JPS6037605A - Ag-coated cu electronic component material - Google Patents

Ag-coated cu electronic component material

Info

Publication number
JPS6037605A
JPS6037605A JP58147115A JP14711583A JPS6037605A JP S6037605 A JPS6037605 A JP S6037605A JP 58147115 A JP58147115 A JP 58147115A JP 14711583 A JP14711583 A JP 14711583A JP S6037605 A JPS6037605 A JP S6037605A
Authority
JP
Japan
Prior art keywords
layer
coated
thickness
bath
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58147115A
Other languages
Japanese (ja)
Other versions
JPH0373962B2 (en
Inventor
志賀 章二
俊生 北本
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58147115A priority Critical patent/JPS6037605A/en
Publication of JPS6037605A publication Critical patent/JPS6037605A/en
Publication of JPH0373962B2 publication Critical patent/JPH0373962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Contacts (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 水元l111はCu系基体の表面の一部又は全部にAo
又はA(I合金を被覆した電子部品材料に関するもので
、特に部品材料に要求される諸性性を満足する経済的な
材料提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Mizumoto 1111 has Ao
Or A(I) relates to an electronic component material coated with an alloy, and in particular provides an economical material that satisfies various properties required for component materials.

一般にA(+又はAQ合金、例えばAg−In、Ao 
−Pd 、Ag−Au等の合金は耐食性の良心電体で半
田付は性や電気的接続が優れており、これ等をCu又は
Cu合金、例えばCu−/n、Cu −3n 、 Cu
 −Be 、 Cu −Ti 、 Cu −Fe等の合
金からなる基体の表面の一部又は全部に被覆したものが
電子部品材料に用いられている。
Generally A(+ or AQ alloys, e.g. Ag-In, Ao
Alloys such as -Pd and Ag-Au are corrosion-resistant conductors and have excellent solderability and electrical connection.
A substrate made of an alloy such as -Be, Cu-Ti, Cu-Fe, etc., whose surface is partially or completely coated, is used as an electronic component material.

電子部品としてのスイッチ、コネクター等の接点、又は
半導体、集積回路等の基板、或いはリード材等は何れも
半田付【プやろう付けにより組立てられ、それ自身プリ
ン1〜回路等に半田(=lけにより取イ」りられており
、電子部品材料には半田(;t iフ性が不可欠の条件
になっている。
Electronic components such as contacts such as switches and connectors, substrates such as semiconductors and integrated circuits, and lead materials are assembled by soldering or brazing, and they themselves are soldered (=l) to circuits, etc. Solderability has become an essential condition for electronic component materials.

Cu及びCu合金は常温で保管しても強固な酸化皮膜を
生成し、電子部品の組立工程にお【プる樹脂モールド、
ギコアー、半田付(プ、性能調整の1−ジンク等の高温
環境において厚い酸化スケールを生成し、半田付り性を
箸しく阻害りる。Cl及びCu合金の半田イ」けに活性
フラックスを使用りることも知らているが、残留フラッ
クスは致命的な腐食障害の原因となるため、入念な洗浄
が必要となり電子部品等には適用できない。また大気を
′a断じて還元性雰囲気中で部品を組立てることも考え
られるが、この方法は設備的にも経済的にも実用的でな
い。
Cu and Cu alloys form a strong oxide film even when stored at room temperature, making them ideal for resin molds used in the assembly process of electronic components.
Activated flux is used to solder Cl and Cu alloys in high-temperature environments such as Gicor, soldering (pump, performance adjustment 1-zinc), etc., which generate thick oxide scales that seriously impede solderability. However, since residual flux causes fatal corrosion damage, careful cleaning is required and it cannot be applied to electronic parts.Also, do not expose parts to the atmosphere in a reducing atmosphere. Although it is possible to assemble the parts, this method is not practical in terms of equipment or economy.

電子部品材料にAU被覆Cu系材料を用もXる理由)、
E A (J又はA(I合金の前記特性を利用し、高温
環境において良好な半田付1プ性を19るためであり、
もう一つの理由は表面に酸化皮膜が生成し難(、接点等
に要求される電気接続性が良好なことである。このよう
なA(lによる効果は△u、Pt等の貴金属でも得るこ
とができるが、何れもA(Iの10〜100倍、或いは
それ以上高価なため、工業的には不経済であり、通希は
Ag又はΔg合金を2〜・3μ又はそれ以上の厚さに被
覆しでいる。
Reasons for using AU-coated Cu-based materials in electronic component materials)
E
Another reason is that it is difficult to form an oxide film on the surface (and good electrical connectivity is required for contacts, etc.).The effect of A(l) can also be obtained with noble metals such as △u and Pt. However, they are industrially uneconomical because they are 10 to 100 times more expensive than A (I), and Tsuki is using Ag or Δg alloy to a thickness of 2 to 3μ or more. Covered.

