JPS6037616B2 - X-ray lithography equipment - Google Patents
X-ray lithography equipmentInfo
- Publication number
- JPS6037616B2 JPS6037616B2 JP55006377A JP637780A JPS6037616B2 JP S6037616 B2 JPS6037616 B2 JP S6037616B2 JP 55006377 A JP55006377 A JP 55006377A JP 637780 A JP637780 A JP 637780A JP S6037616 B2 JPS6037616 B2 JP S6037616B2
- Authority
- JP
- Japan
- Prior art keywords
- ray
- rays
- exposed
- incident
- shielding plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】
半導体集積回路のような固体デバイスを製作する場合の
微細加工にX線リゾグラフイ装置が用いられるこの装置
は、X線吸収体で形成したマスクパターンを有するマス
クを介してシリコンウェーハのような被加工体にX線を
照射するもので、上言己ゥェーハにX線レジストを塗布
しておき、これを現像してエッチング処理を施す。DETAILED DESCRIPTION OF THE INVENTION X-ray lithography equipment is used for microfabrication when manufacturing solid-state devices such as semiconductor integrated circuits. A workpiece such as a wafer is irradiated with X-rays, and the wafer is coated with an X-ray resist, which is developed and etched.
上述のようなリゾグラフイ装置においては、被加工体お
よびマスクよりなる被露光体の全面に入射するX線量が
均一でなければならない。しかし通常のX線管において
は、取出されるX線の方向がターゲットの電子照射面に
対して傾斜していることに起因してX線の強度分布が不
均一となり、このため被露光体の大きさに制限を受ける
欠点があった。本発明は上述の欠点を除去しようとする
ものである。第1図は本発明実施例の一部を縦断した正
面図で、X線管1は筒状の真空気密蔭体2の一端にター
ゲット3を設けて、該ターゲットと対向するように電子
線集東電極4およびその内部に配遣された熱電子放射陰
極5からなる電子銃を配置してある。すなわち陰極5か
ら放射される電子線eを電極4の作用で例えば径数粍に
絞ってターゲットの電子照射面6に入射させるもので、
その入射点の側部における蟹体壁にベリリウム等のX線
窓7を形成してある。従って上記電子照射面に点×線源
pが形成され、このX線源から窓7を通して軟×線×が
円錘状に照射される。電子照射面6は紙面と直角な平面
状に形成され、かつ上記電子線eに対して45〜60度
またはX線xの軸に対しては30〜45度に傾斜してい
る。上述のようなX線管1における窓7の外側に被露光
体8を配置すると共にその前面に駆動装置9で矢印yの
ように駆動されるX線遮蔽板10を設けてある。これら
はX線xの軸と直角に配置されたもので、被露光体舵ま
例えば60〜7畔毛の径を有し、前記X線源pから10
0粍程度離してある。従って被露光体8は電子照射面6
に対して紙面を含む平面内で傾斜しているが、前記遮蔽
板10はこの平面内、すなわち上記傾斜の方向へ矢印y
のように適当な速度で移動して、被露光体8に入射する
X線を遮断する。被露光体8は、表面にX線レジスト1
1を塗布した例えばシリコンウェーハ12の前面に円環
状のスべ−サ13を介してマスク14を配置したもので
、該マスクはX線透過材の裏面にX線吸収体のマスクパ
ターン15が形成されている。上述の装置において、例
えば遮蔽板10を実線のように開放した状馳でX線管1
に高電圧を加えてX線源xを放射することにより露光を
行う。In the above-described lithography apparatus, the amount of X-rays incident on the entire surface of the exposed object consisting of the processed object and the mask must be uniform. However, in a normal X-ray tube, the direction of the extracted X-rays is inclined with respect to the electron irradiation surface of the target, resulting in uneven X-ray intensity distribution. It had the disadvantage of being limited in size. The present invention seeks to obviate the above-mentioned drawbacks. FIG. 1 is a partially longitudinally sectional front view of an embodiment of the present invention. An electron gun consisting of an east electrode 4 and a thermionic emission cathode 5 disposed inside the east electrode 4 is arranged. That is, the electron beam e emitted from the cathode 5 is narrowed down to a diameter of, for example, a few millimeters by the action of the electrode 4, and is made to enter the electron irradiation surface 6 of the target.
