JPS6037503A - Light guide element - Google Patents
Light guide elementInfo
- Publication number
- JPS6037503A JPS6037503A JP14486883A JP14486883A JPS6037503A JP S6037503 A JPS6037503 A JP S6037503A JP 14486883 A JP14486883 A JP 14486883A JP 14486883 A JP14486883 A JP 14486883A JP S6037503 A JPS6037503 A JP S6037503A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- optical waveguide
- light guide
- light
- guide element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/60—Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface
- C03C25/601—Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface in the liquid phase, e.g. using solutions or molten salts
- C03C25/605—Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface in the liquid phase, e.g. using solutions or molten salts to introduce metals or metallic ions, e.g. silver or copper, into the glass
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明#1基板上に形成した光導波路を有するライト
ガイド、特にその素子端の光結合を容易にしたライトガ
イドに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention #1 relates to a light guide having an optical waveguide formed on a substrate, and particularly to a light guide that facilitates optical coupling at the ends of its elements.
(従来技術)
ガラス等の基板の表面に、19rgk部分をイオン交換
法によって基板よ)わずかに屈折率を高めて先導波路を
杉我したものは公知である口この技術による具体的な素
子の1卸として、熱光学効果を用いた光スィッチをあけ
ることができる。すなわち、第1図に示すように、ガラ
ス基板1の我向にAt薄膜を形成し、勢波路形状の慾明
けをした後、345℃以上のKNO、溶液中に約1時間
浸し、基板弐面のNa+イオンをに+イオンと交換する
。このようにしてイオン交換された部分11基板よシも
4〜6xto−’株i屈折率が高くなシ、光導波路が形
成される。K+イオン交換で作製された光辱波Mは長く
しても屈折率の変化が少なく、導波光のリークもはとん
どなく、伝搬損失も1〜2dB7cm と小さく優れた
ライトガイド素子であることが知られている。(Prior art) A device in which a 19rgk portion is formed on the surface of a substrate such as glass by an ion exchange method to slightly increase the refractive index and a guiding waveguide is known. As a wholesaler, you can open a light switch using the thermo-optic effect. That is, as shown in FIG. 1, after forming an At thin film on the opposite side of a glass substrate 1 and forming a wave path shape, it was immersed in a KNO solution at 345° C. or higher for about 1 hour, and the second side of the substrate was heated. Exchange Na+ ions with Ni+ ions. In this way, the ion-exchanged portion 11 of the substrate also has a high refractive index of 4 to 6 x to -', and an optical waveguide is formed. The optical wave M created by K+ ion exchange has little change in refractive index even if it is lengthened, there is almost no leakage of guided light, and the propagation loss is 1 to 2 dB7cm, making it an excellent light guide element. It has been known.
しかし、イオン変換が行なわれる深さIfll、 5〜
2μmであシ、イオン交換の時間を長くしてもそれ以上
の深さには進まない。However, the depth Ifll, 5~
It is 2 μm, and even if the ion exchange time is increased, it will not proceed to a deeper depth.
光スィッチとするには、上記のような光等波路■途中の
部分をイオン交換をせずに切断81I3としておく o
ソ(D DJ WIT s 312)上VC1T、 、
NiC。To make an optical switch, cut off the middle part of the optical wave path 81I3 as shown above without performing ion exchange o
So (D DJ WIT s 312) VC1T, ,
NiC.
等をスパッタ又扛蒸曹吟υ方法で薄膜4を形成させる。A thin film 4 is formed by sputtering or steaming.
この状態で光導波路2に光を入射すると、光はuJTh
部3でカラス基板中に拡散し、他方の光導波路2′には
入って行かない。しかし、切断部3上部の金網薄膜4に
通電加熱すると入射光は他方の光導波路2′に導かれる
。ガラスは100℃根度温度が上がると10−6程度の
屈折率変化が生じ、これは光導波路と基板の屈折率差と
同@度であるので、昇温部分によって光導波路2.2′
が勢価的に接続された状襲となるためである。このよう
な薄膜抵抗発熱体4によ如す答速kが0.5 ma N
#の光スィッチが得られている。When light is input into the optical waveguide 2 in this state, the light is uJTh
It is diffused into the glass substrate at part 3 and does not enter the other optical waveguide 2'. However, when the wire mesh thin film 4 above the cut portion 3 is heated by electricity, the incident light is guided to the other optical waveguide 2'. When the temperature of glass increases by 100°C, a refractive index change of about 10-6 occurs, and this is the same as the refractive index difference between the optical waveguide and the substrate, so the optical waveguide 2.2'
This is because it becomes a situation that is connected in terms of price. The response speed k generated by such a thin film resistance heating element 4 is 0.5 maN.