最近電子機器の飛躍的な発展と共に、経流性のみならず
省資源の立場からもAgの節約h〜望まれている。しか
るにA!+の被覆厚さを薄くすると次のような欠陥が発
生する。
Recently, with the dramatic development of electronic equipment, it has become desirable to save Ag not only from the viewpoint of flow efficiency but also from the standpoint of resource conservation. But A! If the + coating thickness is made thinner, the following defects will occur.

(1)v遣方法及び条件にもJ、るが、Ag図がポーラ
スとなり、所謂ピンホールを通して基材であるCu又は
Cu合金が露出する。
(1) Although the method and conditions for v-setting are also J, the Ag diagram becomes porous and the base material Cu or Cu alloy is exposed through a so-called pinhole.

(2)同相反応により基材の卑金属成分が表面に到達し
て俗情し、Agの前記特性を劣化りる。
(2) Due to the in-phase reaction, the base metal components of the base material reach the surface and deteriorate, degrading the above-mentioned properties of Ag.

特にこの反応の進行は温度の指数函数の関係にあり高温
条件で頻著となる。
In particular, the progress of this reaction is related to an exponential function of temperature and becomes more pronounced under high temperature conditions.

高価なAllを被覆したものでも全く、同様な問題が起
り、これを防止りるため基体とAU層間にNi中間層を
設けたものが実用化されており、前記欠陥を実質的に軽
減でるために、通常1〜2μ又はそれ以上の厚さに中間
層を設け、その上に用途に応じて厚さ0.2〜数μのA
uをメッキなどにより被覆したものが接点等に用いられ
ている。
The same problem occurs even with expensive Al coatings, and to prevent this, a Ni intermediate layer between the substrate and the AU layer has been put into practical use, and the above defects can be substantially reduced. , an intermediate layer is usually provided with a thickness of 1 to 2 μm or more, and an A layer with a thickness of 0.2 to several μm is provided on top of the intermediate layer, depending on the application.
U coated with plating or the like is used for contacts, etc.

Agを被覆したものでも基体とAg6間にNi中I?8
1層を設けたものが、半導体リードフレーム、各種接点
、端子等に実用化され、通常0.5〜3μの厚さにN1
中間層を設り、ピンホール腐食を防止してAa衣表面清
浄に保つと共に、基体からの卑金属の高温拡散を防止し
ている。しかしながら高温環境に萄いて半田(=lIす
性を低−トし、時にはへ〇層の剥離が報告されている。
Even with Ag-coated products, there is I in Ni between the substrate and Ag6? 8
One layer has been put into practical use for semiconductor lead frames, various contacts, terminals, etc., and is usually 0.5 to 3μ thick.
An intermediate layer is provided to prevent pinhole corrosion and keep the surface of the Aa coating clean, as well as to prevent high temperature diffusion of base metals from the base. However, it has been reported that when exposed to high temperature environments, the solderability deteriorates, and sometimes the layer peels off.

本発明者等はこれに鑑み種々検討の結果AII被覆では
全く起り4U)ないAil被覆特有の現象であることを
知見した。即ち180℃前後の湿度からA(1層中を大
気中の酸素が透過し易くなり、透過酸素は原子状のため
か、特に活性でAg層下のN1表面を酸化し、Ag層と
N1層の界面の金属結合を断ち切り、密着力を激減させ
る。
In view of this, the present inventors conducted various studies and found that this phenomenon is unique to Ail coating, and does not occur at all with AII coating. That is, from a humidity of around 180°C, atmospheric oxygen easily permeates through the A (1 layer), and perhaps because the permeating oxygen is atomic, it is particularly active and oxidizes the N1 surface under the Ag layer, causing the Ag layer and N1 layer to oxidize. It breaks the metal bond at the interface and drastically reduces the adhesion.