An X-ray window 7 made of beryllium or the like is formed in the crab body wall at the side of the incident point. Therefore, a point x-ray source p is formed on the electron irradiation surface, and soft x-rays x are irradiated from this X-ray source through the window 7 in a conical shape. The electron irradiation surface 6 is formed in a planar shape perpendicular to the plane of the paper, and is inclined at 45 to 60 degrees with respect to the electron beam e or 30 to 45 degrees with respect to the axis of the X-ray x. An exposed object 8 is disposed outside the window 7 of the X-ray tube 1 as described above, and an X-ray shielding plate 10 is provided in front of the exposed object 8, which is driven by a drive device 9 in the direction of arrow y. These are arranged perpendicularly to the axis of the X-ray
They are about 0 mm apart. Therefore, the exposed object 8 is the electron irradiation surface 6
The shielding plate 10 is inclined in a plane including the plane of the paper, that is, in the direction of the inclination as shown by the arrow y.
It moves at an appropriate speed to block the X-rays incident on the object to be exposed 8. The exposed object 8 has an X-ray resist 1 on its surface.
For example, a mask 14 is placed on the front surface of a silicon wafer 12 coated with 1, via an annular spacer 13, and the mask has a mask pattern 15 of an X-ray absorber formed on the back surface of an X-ray transparent material. has been done. In the above-mentioned apparatus, for example, the X-ray tube 1 is opened with the shielding plate 10 open as shown by the solid line.
Exposure is performed by applying a high voltage to the X-ray source x and emitting radiation from the X-ray source x.
その露光時間が例えば7分経過したとき駆動装置9によ
り遮蔽板10を点線で示したように矢印yの方向へ適当
な速度で移動させて、X線xを除々に遮断し、露光の開
始から例えば10分を経過した時点で被露光体8の入射
するX線が完全に遮断されるようにするもので、このよ
うな動作によって被露光体8の各部に入射するX線量を
ほぼ均一にすることができる。つぎにその原理を説明す
る。第2図は第1図におけるX線管のターゲット3の一
部を縦断して拡大した図で、電子線eは夕−ゲットの電
子照射面6に対しては例えば60度の角度で入射する。
この電子線の大部分はターゲットの内部へ多少侵入した
位置でX線を発生させるから、X線の発生面は表面から
微小距離公の位置にあるものと考えることができる。こ
のX線発生面Q上の点Rにおいて発生し、第1図におけ
る被露光体8の右端に入射するX線をx,、左側に入射
するX線を彬とすると、X線x,は距離d,だけターゲ
ット3中を通過し、均は平だけ通過する。かつ電子照射
面6がX線xの軸0に対して傾斜しているために距離d
,よりd2が大きくなって、X線均はx,より大きい減
衰を受ける。従って被露光体8の右端に入射するX線が
左端に入射するX線より強くなって、その強度分布に不
均一を生ずる。第3図は第1図における被露光体8の位
置にX線感光板を配置し、遮蔽板10を終始開放状態に
保持することにより全面に一定時間の露光を施して現像
したもので、感光板Sには窓7の投影図形Tが現れる。When the exposure time has elapsed, for example, 7 minutes, the drive device 9 moves the shielding plate 10 at an appropriate speed in the direction of the arrow y as shown by the dotted line to gradually block the X-rays x, starting from the start of the exposure. For example, after 10 minutes have elapsed, the X-rays incident on the exposed object 8 are completely blocked, and this operation makes the amount of X-rays incident on each part of the exposed object 8 almost uniform. be able to. Next, the principle will be explained. FIG. 2 is a longitudinally enlarged view of a part of the target 3 of the X-ray tube in FIG. .
Since most of this electron beam generates X-rays at a position that has penetrated into the target to some extent, it can be considered that the X-ray generating surface is located at a very small distance from the surface. If the X-rays generated at point R on the X-ray generation surface Q and incident on the right end of the exposed object 8 in FIG. d, passes through the target 3, and only the average passes through the target 3. And since the electron irradiation surface 6 is inclined with respect to the axis 0 of the X-ray x, the distance d
, d2 becomes larger than x, and the X-ray average receives a larger attenuation than x. Therefore, the X-rays incident on the right end of the exposed object 8 are stronger than the X-rays incident on the left end, resulting in non-uniformity in the intensity distribution. In Figure 3, an X-ray photosensitive plate is placed at the position of the exposed object 8 in Figure 1, and the entire surface is exposed to light for a certain period of time by keeping the shielding plate 10 open from beginning to end. A projected figure T of the window 7 appears on the plate S.
