JPS6036346B2 - Electro gas arc welding method - Google Patents

Electro gas arc welding method

Info

Publication number
JPS6036346B2
JPS6036346B2 JP54057613A JP5761379A JPS6036346B2 JP S6036346 B2 JPS6036346 B2 JP S6036346B2 JP 54057613 A JP54057613 A JP 54057613A JP 5761379 A JP5761379 A JP 5761379A JP S6036346 B2 JPS6036346 B2 JP S6036346B2
Authority
JP
Japan
Prior art keywords
slag
welding
groove
surface area
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057613A
Other languages
Japanese (ja)
Other versions
JPS55149781A (en
Inventor
良雄 神戸
義徳 竹本
成美 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54057613A priority Critical patent/JPS6036346B2/en
Publication of JPS55149781A publication Critical patent/JPS55149781A/en
Publication of JPS6036346B2 publication Critical patent/JPS6036346B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は自動溶接用複合ワイヤを用いて行なう立向自動
溶接に係るもので、さらに詳しくは溶接中適正量の熔接
スラグを生成し、薄板から厚板までの構造物の溶接にお
いて美麗な溶接ビードが得られるェレクトロガスアーク
溶鞍法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to vertical automatic welding performed using a composite wire for automatic welding. The present invention relates to an electrogas arc hot saddle method that enables beautiful weld beads to be obtained during welding.

現在、軟鋼、50キロ日T鋼、60キロHT鋼等を用い
る船舶、円筒形石油備蓄タンク等の製作には施工能率の
観点からェレクトロガスアーク熔接が採用されている。
Currently, electrogas arc welding is used in the manufacture of ships, cylindrical oil storage tanks, etc. using mild steel, 50kg T steel, 60kg HT steel, etc. from the viewpoint of construction efficiency.

しかし、従来のェレクトロガスアーク溶接、例えば特開
昭49一115951号公報記載の技術等ではワイヤ中
のスラグ生成剤は少量とすることが望ましいとしか記載
されていないことからも判る様に、スラグ生成剤の量に
は特別の関Dは払われていなかった。この様な複合ヮィ
ャを用い1溶接長が2.軌にもなる円筒形原油タンク等
の溶接を行なうと、溶接中に生成スラグの過不足を来た
し、平滑で美麗なビードを得ることはできない。
However, in conventional electrogas arc welding, such as the technique described in JP-A-49-115951, it is only stated that it is desirable to have a small amount of slag-forming agent in the wire. No special restrictions were placed on the amount of generator. Using such a compound welding length, 1 weld length is 2. When welding a cylindrical crude oil tank that also serves as a track, there will be too much slag or too little slag produced during welding, making it impossible to obtain a smooth and beautiful bead.

溶接ビードが平滑で美麗でなく、凹凸あるし、は切欠の
ある様な形状では応力集中がはなはだしく破壊強度が著
しく低下するので好ましくない。従って、現場施工では
優れた機械的性能を持つ溶接金属を得ることは勿論必要
なことではあるが、内部欠陥がなく、平滑で美麗なビー
ドを溶接線全長に亘つて得ることが先ず第1番目に要求
されることであり、この様な溶接法の開発が強く望まれ
ていた。
The weld bead is not smooth and beautiful, but has irregularities, and a shape with notches is undesirable because stress concentration will be significant and the fracture strength will be significantly reduced. Therefore, while it is of course necessary to obtain a weld metal with excellent mechanical performance in on-site construction, the first priority is to obtain a smooth and beautiful bead with no internal defects over the entire length of the weld line. Therefore, the development of such a welding method has been strongly desired.

本発明者らはかかる産業界の強い要望に答えるべく、複
合ワイヤ中のスラグ生成剤の充填率と開先形状の関係を
詳細に検討した結果、本発明を成し得たものである。
In order to meet the strong demands of the industry, the present inventors conducted a detailed study on the relationship between the filling rate of the slag forming agent in the composite wire and the groove shape, and as a result, the present invention was achieved.

すなわち、本発明は溶着金属量の推定値である開先の体
積Vと表裏合計又は少なくともその一方のビード表面積
の推定値である開先の表面積Sとの比S/Vとこれを溶
接する複合ワイヤ中のスラグ生成剤の充填率yとの関係
が、第3図の直線y=≦とy=2‐寿との間肌対比領域
例こある如く、開先形状若しくは複合ワイヤを選定して
溶接することを特徴とするェレクトロガスアーク溶接法
である。
That is, the present invention deals with the ratio S/V of the volume V of the groove, which is an estimated value of the amount of welded metal, and the surface area S of the groove, which is an estimated value of the total bead surface area of the front and back surfaces, or at least one of them, and the composite welding of this. The relationship between the filling rate y of the slag-forming agent in the wire is between the straight line y=≦ and y=2-life in Fig. 3, as shown in the example of the comparison region, when the groove shape or the composite wire is selected. This is an electrogas arc welding method characterized by welding.

以下に本発明を詳細に説明する。The present invention will be explained in detail below.

