JPS63281701A - Manufacture of h-shape steel - Google Patents

Manufacture of h-shape steel

Info

Publication number
JPS63281701A
JPS63281701A JP11586787A JP11586787A JPS63281701A JP S63281701 A JPS63281701 A JP S63281701A JP 11586787 A JP11586787 A JP 11586787A JP 11586787 A JP11586787 A JP 11586787A JP S63281701 A JPS63281701 A JP S63281701A
Authority
JP
Japan
Prior art keywords
web
flange
rolling
generated
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11586787A
Other languages
Japanese (ja)
Other versions
JPH0832329B2 (en
Inventor
Atsushi Hatanaka
淳 畠中
Kazuo Omori
大森 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62115867A priority Critical patent/JPH0832329B2/en
Publication of JPS63281701A publication Critical patent/JPS63281701A/en
Publication of JPH0832329B2 publication Critical patent/JPH0832329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an H-shape steel having no web wave by an on-line production by increasing a flange draft amount of a finishing universal mill when web waves are generated on the H-shape steel in the final pass stage. CONSTITUTION:When web waves are generated on an H-shape steel in the final pass stage of a finishing rolling, a draft amount of a finishing mill for a flange is increased. By that additional draft, the flange is given a rolling strain corresponding to a thermal strain amount at the limit stress for web waves generated by a temp. difference between a web and a flange to prevent generation of web waves. Hence, the producible size range of products is extended.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、H形鋼の製造方法に係り、特に残留応力によ
って発生するウェブ波を防止するH形鋼の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an H-section steel, and particularly to a method for manufacturing an H-section steel that prevents web waves caused by residual stress.

〈従来の技術およびその間8点〉 H形鋼の断面形状は、一般に第4図に示すようにフラン
ジ1の厚さがウェブ2の厚さよりも厚くなっているため
、圧延過程でウェブ2の冷却速度がフランジ1に比較し
て速くなり、しかもデスケーリング水等がウェブ2上に
溜まって冷却を早めるから、仕上圧延終了時にはフラン
ジ温度がウェブ温度よりも200°C以上も高(なる場
合がある。
<Prior art and 8 points in between> The cross-sectional shape of H-beam steel is generally such that the thickness of the flange 1 is thicker than the thickness of the web 2 as shown in Fig. 4, so the cooling of the web 2 during the rolling process is difficult. The speed is faster than that of flange 1, and descaling water, etc. accumulates on web 2 and accelerates cooling, so the flange temperature may be 200°C or more higher than the web temperature at the end of finish rolling. .

この圧延終了時のフランジ1とウェブ2の仕上温度条件
および圧延後のフランジ1とウェブ2の冷却速度差のた
め室温まで冷却された状態においては、フランジ1がウ
ェブ2に比べて相対的に短くなり、第5図に示すように
フランジ1に引張り、ウェブ2に圧縮の長手方向残留応
力が発生する。
Due to the finishing temperature conditions of flange 1 and web 2 at the end of rolling and the difference in cooling rate between flange 1 and web 2 after rolling, flange 1 is relatively shorter than web 2 when cooled to room temperature. As a result, as shown in FIG. 5, tensile residual stress is generated in the flange 1 and compressive longitudinal residual stress is generated in the web 2.

そうして、ウェブ2の圧縮残留応力が臨界座屈応力を超
えると、ウェブ2にウェブ波が発生し形状不良となる。
Then, when the compressive residual stress of the web 2 exceeds the critical buckling stress, web waves are generated in the web 2 and the shape becomes defective.

この残留応力を軽減させる方法としては、例えば特公昭
41−20336号公報や特開昭56−152928号
公報、特開昭58−93819号公報などに仕上圧延機
出口にフランジ冷却手段やウェブ加熱手段を設けるもの
が多数提案されている。
As a method for reducing this residual stress, for example, Japanese Patent Publication No. 41-20336, Japanese Patent Application Laid-Open No. 56-152928, and Japanese Patent Application Laid-open No. 58-93819 disclose a flange cooling means or a web heating means at the exit of a finishing rolling mill. Many proposals have been made to provide a.