この感光板Sをミクロフオトメータに掛けて第1図にお
ける矢印yと平行な方向へy,,y2,y3で示したよ
うに3個所を走査してその黒化度1を測定すると、第4
図にそれぞれ同符号で示したような曲線が得られる。ま
た第1図の矢印yと直角なz方向へ、z.,z2,z3
で示したように3個所を走査すると、第5図に同符号で
示したような黒化度1の曲線が得られる。すなわちこの
ような測定によっても、第1図の被露光体8に入射する
X線の強度分布が紙面と直角なz方向ではほぼ均一であ
るが、矢印y方向においては次第に低下していることが
証明される。なお、第2図における軸○と電子照射面6
との間の角度◇を30度、電子線eと電子照射面との間
の角度のを60度、またX線x,,均の間の角度、すな
わちX線の広がり角aを15度、ターゲット3の材質を
シリコンSiとして第4図におけるX線の強化比b/a
を実測にもとづいて算出すると電子線eの加速電圧が2
0KVのとき約0.88 30KVのとき約0.78で
ある。またz方向におけるX線の強度変化は、第5図の
ように袷んど無視し得る程度に過ぎない。従つて被露光
体8の露光に際して、遮蔽板10を例えば前述のように
駆動して、各部の露光時間tを第4図に破線で示したよ
うに調整すると全面がほぼ均一な量のX線で露光される
。このように本発明は簡単な装置によって被露光体の全
面をほぼ均等に露光し得るもので、このため被露光体を
充分大きくすることができる。When this photosensitive plate S is placed on a microphotometer and scanned at three locations as indicated by y, , y2, and y3 in the direction parallel to the arrow y in FIG. 1, the degree of blackening 1 is measured.
Curves shown with the same symbols in the figure are obtained. Also, in the z direction perpendicular to the arrow y in FIG. 1, z. ,z2,z3
When three locations are scanned as shown in FIG. 5, a curve with a degree of blackening of 1 as shown in FIG. 5 by the same reference numeral is obtained. In other words, even with such measurements, it can be seen that the intensity distribution of the X-rays incident on the exposed object 8 in FIG. 1 is almost uniform in the z direction perpendicular to the page, but gradually decreases in the y direction of the arrow be proven. In addition, the axis ○ and the electron irradiation surface 6 in Fig. 2
The angle ◇ between is 30 degrees, the angle between the electron beam e and the electron irradiation surface is 60 degrees, and the angle between the X-rays x,, and the spread angle a of the X-rays is 15 degrees, When the material of the target 3 is silicon Si, the X-ray reinforcement ratio b/a in Fig. 4 is
When calculated based on actual measurements, the acceleration voltage of the electron beam e is 2
It is about 0.88 at 0KV and about 0.78 at 30KV. Further, the change in the intensity of X-rays in the z direction is only to a negligible extent as shown in FIG. Therefore, when exposing the object 8, if the shielding plate 10 is driven, for example, as described above, and the exposure time t of each part is adjusted as shown by the broken line in FIG. exposed to light. As described above, the present invention allows the entire surface of the object to be exposed to light to be exposed almost uniformly using a simple device, and therefore the object to be exposed can be made sufficiently large.
第1図は本発明実施例の縦断面を示した図、第2図は本
発明の原理を説明するための第1図の一部を縦断して拡
大した図、第3図はX線の強度分布を測定する感光板を
示した図、第4図および第5図はX線の強度分布曲線で
ある。
なお図において1はX線管、3は夕−ゲット、6は電子
照射面、8は被露光体、9は遮蔽板駆動装置、1川ま遮
蔽板である。次久風
次ふ幻
汐/19
が2亀
次3鼠Fig. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, Fig. 2 is a longitudinally enlarged view of a part of Fig. 1 for explaining the principle of the invention, and Fig. 3 is an X-ray Figures 4 and 5, which show a photosensitive plate for measuring intensity distribution, are X-ray intensity distribution curves. In the figure, 1 is an X-ray tube, 3 is a radiation getter, 6 is an electron irradiation surface, 8 is an exposed object, 9 is a shielding plate driving device, and 1 is a shielding plate. Tsugufufujifugenshio/19 Ga 2 Kameji 3 Mouse
Claims (1)
投射して近似的に点X線源とみなすことのできるX線源
を形成し、上記X線源から照射されるX線を前記電子照
射面に対して傾斜するように配置された平面状の被露光
体にほぼ直角に入射させると共に上記被露光体の各部に
入射するX線量がほぼ均等になるような速度をもつて前
記傾斜の方向へ移動するX線遮蔽板を前記被露光体の前