またA!I層は半田浴に迅速に溶解し、実用条件で1秒
間に厚さ2〜3μの溶解が起る。従って半田」イリ【プ
にd3いて薄いAu層が溶解し、半田と全く濡れない硬
い酸化Ni表面が露出し、半田(]り性を著しく阻害づ
る。、史にN1中[8]層を設(ブたものでは、機械的
変形に際し、Aa□Iゝ)CUに比べて硬質のN1層に
外力が集中し、N1層を起点に八り層の表面に達づる微
小のクラックが発生し易い。
A again! The I layer dissolves rapidly in the solder bath, with a thickness of 2 to 3 microns dissolving in one second under practical conditions. Therefore, during the soldering process, the thin Au layer dissolves and a hard Ni oxide surface that does not wet with solder is exposed, significantly inhibiting solderability. (In the case of CU, during mechanical deformation, external force concentrates on the N1 layer, which is harder than that of CU, and micro cracks that start from the N1 layer and reach the surface of the eight layers are likely to occur.) .

電子機器部品Cは精密加工によってjΔられるため、曲
げや絞り加工において、微小のクラックを発生し、これ
が基体の露出部となって腐食の原因となるばかりか、腐
食物の体情P#張によりクラックが拡大し、重大な欠陥
となる。
Since the electronic device component C is subjected to jΔ due to precision machining, minute cracks occur during bending and drawing, which not only expose the base and cause corrosion, but also cause corrosion due to the physical condition of the corrosive material P#. The crack expands and becomes a serious defect.

業容11[I L−t 7 /7’l J−ろ h和 
目 L−其づ去 7 η ん?? R3するため種々研
究の結果、部品材料として要求される諸性性をφ2足し
得る経済的なA(l被覆Ckl系電子部品材料をflt
1発したもので、Cu系基体の少なくとも一部表面に八
〇又はA9合金を被覆した材料において、基体とAg又
はAg合金層間に厚さ0.01〜0.25μのPd又は
Ruからなる中間層を設(プl〔ことを特徴とするもの
である。
Business details 11 [I L-t 7 /7'l J-ro h sum
Eyes L-That's it 7 η Huh? ? As a result of various studies to achieve R3, we found that an economical A (l-coated Ckl-based electronic component material with flt
In materials where at least part of the surface of a Cu-based substrate is coated with 80 or A9 alloy, an intermediate layer made of Pd or Ru with a thickness of 0.01 to 0.25μ is formed between the substrate and the Ag or Ag alloy layer. It is characterized by having a layer.

即ち本発明はCu又はCu合金からなる線、棒、条、板
等を基体とするか又はその一部又は全部を部品形状に加
工して基体とし、その表面の一部又は全部にjワさ0.
01〜0.25μのpd又はRuからなる中間層(以下
pd 、RLI中間層と略記)を形成し、その土に八〇
又はA!+合金層(以下Ag図と略記)を被覆したもの
である。
That is, the present invention uses wires, rods, strips, plates, etc. made of Cu or Cu alloy as a base, or processes a part or all of them into a part shape to make a base, and a part or all of the surface thereof is made of a wire, rod, strip, plate, etc. 0.
An intermediate layer (hereinafter referred to as PD, RLI intermediate layer) consisting of PD or Ru with a thickness of 0.01 to 0.25μ is formed, and 80 or A! It is coated with a + alloy layer (hereinafter abbreviated as Ag diagram).

pd又は1luLよCu系基体と拡散反応しり・■く、
かつ耐酸化性に優れており、八〇又はA(1合金被覆に
にる前記(1)及び(2)の欠陥を有効に防止する。同
じ貴金属である八〇は基体やAgルjと反応し易いため
前記拡散防止の効果はIIJ持できない。またP(やl
rはPdやRuと同様耐酸化性で拡散防止に有効である
がPdやRuに比べて10〜100倍も高価であり、か
つ電気メッキ等により薄い中間層を実用的に形成するこ
とが困Sなため非実用的でる。これに比べてPd又はR
uはAQの5〜10倍程度の価格でAgに次いで最も安
価な負金属であり、しかも厚さ0.1μの中間層として
A(1層の厚さを1μ以上薄くり゛ることができること
と合わせて実用的である。
Diffusion reaction with Cu-based substrate such as pd or 1luL,
It also has excellent oxidation resistance and effectively prevents the defects described in (1) and (2) above in coatings of 80 or A (1 alloy). 80, which is also a noble metal, reacts with the substrate and Ag IIJ cannot maintain the above-mentioned diffusion prevention effect because it is easy to
Like Pd and Ru, r has oxidation resistance and is effective in preventing diffusion, but it is 10 to 100 times more expensive than Pd and Ru, and it is difficult to practically form a thin intermediate layer by electroplating. Since it is S, it is impractical. Compared to this, Pd or R
U is about 5 to 10 times as expensive as AQ, and is the cheapest negative metal after Ag. Moreover, as an intermediate layer with a thickness of 0.1μ, A (the thickness of one layer can be reduced by 1μ or more) It is also practical.