しかしながら、このようなフランジ冷却手段やウェブ加
熱手段を既設ラインに配設するには、スペースやレイア
ウトあるいは温度条件等により制約されるから、製品の
製造サイズが限定されることになる。
However, installing such a flange cooling means and web heating means on an existing line is restricted by space, layout, temperature conditions, etc., which limits the manufacturing size of the product.

本発明は、上記の事情に鑑みなされたものであって、設
備の増設を伴わないでオンラインでウェブ波のないH形
鋼を製造するのに好適な方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method suitable for manufacturing an H-beam steel without web waves online without adding equipment.

く問題点を解決するための手段〉 本発明は、H形鋼の仕上圧延の最終パス工程において、
H形鋼にウェブ波が発生した際、仕上ユニバーサル圧延
機のフランジの圧下量を増加して、ウェブ波の発生を防
止することにより、上記目的を達成するものである。
Means for Solving the Problems> The present invention provides a method for solving the problems in the final pass process of finish rolling of H-section steel.
The above object is achieved by increasing the amount of reduction of the flange of the finishing universal rolling mill when web waves occur in the H-section steel to prevent the occurrence of web waves.

く作 用〉 本発明者らは、H形鋼の残留応力の軽減について種々検
討した結果、この残留応力は圧延中のウェブ温度とフラ
ンジ温度との差によって発生する熱歪によって支配され
るのであるが、この圧延中の熱歪は、圧下スケジュール
によって圧延歪を発生させることにより減少させること
が可能であることを見出し、この知見に基づいて本発明
を完成させるに至ったのである。
As a result of various studies on reducing the residual stress of H-section steel, the present inventors found that this residual stress is controlled by thermal strain generated by the difference between the web temperature and flange temperature during rolling. However, it was discovered that this thermal strain during rolling can be reduced by generating rolling strain by changing the rolling schedule, and based on this knowledge, the present invention was completed.

すなわち、H形鋼を圧延中に残留応力によってウェブ波
が発生した場合、もしくはウェブ波の発生しゃすいウェ
ブ厚の薄いH形鋼を圧延する場合には、圧延中の熱歪を
計算して求め、それに応じて圧下スケジュールを制御す
ることによって、H形鋼の残留応力を減少させることが
可能である。
In other words, when web waves are generated due to residual stress during rolling of H-section steel, or when rolling H-section steel with a thin web that is less likely to generate web waves, thermal strain during rolling can be calculated and determined. , it is possible to reduce the residual stress in the H-section steel by controlling the rolling schedule accordingly.

H形鋼の残留応力の大きさは、その断面寸法や仕上温度
によって゛決まる0例えば、前出の特開昭58−938
19号公報に記載されているような下記(1)式を用い
て決定すればよい。
The magnitude of residual stress in H-shaped steel is determined by its cross-sectional dimensions and finishing temperature.
It may be determined using the following formula (1) as described in Publication No. 19.

We−aa+a+・ΔTf”+az’ΔTw” + a
、 ・i n(Tf −ここで、 讐C:ウエブ波評価指数 Tf、Tw:フランジおよびウェブの仕上温度(C)t
Ltw:フランジおよびウェブの厚み(IIIIIl)
H−:ウエブ内II(n+a+) ao〜as+ n++ nz ’定数 TAI r Ta2 ’フェライト変態開始および終了
温度(”C) この残留応力の殆どが仕上圧延前の熱歪であるから、仕
上圧延機・においてウェブ波が発生した場合、第2図に
示すように残留応力分布曲vAAがウェブ波限界応力B
を超えることになる。そこでウェブ2の圧下量はそのま
まとし、フランジ1に強圧下を加えると残留応力分布は
曲線Cで示すようにウェブ波限界応力以下となってウェ
ブ波が発生しない、したがって、仕上圧延機に与えるフ
ランジ1の圧下量をウェブ波の発生したときのフランジ
圧下量より大きくして、熱歪相当の圧延歪を発生させる
ことにより、残留応力は減少する。
We-aa+a+・ΔTf"+az'ΔTw"+a
, ・in(Tf - where, ηC: Web wave evaluation index Tf, Tw: Finishing temperature of flange and web (C)t
Ltw: Thickness of flange and web (IIIIIIl)
H-: Inside the web II (n+a+) ao~as+ n++ nz 'Constant TAI r Ta2' Ferrite transformation start and end temperature (''C) Since most of this residual stress is thermal strain before finish rolling, finishing rolling mill When a web wave is generated at , the residual stress distribution curve vAA becomes the web wave limit stress B as shown in
It will exceed. Therefore, if the amount of reduction of web 2 remains unchanged and a strong reduction is applied to flange 1, the residual stress distribution becomes below the web wave limit stress as shown by curve C, and no web waves are generated. Residual stress is reduced by making the amount of reduction in step 1 larger than the amount of flange reduction when web waves are generated to generate rolling strain equivalent to thermal strain.