面に設けたことを特徴とするX線リゾグラフイ装置。1 Project an electron beam onto the electron irradiation surface of the target of the X-ray tube to form an X-ray source that can be approximately regarded as a point X-ray source, and use the X-rays irradiated from the X-ray source to The direction of the inclination is such that the X-rays are incident almost perpendicularly to a planar exposed object arranged to be inclined with respect to the plane, and at a speed such that the amount of X-rays incident on each part of the exposed object is approximately equal. An X-ray lithography apparatus characterized in that an X-ray shielding plate that moves is provided in front of the object to be exposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55006377A JPS6037616B2 (en) | 1980-01-24 | 1980-01-24 | X-ray lithography equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55006377A JPS6037616B2 (en) | 1980-01-24 | 1980-01-24 | X-ray lithography equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56104438A JPS56104438A (en) | 1981-08-20 |
JPS6037616B2 true JPS6037616B2 (en) | 1985-08-27 |
Family
ID=11636680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55006377A Expired JPS6037616B2 (en) | 1980-01-24 | 1980-01-24 | X-ray lithography equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6037616B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0715869B2 (en) * | 1983-09-30 | 1995-02-22 | 株式会社日立製作所 | Soft X-ray exposure system |
JPH07407B2 (en) * | 1985-01-07 | 1995-01-11 | キヤノン株式会社 | Print control method |
US5365561A (en) * | 1988-03-25 | 1994-11-15 | Canon Kabushiki Kaisha | Exposure control in an X-ray exposure apparatus |
DE68929187T2 (en) | 1988-09-02 | 2000-09-28 | Canon K.K., Tokio/Tokyo | Exposure apparatus |
EP0359370B1 (en) * | 1988-09-14 | 1996-01-03 | Canon Kabushiki Kaisha | Exposure control in X-ray exposure apparatus |
JP2731955B2 (en) * | 1989-09-07 | 1998-03-25 | キヤノン株式会社 | X-ray exposure equipment |
US5285488A (en) * | 1989-09-21 | 1994-02-08 | Canon Kabushiki Kaisha | Exposure apparatus |
EP0421746B1 (en) * | 1989-10-03 | 1997-04-02 | Canon Kabushiki Kaisha | Exposure apparatus |
DE69126719T2 (en) * | 1990-03-09 | 1997-11-06 | Canon K.K., Tokio/Tokyo | Exposure device |
JP2587274Y2 (en) * | 1991-01-23 | 1998-12-16 | 林建設工業株式会社 | Stand-alone leg members for blackboards for recording construction records |
-
1980
- 1980-01-24 JP JP55006377A patent/JPS6037616B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56104438A (en) | 1981-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4700371A (en) | Long life x-ray source target | |
JP2895619B2 (en) | Large area and uniform electron source | |
US4528452A (en) | Alignment and detection system for electron image projectors | |
US4896341A (en) | Long life X-ray source target | |
JPS6037616B2 (en) | X-ray lithography equipment | |
US4119855A (en) | Non vacuum soft x-ray lithographic source | |
US3149257A (en) | X-ray devices for use on the human body | |
DE69913985D1 (en) | X-RAY TUBE WITH VARIABLE PICTURE SIZE | |
JPS61105839A (en) | Electron beam transferring mask and manufacture thereof | |
JP2637546B2 (en) | X-ray exposure equipment | |
CA1254261A (en) | Long life x-ray source target | |
JPS622700B2 (en) | ||
SU1450144A1 (en) | Method of measuring the effective size of focus of x-ray source | |
JPS6415604A (en) | Measuring apparatus for length by electron beam | |
JPH01243421A (en) | X-ray aligner | |
JPS59144129A (en) | X-ray source apparatus | |
JP3117009B2 (en) | Proximity effect correction method, SCALPEL (registered trademark (registered number 4274961)) exposure apparatus, and SCALPEL (registered trademark (registered number 4274961)) mask | |
JP2980397B2 (en) | X-ray exposure equipment | |
US20060165216A1 (en) | Method for detection of micrometric and sub-micrometric images by means of irradiation of a mask or of a biological specimen with ionizing radiation | |
JPH01227338A (en) | X-ray tube device | |
JPH05121021A (en) | Two-dimensional electron source device | |
Petzold et al. | Determination of soft X-ray emission of pulsed plasma sources by comparison with the calculable emission of an electron storage ring using X-ray lithographic exposures | |
JPH0322905Y2 (en) | ||
JPS62293719A (en) | Electron beam exposure method | |
JPS6132521A (en) | Method for x-ray exposure and device thereof |