しかしてI〕d、Ru中間層の)9さは上記経済的理由
から可及的に薄く形成づることが望ましいが、実用上は
0.01〜0.25μとする。このような薄い中間層は
Cu系基体成分、例えばCLI 、Zll 、Sn等を
微罪透過し、Afl中に拡散し、半田付tJ性を実用上
111]害づることなく耐硫化性、耐厚耗性を向」ニし
、更に電子1匁器の高密化と共に重大視されているとこ
ろの直流回路に使用した場合に起るAgの+側から一側
へ電解的に移fJシて知略を起す致命的欠陥を抑制する
ことができる。しかしてP(1やRuはQuやA!+、
J:り硬質の金属であり、特に電気メッキされたP(I
は、メッキ時に1−1zを吸蔵し易く、硬質脆化の傾向
が強< 、0.25μを越える過剰のWさは加工性を阻
害し、表面の微細な割れの原因となり、Cu系基体の露
出、酸化を起′g。
Although it is desirable for the thickness of the Ru intermediate layer to be as thin as possible for the above-mentioned economic reasons, it is practically set to 0.01 to 0.25 .mu.m. Such a thin intermediate layer allows Cu-based base components such as CLI, Zll, Sn, etc. to pass through and diffuse into the Afl, improving sulfidation resistance and wear resistance without impairing soldering TJ properties. Furthermore, with the increasing density of electronic devices, we have developed a technique for electrolytically transferring fJ from the + side of Ag to the other side, which occurs when used in DC circuits, which is becoming more important as the density of electronic devices becomes higher. Fatal defects can be suppressed. However, P(1 and Ru are Qu and A!+,
J: Hard metal, especially electroplated P(I
When plating, 1-1z tends to be occluded and there is a strong tendency for hard embrittlement. Exposure causes oxidation.

また0、01μ未満と薄い場合は、前記Cu系基体成分
のA(]層l\の拡散が過大となり、A(1層の表面に
蓄積して半[B (’jけ性を劣化づる。
If the thickness is less than 0.01 μm, the diffusion of the Cu-based base component in the A(] layer becomes excessive, and it accumulates on the surface of the A(1 layer), deteriorating the scratch resistance.

本発明電子部品材料は以上の描成からなり、電気メツキ
法、イオンブレーティング法、スパッタリング法、真空
a着払、機械的クラッド法又はこれ等の組合せ法等によ
り造られる。特に電気メツキ法は簡単な設備にJ:り任
意の所望部分に正確な厚さの被覆を迅速にメッキするこ
とができる。即ち密°法によりC1系基体を清浄化した
後、Pd又はRuメッキ浴中で電気メッキし、次いで八
〇又はAg合金メッキ浴中で電気メッキして造られる。
The electronic component material of the present invention has the above-mentioned structure, and is manufactured by electroplating, ion blating, sputtering, vacuum a-deposition, mechanical cladding, or a combination of these methods. In particular, the electroplating method uses simple equipment and can quickly plate a coating of an accurate thickness on any desired area. That is, after cleaning a C1-based substrate by a density method, it is electroplated in a Pd or Ru plating bath, and then electroplated in an 80 or Ag alloy plating bath.

1)dメッキ浴どしでは、Pd (N+−13)2 (
NO7)2又はPd (NHg )4 Cj!、7を主
成分どする中性乃至アルカリ性浴或いは亜硫酸錯体を含
有する強硫酸浴などがあり、これに各種添加剤を配合し
た市販浴を利用することもぐきる。Ruメッキ浴として
はニトロシルスルファミン酸浴やニトロン塩化物浴など
がある。またA(+メッキ浴としてはシアン浴、ヂオシ
アン浴、ピロリン酸浴、ヨウ化物浴などがある。
1) In the d plating bath, Pd (N+-13)2 (
NO7)2 or Pd (NHg)4 Cj! , 7 as the main ingredients, or a strong sulfuric acid bath containing a sulfite complex, and commercially available baths containing various additives are also available. Ru plating baths include nitrosylsulfamic acid baths and nitrone chloride baths. Examples of the A(+ plating bath) include a cyanide bath, a diosyanide bath, a pyrophosphoric acid bath, and an iodide bath.