〈実施例〉 以下に、本発明の実施例について第1図に基づいて説明
する。第1図は、本発明方法の手順を示す流れ図である
<Example> Below, an example of the present invention will be described based on FIG. 1. FIG. 1 is a flowchart showing the steps of the method of the present invention.

■ H形鋼の断面寸法(ウェブ厚みt!1.フランジ厚
みtf、  ウェブ内幅)1w)とウェブおよびフラン
ジの仕上予想温度θ賀、θfを与えて、前記(1)式を
用いてウェブに発生する残留応力σ賀を求める。
■ Given the cross-sectional dimensions of the H-section steel (web thickness t!1, flange thickness tf, web inner width 1w) and the expected finishing temperatures θ, θf of the web and flange, calculate the web using equation (1) above. Find the generated residual stress σ.

■ 次に、この残留応力σ−から熱歪ε−を求める。こ
の際、仕上圧延機は本来成形を主目的とするからその圧
下量は微小であり、ウェブ厚みtwを用いて下記(2)
式によって熱歪に換算しても大きな問題はない。
(2) Next, calculate the thermal strain ε- from this residual stress σ-. At this time, since the finishing rolling mill is originally intended for forming, the amount of reduction is minute, and the following (2) is applied using the web thickness tw.
There is no major problem even if it is converted into thermal strain using the formula.

8w = σw / tw  ・・・・・・・・・・・
・・−・・・−・・・・−・・−・−・−・・・−・・
−・・・・・・・−・・・・−・(2)■ この熱歪ε
−に相当するフランジ圧下量を算出する。この際、圧延
歪ε゛wζε−として、フランジの付加圧下量Δtrを
下記(3)式により求める。
8w = σw / tw・・・・・・・・・・・・
・・−・・・−・・−・・−・−・−・・・−・・
−・・・・・・・・・−・・・・−・(2) ■ This thermal strain ε
Calculate the flange reduction amount corresponding to -. At this time, the additional reduction amount Δtr of the flange is determined by the following equation (3), where the rolling strain ε゛wζε− is used.

Δtf=(1−1/(1+gw))xαxtf  −=
−−−−(3)ここで、α:修正係数(〉l) ■ 前記(3)で求めた付加圧下量Δtfを、最終パス
の仕上圧下量Δtoに加算して修正圧下量へtsを求め
る。
Δtf=(1-1/(1+gw))xαxtf −=
----(3) Here, α: correction coefficient (〉l) ■ Add the additional reduction amount Δtf obtained in the above (3) to the finishing reduction amount Δto of the final pass to obtain ts to the corrected reduction amount. .

Δts = Δto + A t f  −・・・−・
−・・−一−−・−・・・・・・・・・−・−−m−・
・・・・・・−・・−・−(4)■ この修正圧下量Δ
tsを圧下スケジュールに取り込むことによって、H形
鋼に強圧下圧延を施す。
Δts = Δto + Atf −・・・−・
−・・−1−−・−・・・・・・・・・−・−−m−・
・・・・・・−・・−・−(4) ■ This corrected reduction amount Δ
By incorporating ts into the rolling schedule, the H-section steel is subjected to heavy rolling.

つぎに、本発明をH形鋼寸法:ウェブ幅300 mm×
フランジ高さ150m+aで、ウェブ厚みtn/フラン
ジ厚みtf : 1/2、またウェブ仕上予想温度θ−
ニア00°Cの場合に適用した例について第3図に基づ
いて説明する。
Next, the present invention was developed using H-beam steel dimensions: web width 300 mm x
When the flange height is 150 m+a, the web thickness tn/flange thickness tf: 1/2, and the expected web finishing temperature θ-
An example applied to the case of near 00°C will be explained based on FIG. 3.