# optical switches have been obtained.
上記のような光導波路を亀いた素子では、光の入出力を
どのように行なうかが間鞘となる。In a device using an optical waveguide as described above, the question is how to input and output light.
一般には第1図に示すように、プリズム5を用いたプリ
ズムカップリング法が簡便な方法として採用される。し
かし、複数個の光スィッチを高@獣で集積した素子では
光スポットが鮮明に分離しなかったシ、プリズムとの結
合効率がはらついたシする欠点を有する。Generally, as shown in FIG. 1, a prism coupling method using a prism 5 is adopted as a simple method. However, a device in which a plurality of optical switches are integrated at a high density has the disadvantage that the light spots are not clearly separated and the coupling efficiency with the prism varies.
纒波路端面から直接入出力光を得ようとすれけ、基板上
面から1.5〜2μn1まで0部分をダレやカケのない
様に研磨することH&めて困難であり、端部での散乱に
よってF!lr望のパターンを得ることができない。In order to obtain direct input/output light from the end face of the red wave path, it is extremely difficult to polish the 0 part from the top surface of the substrate to 1.5 to 2 μn1 without sagging or chipping, and due to scattering at the end. F! I cannot get the desired pattern.
(!f!:明の目的)
この発明は、素子の端面近くではイオン交換l−を陳く
することにより、端面Q研磨をd易にし、直接納会が可
能なライトガイド素子を侍ようとするものでおる。(!f!: purpose of light) This invention attempts to make the end face Q polishing easier by making ion exchange l- near the end face of the element, and to provide a light guide element that can be directly assembled. It's something.
(発明の陶成)
この発明の光導波路によるライトガイド素子は、第2図
に光導波路に沿った断面図を、第3図にその端面図を示
すように、少なくとも入出力端部分のイオン交換層を約
10μnl ff1度V)深さとして端部の仕上げをd
易にしたものである。(Creation of the Invention) The light guide element using the optical waveguide of the present invention is capable of ion exchange at least at the input and output end portions, as shown in FIG. 2 as a cross-sectional view along the optical waveguide and as shown in FIG. The layer is approximately 10 μnl ff1 degree V) deep and the end finish is d
It was made easy.
上記のように、IC+イオンによる交換層は1.5〜2
μm +=+iにしかならないが、Ag+イオンはカラ
ス中のかなりmい部分迄浸透してイオン交換する性質を
有している。A、+イオン交換された部分はカラス基板
よシ2〜6 X 10−2恨匿屈折率が高く、K+イオ
ン交換層と同様、光導波路を形収する。As mentioned above, the exchange layer due to IC+ ions is 1.5 to 2
Although it is only μm +=+i, Ag+ ions have the property of penetrating into a considerably thick part of the glass and performing ion exchange. The A, + ion-exchanged portion has a higher refractive index of 2 to 6 × 10 −2 than the glass substrate, and forms an optical waveguide similarly to the K+ ion exchange layer.
Ag+イオン交換は、AgNo、溶液中に基板を没すこ
とによっても行なうことか出来るが、電界イオン交換の
方が良好な結果が得られるO第4図に示すように、ます
、光導波路の端部に光導波路幅(向えば20μm)J!
lさ1μm幅度のAg膜7を#着する。次いで基板1の
両面に寛馳用のA1膜を作る。これを240℃の恒編槓
中で適当な地圧を印加すると、Ag(オンはナベてガラ
ス中に入如、採さが10μm miυ元害波路が杉成さ
れる。Ag+ ion exchange can also be performed by immersing the substrate in an AgNo solution, but better results can be obtained with electric field ion exchange.As shown in Figure 4, the end of the optical waveguide is The width of the optical waveguide (20 μm if facing) J!
An Ag film 7 having a length and a width of 1 μm is deposited. Next, A1 films for relaxation are formed on both sides of the substrate 1. When a suitable ground pressure is applied to this in a constant molding oven at 240° C., a wave path of 10 μm in diameter is formed, with Ag (on) entering the pan glass.
(発明の効果)
こV)発明は、上記のようにA、4オン交換によってl
Oμmt184VLI2)床い光導波路を杉成したので
、入出力端υ仕上けが容易になシ、光を遍尚なレンズで
東末し、端部に拍てるたけで尋波路に光を尋人でき、−
曲から光スポットを直接に嘔シ出すことが出来る。ス社
2ットυ杉状、分離が良くなシ、人出力とも′A、ファ
イバとの直接納会も可能になシ、又、書込可デバイスと
してもスポット形状が良好なものが得られる等、顕著な
効果を奏する。(Effects of the Invention) V) The invention provides the following advantages: A.