以下本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to examples.

実施例(1) 厚さ0.42mrnの黄銅板(Zn35%)を常法によ
り脱脂、酸洗してから下記メッキ浴を用いて第1表に示
プダイλ−ド用Agメッキリードフレーム材? を製造した。
Example (1) A brass plate (35% Zn) with a thickness of 0.42 mrn was degreased and pickled using a conventional method, and then the following plating bath was used to produce the Ag-plated lead frame material for the die λ-de shown in Table 1. was manufactured.

Pdメッキ浴(III中員金属製バラディックMS)P
d i09/J PI−18,5 浴 温 55℃ 電流密度 3.OA /dm2 Ruメッキ浴(田中員金属製ル7ネックス)Ru iJ
//矛 P ト1 1.5 浴 温 60℃ 電流密度 3.OA/dm2 p Niメッキ浴 Ni (SO3NH2)2 500グ/(NiCJ2 
30q/1 H3BO330シ/( P H2,!1 浴 温 50℃ 電流密度 2.5A/dm2 Agストライクメッキ浴 AQ CN 3 g/f! KCN 30J/ゑ 浴 湿 20℃ 電流密度 3A/dm2 Agメッキ浴 A(ICN 3047/Jl! KCN 40g / β Kz COs 20y/J! 浴 渇 20°C 電流密度 1.5Δ/dm2 ダイA−ド用Agメッキリードフレーム材は通シ知冊状
(+1J5.Om、長さ、0.5m>に打扱き、直角に
折曲げ(R=0.5 mm) 、−QWに81チツプを
半田f」す(95%Pb−5%Sn、温度320℃、1
分間)した後、4Ii1脂で封止キーLアー(温度18
0℃、5n¥間、人気中)し、しかる後プリント回路板
に半[fl 1”Jけされる。この半111付(プにa
3いて、温度235℃の其晶半口」浴中に5秒間ディッ
プしたときの濡れ面積90%以」ニが要求される。1上
記Aリメツ−1−リードフレーム拐についで保管及び折
曲げ加工による劣化を保allりるため100℃の温度
で24時間加熱してから半11」浴(95%pb−5%
S11、温度320℃)に一端を5〕秒間ディップし濡
れ面積を測定した1、次にこれを人気中 180°Cの
温度で5−1待間加熱してかIう他端を温度235°C
の共晶半+1]浴中に5秒間ディップし”C’ 4Xi
れ面積を測定した。また1〕記ル−11祠を曲げ加二「
シた後、端面をラッカーでシールし一〇からJIS−7
,−2371に基づいて5%塩水噴霧試験を24時間行
ない、曲げ部の青色銅腐食発生状況を調べlこ。更にこ
れを定性濾紙上に4.0M間隔で2本対置し、温度60
℃、湿度95%の加IW R旨にJ3いて 100vの
電几を印加し48時間後の絶縁抵抗をill定した。こ
れ等の結果を第1表に示づ。
Pd plating bath (III Chuman Metal Balladic MS) P
d i09/J PI-18,5 Bath temperature 55°C Current density 3. OA /dm2 Ru plating bath (Run 7 Nex made by Tanaka Kinzoku) Ru iJ
//Bath P 1 1.5 Bath temperature 60℃ Current density 3. OA/dm2 p Ni plating bath Ni (SO3NH2)2 500g/(NiCJ2
30q/1 H3BO330shi/(PH2,!1 Bath temperature 50℃ Current density 2.5A/dm2 Ag strike plating bath AQ CN 3 g/f! KCN 30J/E bath Humidity 20℃ Current density 3A/dm2 Ag plating bath A (ICN 3047/Jl! KCN 40g/β Kz COs 20y/J! Bath temperature 20°C Current density 1.5Δ/dm2 Ag plating lead frame material for die A-de is in notice book form (+1J5.Om, 81 chips were soldered to -QW (95% Pb-5% Sn, temperature 320℃,
After that, seal the key L with 4Ii1 fat (temperature 18 minutes).
0°C, 5n yen, popular), and then half-[fl 1"J is cut into the printed circuit board. This half-111
3, the wetted area is required to be 90% or more when the crystal is dipped for 5 seconds in a bath at a temperature of 235°C. 1. After removing the lead frame, heat it at a temperature of 100°C for 24 hours to prevent deterioration due to storage and bending.
The wetted area was measured by dipping one end for 5] seconds at a temperature of 320°C (S11, temperature 320°C), and then heating it for 5-1 minutes at a temperature of 180°C, then dipping the other end at a temperature of 235°C. C
Dip in the eutectic half + 1] bath for 5 seconds and
The surface area was measured. Also, 1) Rule 11 is bent and added to the shrine.
After sealing, seal the end surface with lacquer and
, -2371, a 5% salt water spray test was conducted for 24 hours to examine the occurrence of blue copper corrosion at the bent portion. Furthermore, two pieces of this were placed opposite each other at a spacing of 4.0 M on a qualitative filter paper, and the temperature was set at 60°C.
℃, 95% humidity, IW R, J3, 100V electric power was applied, and the insulation resistance was determined after 48 hours. These results are shown in Table 1.