第3図において、このH形鋼のウェブ波発生限界は一1
0kgf/am”であるが、フランジを強圧下しない従
来例における通常のウェブとフランジの温度差Δθが1
00℃の場合には、残留応力が−16kg f/III
IIltとなるからウェブ波が発生する。また、このと
きのウェブに発生する熱歪は−7,5Xl0−’である
In Figure 3, the web wave generation limit of this H-beam is 11.
0kgf/am", but in the conventional example where the flange is not strongly compressed, the temperature difference Δθ between the normal web and the flange is 1
At 00℃, the residual stress is -16kg f/III
Since it becomes IIlt, a web wave is generated. Further, the thermal strain generated in the web at this time is -7.5Xl0-'.

これに対して、本発明の付加圧下量を通用してウェブ波
を発生させないためには、ウェブとフランジの温度差1
00°Cで発生するウェブ波限界応力(−10kgf/
am” )での熱歪量4.OX 10−’に相当する圧
延歪を与えてやればよいことになる。
On the other hand, in order to prevent web waves from occurring through the additional reduction of the present invention, the temperature difference between the web and the flange must be 1
Web wave critical stress generated at 00°C (-10kgf/
It is sufficient to apply a rolling strain corresponding to the amount of thermal strain 4.OX 10-'

このときの仕上圧延機に付加する圧下率ΔRtfを換算
すると、 ΔRtf−(1−(1+4.0X10−’)−’) X
α・−・・・(5)ここで、α:修正係数(〉l) となるので、この値以上の圧下量を付加することにより
ウェブに発生している歪を軽減さセることができるから
、ウェブ波の発生を防止することが可能である。
When converting the rolling reduction rate ΔRtf applied to the finishing rolling mill at this time, ΔRtf-(1-(1+4.0X10-')-') X
α・−・・・(5) Here, α is the correction coefficient (〉l), so by adding a reduction amount greater than this value, the distortion occurring in the web can be reduced. Therefore, it is possible to prevent the generation of web waves.

なお、この実施例においては、上記のような付加圧下量
は仕上ユニバーサル圧延機の最終パスで与えるようにし
ているが、スペース的に許されるならば仕上圧延完了後
において単独に圧下を付加する設備を配設するようにし
てもよい。
In this example, the above-mentioned additional reduction amount is applied in the final pass of the finishing universal rolling mill, but if space permits, it is possible to use equipment that applies the reduction independently after the completion of finishing rolling. may be arranged.

また、この付加圧下量を与えるタイミングを例えばフラ
ンジ水冷との組合せによって変態点近くで行うようにす
れば、修正係数を1に近づけることができるので効率的
である。
Further, if the timing of applying this additional reduction amount is performed near the transformation point, for example, in combination with flange water cooling, the correction coefficient can be brought close to 1, which is efficient.

〈発明の効果〉 以上説明したように、本発明によれば、ウェブに発生す
る熱歪に相当する圧延歪をフランジに付加するようにし
たので、次のような効果を奏するものである。
<Effects of the Invention> As explained above, according to the present invention, since rolling strain corresponding to the thermal strain generated in the web is applied to the flange, the following effects are achieved.

■ 製品の製造可能サイズの範囲を拡大することが可能
である。
■ It is possible to expand the range of sizes that can be manufactured.

■ 既設ラインの改造等を要しないから、スペース等の
問題を解消することができる。
■ Since there is no need to modify the existing line, problems such as space can be solved.