Oμmt184VLI2) Since the flat optical waveguide is made of cedar, it is easy to finish the input and output terminals, and the light can be sent to the bottom waveguide by just tapping the end by directing the light to the east end with a wide lens. −
You can emit a light spot directly from the song. 2-piece cedar shape, good separation, high output power, direct connection with fiber is possible, and a writable device with good spot shape, etc. , has a remarkable effect.
第1図ti従来のプリズムカブカップリング法によるラ
イトガイド素子の作相貌明図、第2因はこの発明のライ
トカイト素子の光等tB1.路に沿う部分〜1向図、第
3図tゴその端面図、叱4図れAgイオン交換法V説明
図
1ニガラス基板 2:光導波路 3 : 9J断部4:
薄膜抵抗体 5ニプリズム 6 : Ag+イオン交換
部 7:Ag膜 8 : At電険咎許出願人 株式会
社 リ コ −
出願人代理人 弁理士 佐 藤 文 男(ほか1名)FIG. 1 is a clear view of the operation of a light guide element using the conventional prism cube coupling method. The second factor is the light etc. of the light guide element of the present invention. Part along the path ~ 1 direction view, Figure 3, end view, Figure 4, explanatory diagram of Ag ion exchange method, Figure 1. Glass substrate 2: Optical waveguide 3: 9J section 4:
Thin film resistor 5 prism 6: Ag + ion exchange part 7: Ag film 8: At electrical insurance Applicant: Rico Co., Ltd. - Applicant's agent Patent attorney Fumi Sato (and 1 other person)
Claims (1)
素子において、少なくとも光導波路端面近傍の光等波路
をAg イオン交換によって深いイオン交換層としたこ
とを%敵とするライトガイド素子A light guide element in which an optical waveguide is formed on a glass substrate by ion exchange, in which at least the optical waveguide near the end face of the optical waveguide is made into a deep ion exchange layer by Ag ion exchange.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14486883A JPS6037503A (en) | 1983-08-10 | 1983-08-10 | Light guide element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14486883A JPS6037503A (en) | 1983-08-10 | 1983-08-10 | Light guide element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6037503A true JPS6037503A (en) | 1985-02-26 |
Family
ID=15372259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14486883A Pending JPS6037503A (en) | 1983-08-10 | 1983-08-10 | Light guide element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6037503A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210552A (en) * | 1986-03-11 | 1987-09-16 | Nec Corp | File recovery system |
JPH0363845A (en) * | 1989-08-02 | 1991-03-19 | Nec Software Ltd | Automatic data recovery system |
CN111333350A (en) * | 2020-04-02 | 2020-06-26 | 四川旭虹光电科技有限公司 | Antibacterial glass fiber and preparation method and application thereof |
-
1983
- 1983-08-10 JP JP14486883A patent/JPS6037503A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210552A (en) * | 1986-03-11 | 1987-09-16 | Nec Corp | File recovery system |
JPH0363845A (en) * | 1989-08-02 | 1991-03-19 | Nec Software Ltd | Automatic data recovery system |
CN111333350A (en) * | 2020-04-02 | 2020-06-26 | 四川旭虹光电科技有限公司 | Antibacterial glass fiber and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4711514A (en) | Product of and process for forming tapered waveguides | |
JPH04234005A (en) | Manufacture of lightguide tube by ion exchange method | |
KR870002460A (en) | Blocking polarizers and methods | |
US3922062A (en) | Integrally formed optical circuit with gradient refractive index | |
US4793675A (en) | Element having light waveguides and method of making same | |
JPS6037503A (en) | Light guide element | |
US5194079A (en) | Method of forming an optical channel waveguide by thermal diffusion | |
US4880288A (en) | Integrated optical waveguide, method for its manufacture, and its use in an electro-optical modulator | |
JPS61148405A (en) | Microwave optical circuit device | |
JP2940141B2 (en) | Waveguide type optical control device | |
JPS6333706A (en) | Fiber type optical wave circuit element and its production | |
JPS53144353A (en) | Optical path switch | |
Righini et al. | Ion exchange in glass: a mature technology for photonic devices | |
JPS57173820A (en) | Optical switch | |
JPS5897028A (en) | Optical waveguide switch | |
JPH0244041B2 (en) | ||
JPS58209709A (en) | Star coupler for multimode optical fiber and its manufacture | |
JPS62189407A (en) | Production of optical waveguide | |
JPH0350241B2 (en) | ||
JPS6037531A (en) | Optical control element | |
JPS5715465A (en) | Large scale optical integrated circuit | |
JP2643927B2 (en) | Manufacturing method of optical branching / optical coupling circuit | |
KR100374345B1 (en) | Method for manufacturing buried optical waveguide | |
JPH05313032A (en) | Manufacture of optical waveguide | |
WO2002067019A2 (en) | Polymer on substrate waveguide structure and corresponding production method |