記。Record.

の 1@訳 り 硝 # 1 p8羽θま8臣朋部示冨8r−槌1 次 昧 宮 仔1111cLE = =l:fCLQ:’Zl 12
2 「への寸Ll”)■トの■♀=♀ 税 第1表から明らかなように、P(I又はRu申間層の厚
さが0.01〜0.25μである木発明月No、3〜N
O36は何れも両半田付は性が優れ、青色銅腐食物の発
生もな(、絶縁抵抗も良好であることが判る。
1@translation glass # 1 p8 feather θ ma 8 vassal Tomobe Shitomi 8 r - Tsuchi 1 next story Miyako 1111cLE = = l:fCLQ:'Zl 12
2 "Dimension Ll")■■■♀=♀ As is clear from Table 1, the wood invention month No. , 3~N
It can be seen that O36 has excellent soldering properties on both sides, no blue copper corrosion occurs (and insulation resistance is also good).

これに対し中間層を形成しない比較材N o、 1、N
o、10及びPd中間層の厚さが0.005μである比
較材N0.2では大気中加熱後の共晶半田付(プ性が箸
しく低下し、pd又はRu中I!!1層のj9さが斤い
比較U N o、 7〜8及びN1中間層を設【プだ比
較材No、9で1よ大気中加熱後共品半IJI (Jり
性が低下し、曲げ加工部には青色#1rf4食物が発生
し、特に本発明材料と同等の性能を得るためにはN1中
間層を設(プることなく、八〇を4μ以」二厚イ・]【
ノづる必要があることが判る。更にPd又はRu中間癌
を0.5uど厚くした比較材No、7−、’fj3、N
i中1f!1層を設けた比較材No、10.12、中間
層を設置ノることなくAoを4μ以上厚イJした比較材
No、12は何れも絶縁抵抗が低下し、回路短絡の危険
性が高くbっでいる。
On the other hand, comparative material No, 1, N which does not form an intermediate layer
Comparative material No. 0.2, in which the thickness of the Pd intermediate layer is 0.005 μm, has significantly lower eutectic soldering properties after heating in the air, and the I!!1 layer in PD or Ru Comparison material No. 9, 7 to 8 and N1 intermediate layer were set up. In order to obtain the same performance as the material of the present invention, blue #1rf4 food is generated, and in particular, in order to obtain the same performance as the material of the present invention, the N1 intermediate layer should be set (without adding 80 to 4 μm or more thick).
It turns out that I need to nozuru. Further, comparative materials No. 7-, 'fj3, N, in which Pd or Ru intermediate cancer was made thicker by 0.5u
i middle 1f! Comparative material No. 10.12 with one layer, and comparative material No. 12 with Ao thicker than 4μ without installing an intermediate layer, both have lower insulation resistance and a higher risk of short circuit. I'm in b.

このように本発明材料は半田付【プ性、耐食性、加工性
、マイグレーション等の特性を高度に満足すると共にP
d又はRUの厚さ0.01〜0.25μの簿い中間層を
形成りることにより、厚さ3μ以上のAgを節約できる
もので、経済的に優位である・。
In this way, the material of the present invention highly satisfies properties such as solderability, corrosion resistance, workability, and migration, and
By forming an inexpensive intermediate layer of d or RU with a thickness of 0.01 to 0.25μ, it is possible to save Ag with a thickness of 3μ or more, which is economically advantageous.

実施例(2) 厚さ0.25Mのリン青銅条を用い、記法によりDli
脂、酸洗してから実施例(1)と同様にしてlad又は
Ruメッキを行ない、その上に17さ1.5μのAgメ
ッキを行なってi2表に示づコネクター用A!+メッキ
接点月を製造した。
Example (2) Using a phosphor bronze strip with a thickness of 0.25M, Dli
After washing with oil and acid, Lad or Ru plating was performed in the same manner as in Example (1), and then Ag plating with a thickness of 17 and 1.5μ was applied to form the connector A! shown in Table i2. + Manufactured plated contacts.

