠蔽され何ら絶縁性、耐電圧を低下させるこ
となく鉄損を維持するものである。このようにレーザー
照射による溶融凝固部の効果は、上記の張力付加用絶縁
皮膜を、板温800〜850℃で焼き付け加熱処理が行
われ、この処理と同時に平坦化処理も行われ、図2に示
すように溶融凝固部の歪みが消失して鉄損が改善され
る。
Since the film components are also entrained and melted in the melted portion due to the laser irradiation, naturally there is no problem in the case of a high-temperature finish-annealed steel sheet, if the usual inorganic insulating film treatment for tension application is performed. Even in the case of coating, if the insulating coating for tension application is thinly applied and dried again, the melted and solidified portion is hidden and the iron loss is maintained without lowering the insulating property and the withstand voltage. As described above, the effect of the melting and solidifying portion by laser irradiation is that the above-mentioned tension applying insulating film is baked and heated at a plate temperature of 800 to 850 ° C., and a flattening process is also performed at the same time. As shown, the strain in the melt-solidified portion disappears and the iron loss is improved.

【0017】[0017]

【実施例】【Example】

実施例1 板厚0.23mmの仕上げ焼鈍済の鋼板にNd−YAGレ
ーザーにて、平均出力50W、周波数30kHz にて通板
方向に対し直角から5°で間隔5mmにて照射した。照射
後の溶融凝固部の幅は100μmで、深さは鋼板板厚の
13%であった。比較のため同一材料から処理を実施し
ないものを準備した。これらの材料に燐酸アルミニウ
ム、クロム酸等を主成分とする張力付加用絶縁皮膜を塗
布し、800℃,60秒の焼き付け加熱処理をし、その
後850℃,2時間の歪取焼鈍をした。その磁気特性お
よび占積率は表1に示す。尚、同一条件で製造した従来
例の占積率は、97.3%である。
Example 1 A 0.23 mm-thick finish-annealed steel sheet was irradiated with an Nd-YAG laser at an average output of 50 W and a frequency of 30 kHz at a distance of 5 mm from a right angle of 5 ° with respect to the sheet passing direction. The width of the melt-solidified portion after irradiation was 100 μm, and the depth was 13% of the steel plate thickness. For comparison, the same material without treatment was prepared. An insulating film for tension application containing aluminum phosphate, chromic acid or the like as a main component was applied to these materials, heat treatment was performed at 800 ° C. for 60 seconds, and then strain relief annealing was performed at 850 ° C. for 2 hours. Its magnetic properties and space factor are shown in Table 1. The space factor of the conventional example manufactured under the same conditions is 97.3%.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、レーザー照射し溶融凝固部を形
成した実施例は、比較例に比べ鉄損特性は明らかに改善
された。また占積率は従来例によるものより良好で何ら
比較例と同等で低下がない。
From Table 1, it is apparent that the iron loss characteristics of the examples in which the melt-solidified portion was formed by laser irradiation were improved as compared with the comparative examples. Moreover, the space factor is better than that of the conventional example and is equal to that of the comparative example without any decrease.

【0020】実施例2 仕上げ焼鈍後に張力効果のある絶縁皮膜を片面当たり4
g/m2 になるように塗布乾燥した板厚0.23mmの材
料(素材特性:W13/50 (W/kg)0.47、W
17/50 (W/kg)0.87、B8 (T)1.940)に、
CO2 レーザーを出力600Wの連続発振で、その照射
は通板方向に対し直角から0°で7mm間隔で照射した。
形成された溶融凝固部の深さは板厚の20%で、幅は2
00μmであった。その後、張力付加用絶縁皮膜コーテ
ィングを片面当たり1g/m2 になるように800℃,
60秒にて焼き付けした後、850℃,2時間の歪取焼
鈍をした。また、比較のため同一材料からレーザー照射
処理をしないで同じ処理工程を通したものを準備した。
Example 2 After finishing annealing, an insulating film having a tension effect was applied to each side by 4
Material with a plate thickness of 0.23 mm, coated and dried to achieve g / m 2 (material characteristics: W 13/50 (W / kg) 0.47, W
17/50 (W / kg) 0.87, B 8 (T) 1.940)
A CO 2 laser was continuously oscillated with an output of 600 W, and the irradiation was performed at an angle of 0 ° from a right angle to the sheet passing direction at 7 mm intervals.
The depth of the formed melt-solidified portion is 20% of the plate thickness, and the width is 2
It was 00 μm. After that, apply an insulating film coating for tensioning at 800 ° C. so that 1 g / m 2 is applied to one side.
After baking for 60 seconds, strain relief annealing was performed at 850 ° C. for 2 hours. For comparison, the same material was prepared without going through the laser irradiation process and passing through the same processing steps.