■ 本発明方法をウェブ加熱やフランジ冷却と組合わせ
ることにより、大幅なウェブの薄肉化の達成が可能でム
る。
(2) By combining the method of the present invention with web heating and flange cooling, it is possible to significantly reduce the thickness of the web.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の平頭を示す流れ図、第2図は、
フランジ強圧下時の残留応力の分布を示す断面図、第3
図は、ウェブとフランジの温度差と残留応力、圧延歪の
関係を示す特性図、第4図は、H形鋼の断面図、第5図
は、H形鋼に発生する残留応力の分布を示す断面図であ
る。 1・・・フランジ、2・・・ウェブ。 A・・・残留応力分布曲線。 B・・・ウェブ波限界応力線。 C・・・強圧下時の残留応力分布曲線 第3図 (xlσ4) ウェブと7ランジの温度差へ〇(℃) 第  2  図 第  5  図
FIG. 1 is a flowchart showing the flat head of the method of the present invention, and FIG.
Cross-sectional diagram showing the distribution of residual stress during strong flange compression, Part 3
The figure is a characteristic diagram showing the relationship between the temperature difference between the web and the flange, residual stress, and rolling strain. Figure 4 is a cross-sectional view of the H-section steel. Figure 5 shows the distribution of residual stress occurring in the H-section steel. FIG. 1...Flange, 2...Web. A...Residual stress distribution curve. B... Web wave critical stress line. C... Residual stress distribution curve under strong pressure Figure 3 (xlσ4) Temperature difference between web and 7 langes 〇 (℃) Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] H形鋼の仕上圧延の最終パス工程において、H形鋼にウ
ェブ波が発生した際、仕上ユニバーサル圧延機のフラン
ジの圧下量を増加して、ウェブ波の発生を防止すること
を特徴とするH形鋼の製造方法。
In the final pass process of finish rolling of the H-section steel, when web waves are generated in the H-section steel, the rolling amount of the flange of the finishing universal rolling mill is increased to prevent the generation of web waves. Method of manufacturing section steel.
JP62115867A 1987-05-14 1987-05-14 Method for manufacturing H-section steel Expired - Lifetime JPH0832329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115867A JPH0832329B2 (en) 1987-05-14 1987-05-14 Method for manufacturing H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115867A JPH0832329B2 (en) 1987-05-14 1987-05-14 Method for manufacturing H-section steel

Publications (2)

Publication Number Publication Date
JPS63281701A true JPS63281701A (en) 1988-11-18
JPH0832329B2 JPH0832329B2 (en) 1996-03-29

Family

ID=14673118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115867A Expired - Lifetime JPH0832329B2 (en) 1987-05-14 1987-05-14 Method for manufacturing H-section steel

Country Status (1)

Country Link
JP (1) JPH0832329B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558317A (en) * 1978-07-03 1980-01-21 Nippon Steel Corp Residual stress reducing method of h-beam
JPS57168701A (en) * 1981-04-08 1982-10-18 Kawasaki Steel Corp Deciding method for web waving in rolling of h-steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558317A (en) * 1978-07-03 1980-01-21 Nippon Steel Corp Residual stress reducing method of h-beam
JPS57168701A (en) * 1981-04-08 1982-10-18 Kawasaki Steel Corp Deciding method for web waving in rolling of h-steel

Also Published As

Publication number Publication date
JPH0832329B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH09143650A (en) Production of alpha plus beta titanium alloy material reduced in intraplane anisotropy
JPH0284210A (en) Method and device for setting in rolling mill
JPS63281701A (en) Manufacture of h-shape steel
JP2018047483A (en) Shape control method of metal strip and shape control device
JP2004283888A (en) Steel sheet having small variation of yield stress and residual stress and method for manufacturing the same
JPH07268456A (en) Production of steel plate with extra thin scale
JP2005125351A (en) Steel plate producing line and steel plate producing method
JPH01205028A (en) Production of thin-web h-shaped steel
JP2020157364A (en) Manufacturing method for h section steel
JPH0417622A (en) Manufacture of h-beam with thin web
JPH0557302A (en) Method and device for manufacturing rolled h-shaped steel
JP2582748B2 (en) Method for manufacturing thin web H-section steel
JPH0938702A (en) Production of thin web wide flange shape
SU829223A1 (en) Method of producing cold-rolled brass band
JP2000080417A (en) Manufacture of hot rolled austenitic stainless steel strip
JPS63140703A (en) Production of extremely thin web h section steel
JPS6077927A (en) Manufacture of hot rolled low-carbon steel sheet having superior deep drawability
JP2916619B1 (en) Superplastic processing of stainless steel and method of manufacturing stainless steel for superplastic processing
JP2000084612A (en) Controlled cooling method for hot rolled steel plate
JPS5833300B2 (en) Manufacturing method of scalene angle shape steel and similar shape steel
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio
JPS5893820A (en) Production of h-shaped steel with less residual stress
JPS62161402A (en) Method for decreasing residual stress in web of wide flange beam
JPS62109929A (en) Manufacture of hot rolled high carbon steel sheet having superior cold rollability
SU1238821A1 (en) Method of rolling