この接点材は通常プレス成形後、91“シ部を電線と半
田(J i)して接続し、接点部は約1007の荷車で
プリント基板上の回路ビンに接続づるものr、長期の使
用に亘り接触抵抗が107+1Ωを越えないことが条件
になっている。接点部(ま通常の接点と同様相手側との
接触を安定化させるため、凸状の張出し加工が廠されて
いる。
This contact material is usually press-molded and then connected to the electric wire by soldering (Ji) at the 91" part, and the contact part is connected to the circuit bin on the printed circuit board with a cart of about 1007 r, and is suitable for long-term use. The condition is that the contact resistance does not exceed 107 + 1Ω.The contact part (similar to normal contacts, has a convex overhang to stabilize contact with the other party).

この接点材について保管及び成形加工時の劣化を防止す
るため、温度60℃、湿度95%の加湿条件で1000
時間保持した後、渇1哀235℃の共晶半田浴中に5秒
間デ、fツブして半田濡れ性を調べた。J、たL記加湿
条件で1000時間保持した後、250℃の温度に10
分間加熱し、続いて人気中120℃の温度で200局間
保持してから先端に崖径4.Ommの半球を右づるA(
+棒を 1009の荷重r押し当て、電流100 mA
で接触抵抗を測定した。更にコネクターに成形して同様
の処理を施し、これにへクメツキしたピン月(0,62
mm角)を挿入して同様の接触抵抗をall定した。こ
れ等の結果を第2表に併記した。。
In order to prevent deterioration of this contact material during storage and molding processing, the temperature is 60℃ and the humidity is 95%.
After holding the sample for a certain period of time, it was soaked in a eutectic solder bath at 235° C. for 5 seconds to examine solder wettability. After being kept under the humidified conditions described in J and L for 1000 hours, it was heated to a temperature of 250°C for 10 hours.
Heat for 20 minutes, then hold at a temperature of 120℃ for 200 minutes, and then apply a cliff with a diameter of 4. Move the hemisphere of Omm to the right A (
Press the + rod with a load of 1009, and the current is 100 mA.
The contact resistance was measured. Furthermore, a connector was molded and subjected to the same treatment, and a bent pin (0,62
A similar contact resistance was determined by inserting a (mm square). These results are also listed in Table 2. .

第2表 /J 18 Ru O,8n 7,5 >50n+9−
 3.0 90 16,9 15.On 20− − 
4.5 95 5.8 7.7第2表から明らかなよう
に本発明材N 0115〜16は半田付は性及び接触抵
抗の何れも良好な特性を示す。これに対し過剰の厚さの
Pd又はRu中間層を形成した比較材No17〜18で
は半田付は性の劣化は認められないが、コネクター接触
抵抗が著しく増大し、また中間層を用いない比較材NO
,13,19,20からAa層の厚さを4.5μ以上と
する必要があることが判る。
Table 2/J 18 Ru O,8n 7,5 >50n+9-
3.0 90 16,9 15. On 20- -
4.5 95 5.8 7.7 As is clear from Table 2, the materials of the present invention Nos. 0115 to 16 exhibit good properties in terms of both solderability and contact resistance. On the other hand, with comparative materials No. 17 to 18 in which an excessively thick Pd or Ru intermediate layer was formed, no deterioration in soldering properties was observed, but the connector contact resistance increased significantly, and comparative materials without an intermediate layer NO
, 13, 19, and 20, it is clear that the thickness of the Aa layer needs to be 4.5 μm or more.

このように本発明によればPd又はRu中間層を従来の
常識に反して酸クツることにJ、す、基体であるC1及
びCu合金と被覆材であるAg又はΔg合金との組合U
にa5いで、特異で有用な作用を発揮μしめ、その特性
を大幅に改善し得たものである。特に高温に耐え、また
加工性の改善も大きく、精密で多様な機能を要求される
電子部品材料どして好適で、経済的にも優れている等工
業上顕著な効果を奏りるもである。
As described above, according to the present invention, the Pd or Ru intermediate layer is formed in an acidic manner contrary to conventional wisdom.
In A5, it exhibited a unique and useful action, and its properties were significantly improved. In particular, it can withstand high temperatures, has greatly improved workability, is suitable for electronic component materials that require precision and a variety of functions, and has remarkable industrial effects such as being economically superior. be.