【0021】これらの磁気特性および占積率は表2に示
す。尚、同一条件で製造した従来例の占積率は97.1
%である。
Table 2 shows the magnetic characteristics and the space factor. The space factor of the conventional example manufactured under the same conditions is 97.1.
%.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように本発明の溶融凝固
部を形成した本発明例は明らかに鉄損特性が良好で、占
積率も従来例より良好である。
As is clear from Table 2, the examples of the present invention in which the melt-solidified portion of the present invention is formed clearly have good iron loss characteristics, and the space factor is also better than that of the conventional example.

【0024】[0024]

【発明の効果】本発明によれば、歪取焼鈍処理を実施し
ても、磁区制御効果を維持し鉄損が良好で、かつ占積率
の低下もなく低鉄損の方向性電磁鋼板を提供でき、トラ
ンスの小型化に寄与できる。またレーザー処理のみの工
程の付加なので高生産性、低コストで上記鋼板を製造す
ることができる。
According to the present invention, a grain-oriented electrical steel sheet having a low iron loss, which maintains a magnetic domain control effect, has a good iron loss, and has a low space factor even when a stress relief annealing treatment is performed, is obtained. It can be provided and can contribute to the miniaturization of the transformer. Further, since the step of only laser processing is added, the above steel sheet can be manufactured with high productivity and low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザー照射による鋼板断面の溶融凝固組織を
示した写真の模式図である。
FIG. 1 is a schematic view of a photograph showing a melting and solidifying structure of a steel plate cross section by laser irradiation.

【図2】本発明の処理工程の鉄損の推移を示すグラフで
ある。
FIG. 2 is a graph showing changes in iron loss in the treatment process of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 康信 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunobu Miyazaki 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technical Development Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 最終製品の張力付加絶縁皮膜付きの方向
性電磁鋼板の地鉄表層部に、幅50〜300μm、深さ
が鋼板板厚の5〜35%で、通板方向に対し直角から±
15°以内で間隔が5〜30mmの溶融凝固線部を有し占
積率が優れたことを特徴とする低鉄損方向性電磁鋼板。
Claims: 1. The width of 50 to 300 μm, the depth of 5 to 35% of the steel plate thickness, and the right angle to the sheet passing direction, on the surface layer of the base iron of the grain-oriented electrical steel sheet with the tension-added insulating film of the final product. ±
A low iron loss grain-oriented electrical steel sheet having a melt solidification line portion with an interval of 15 ° or less and a space of 5 to 30 mm and having an excellent space factor.
【請求項2】 仕上げ焼鈍後或いは仕上げ焼鈍後に絶縁
皮膜を塗布乾燥した方向性電磁鋼板の表面に、レーザー
光束を照射して幅50〜300μm、深さが鋼板板厚の
5〜35%で通板方向に対し直角から±15°以内で間
隔が5〜30mmの溶融凝固線部を形成させた後に、張力
付加絶縁皮膜処理を施すことを特徴とする低鉄損方向性
電磁鋼板の製造方法。
2. The surface of a grain-oriented electrical steel sheet, to which an insulating film has been applied and dried after finish annealing or after finish annealing, is irradiated with a laser beam to have a width of 50 to 300 μm and a depth of 5 to 35% of the steel sheet thickness. A method for producing a low iron loss grain-oriented electrical steel sheet, which comprises applying a tension-adding insulating film treatment after forming a melt-solidified wire portion having an interval of 5 to 30 mm within ± 15 ° from a right angle to the sheet direction.
JP5002891A 1993-01-11 1993-01-11 Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same Expired - Lifetime JP2647322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002891A JP2647322B2 (en) 1993-01-11 1993-01-11 Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002891A JP2647322B2 (en) 1993-01-11 1993-01-11 Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06212275A true JPH06212275A (en) 1994-08-02
JP2647322B2 JP2647322B2 (en) 1997-08-27

Family

ID=11541988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002891A Expired - Lifetime JP2647322B2 (en) 1993-01-11 1993-01-11 Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2647322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367140A1 (en) * 2002-05-31 2003-12-03 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI305548B (en) 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367140A1 (en) * 2002-05-31 2003-12-03 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
US7045025B2 (en) 2002-05-31 2006-05-16 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2647322B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JP7245285B2 (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
KR900007448B1 (en) Method for producing a grain oriented electrical steel sheet having a low watt-loss
JP5229432B1 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
KR101659350B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP2019508578A (en) Oriented electrical steel sheet and manufacturing method thereof
RU2748773C1 (en) Electrical steel sheet with oriented grain structure and its production method
WO2022045264A1 (en) Oriented electromagnetic steel sheet manufacturing method
JP5928607B2 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JP4116702B2 (en) Method for producing grain-oriented electrical steel sheet
KR102428854B1 (en) Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JPS6344804B2 (en)
JP2647322B2 (en) Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPH10183251A (en) Production of low core loss grain oriented silicon steel sheet
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JP7538126B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
WO2024096082A9 (en) Grain-oriented electromagnetic steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH0250918A (en) Production of grain-oriented electrical steel sheet having small iron loss
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH1017931A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 16