Claims (1)

【特許請求の範囲】[Claims] (1)Cu系基体の少なくとも一部表面に、AQ又はA
a金合金被覆した材料において、基体とA(]又はAO
合金層間に、厚さ0.01〜0.25μのPd又はRU
からなる中間層を設置フたことを特徴とするA(+被覆
CI系電子部品月料。 (2>Ag又はAa合金層の被覆厚さを0.2〜2μと
づる特V[請求の第1項記載のA(I被覆Cu系電子部
品材料。
(1) AQ or A on at least a part of the surface of the Cu-based substrate
a In gold alloy coated materials, the substrate and A(] or AO
Between the alloy layers, Pd or RU with a thickness of 0.01 to 0.25μ
A (+ coated CI system electronic component monthly fee). A (I-coated Cu-based electronic component material) according to item 1.
JP58147115A 1983-08-11 1983-08-11 Ag-coated cu electronic component material Granted JPS6037605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147115A JPS6037605A (en) 1983-08-11 1983-08-11 Ag-coated cu electronic component material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147115A JPS6037605A (en) 1983-08-11 1983-08-11 Ag-coated cu electronic component material

Publications (2)

Publication Number Publication Date
JPS6037605A true JPS6037605A (en) 1985-02-27
JPH0373962B2 JPH0373962B2 (en) 1991-11-25

Family

ID=15422864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147115A Granted JPS6037605A (en) 1983-08-11 1983-08-11 Ag-coated cu electronic component material

Country Status (1)

Country Link
JP (1) JPS6037605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123260A1 (en) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. Silver-coated material for movable contact component and method for manufacturing such silver-coated material
WO2008123259A1 (en) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. Silver-coated material for movable contact component and method for manufacturing such silver-coated material
WO2014148365A1 (en) * 2013-03-21 2014-09-25 株式会社エンプラス Electrical connector, and socket for electric component
WO2015029745A1 (en) * 2013-08-29 2015-03-05 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, process for producing plated member, and process for producing plated terminal for connector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177817A (en) * 1983-03-26 1984-10-08 富士通株式会社 Electric contactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177817A (en) * 1983-03-26 1984-10-08 富士通株式会社 Electric contactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123260A1 (en) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. Silver-coated material for movable contact component and method for manufacturing such silver-coated material
WO2008123259A1 (en) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. Silver-coated material for movable contact component and method for manufacturing such silver-coated material
JP2008270193A (en) * 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The Silver coating material for movable contact component, and manufacturing method thereof
JP2008270192A (en) * 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The Silver coating material for movable contact component, and manufacturing method thereof
WO2014148365A1 (en) * 2013-03-21 2014-09-25 株式会社エンプラス Electrical connector, and socket for electric component
WO2015029745A1 (en) * 2013-08-29 2015-03-05 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, process for producing plated member, and process for producing plated terminal for connector

Also Published As

Publication number Publication date
JPH0373962B2 (en) 1991-11-25

Similar Documents

Publication Publication Date Title
JP3417395B2 (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
TWI225322B (en) Terminal having ruthenium layer and a connector with the terminal
JP2726434B2 (en) Sn or Sn alloy coating material
JPH11229178A (en) Metallic coating member
JP2001107290A (en) Tinned bar stock for electronic parts and its producing method
JP3998731B2 (en) Manufacturing method of current-carrying member
JPS6116429B2 (en)
JP2670348B2 (en) Sn or Sn alloy coating material
JP5234487B2 (en) Flexible flat cable and manufacturing method thereof
JPS6037605A (en) Ag-coated cu electronic component material
JPH048883B2 (en)
JPH01283780A (en) Covering material of sn or sn alloy
JP3402228B2 (en) Semiconductor device having lead-free tin-based solder coating
JPS6372895A (en) Production of parts for electronic and electrical equipment
JPH07230904A (en) Forming method for electrode terminal of chip-fixed resistor
JPS6151038B2 (en)
JPH0365630B2 (en)
JP2628749B2 (en) Sn or Sn alloy coating material with excellent heat resistance for electronic and electrical parts
JPH06302756A (en) Lead frame for semiconductor device
JPS6153434B2 (en)
JP5174733B2 (en) Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JPH09223771A (en) Electronic component lead member and its manufacture
JPS6150160B2 (en)
JPH08153843A (en) Lead frame for semiconductor chip mounting
TW202225489A (en) Plating structure comprising Ni electrolytic plating film, and lead frame including said plating structure