先ず、本発明において、開先の体積Vとは溶着金属が1
パス毎に堆積する空間、即ち溶着金属量の推定値を意味
しており、第1図イに示す開先形状の場合には(L十G
)X季×・が関先の体積Vである。
First, in the present invention, the volume V of the groove is defined as the volume of the weld metal being 1
It means the space deposited in each pass, that is, the estimated value of the amount of deposited metal, and in the case of the groove shape shown in Fig. 1A, (L + G
)

第1図口の如き関先においてはパッキングパス(B.P
.)、フイニツシングパス(F.P.)とも(L+G〉
X季×享XIがそれぞれの溶接時の体積Vである。次に
開先の表面積Sとは溶接中に生成したスラグが付着する
各パス毎の表裏合計又は少なくともその一方のビード表
面積の推定値を意味しており、第1図イに示す関先形状
の場合はL×1とG×1の和がSである。
At checkpoints like the entrance in Figure 1, packing passes (B.P.
.. ), Finishing Pass (F.P.) and (L+G>
Xki×KyoXI is the volume V at the time of welding. Next, the surface area S of the groove means the estimated value of the total surface area of the bead for each pass, or at least one of the front and back surfaces, to which slag generated during welding adheres, and is the estimated value of the bead surface area of the joint shape shown in Figure 1 A. In this case, the sum of L×1 and G×1 is S.

又、第1図口の如き関先形状の場合、B.P.側溶接時
の開先表面積SはL×1十G×1であり、F.P.側溶
援時のSは後述の如くL×1となる。この場合、開先表
面積Sを以上の様に定義したのは次の理由による。
In addition, in the case of a checkpoint shape such as the opening in Figure 1, B. P. The groove surface area S during side welding is L×10G×1, and F. P. S at the time of side support is L×1 as described later. In this case, the reason why the groove surface area S is defined as described above is as follows.

銅板当金を使用する立向溶接において、ビード表面形状
を美麗にるためには、銅当金とビード間に薄いスラグ層
を生成することが不可欠である。即ち、スラグ生成剤が
適量供給されると、丁度当金とビードの隙き間を埋める
に足るだけスラグを生成し、所期の目的を達することが
できる。しかし生成スラグ量が多過ぎると、ビード表面
だけでは消費しきれず、溶融池全面までを覆うようにな
り、スラグがアーク力によって跳ね飛ばされ、スラグ跳
ねを起こし、箸るしい時はェレクトロスラグ溶接となる
。従ってスラグ生成剤は溶接線全長に亘つてビード形状
を改善し得る程度、即ち、丁度ビード表面を覆うに足る
だけのスラグを生成するための必要最少量をワイヤから
供給しなければならない訳であり、従って各パス毎の所
要スラグ量はその時のビード表面積に直接関係する。即
ち、開先両面に銅当金を当てがい、両サィドーこビード
表面ができる第1図イおよび第1図口のB.P.側の溶
接等では表裏ビードの表面積の推定値は関先両側の面積
L×1とG×1の和で代表されるためこの値がSであり
、一方片面のみに銅板を当てがう第1図口のF.P.若
しくは仕口部の様な関先の溶接では銅当金のある片面の
みがビード表面となり、スラグの付着もこの側の表面の
みで行われる。従って、この様な場合の閥先表面積Sは
前に述べたようにL×】となるのである。なお、立向溶
接では板厚が変化しても表および裏側の関先幅は殆んど
変化させないためピード幅はほぼ一定しており、単位溶
接長当りのスラグ消費量は殆んど変らない。従って、薄
板の場合は溶着金属量が少ないため、スラグ消費量は溶
着金属量に比べ相対的に多くなり、ワイヤ中のスラグ生
成剤がし、複合ワイヤを選定しなければならない。一方
、厚板の場合は逆にスラグ生成剤を少量含有したワイヤ
を選定して使用しなければならない。次に本発明者らは
板厚6〜35肋の50キロHT鋼を第1図イに示す開先
に加工し、溶接長2hでもつて溶着金属が堆積する関先
の体積Vと、生成スラグが付着凝固するビード表面積に
相当する関先表面積Sとの比S/Vと、複合ワイヤ中の
スラグ生成剤の充填率yとの関係を明らかにした。この
場合、複合ワイヤの外皮材は軟鋼、径は1.6側であり
断面形状は第2図のイであった。ワイヤの合金成分は6
0キロHT鋼用に調整し、スラグ生成剤は金属ふっ化物
を主体に対ワイヤ重量比で0〜9%添加した。溶接条件
は板厚6帆の場合310A−32V、板厚12.7側以
上は450A−42Vであった。なお、板厚12.7肋
以上ではワイヤを開先内で板厚方向に120回/分振動
させ、ァ−ク発生点の分散を図り、入熱の分布を均一化
させると共に、狭開先の溶け込み形状の改善を図った。
いずれの場合もシールドガスはC02で301/分流し
、開先の裏面は固定鋼当金、表は摺動鋼当金を当てがつ
て立向自動溶接した。実験結果を示す第3図を見ると表
裏合計又は少なくともその一方のビード表面積の推定値
である関先表面積S(地)と落着金属量の推定値である
体積V(塊)の比S/Vに比例して良好な溶接を行うに
必要な複合ワイヤ中のスラグ生成剤の充填率y(%)は
増加することが判る。
In vertical welding using a copper plate abutment, it is essential to generate a thin slag layer between the copper abutment and the bead in order to obtain a beautiful bead surface shape. That is, when an appropriate amount of slag forming agent is supplied, slag is generated just enough to fill the gap between the deposit and the bead, and the desired purpose can be achieved. However, if the amount of slag produced is too large, it cannot be consumed only on the bead surface, and it will cover the entire surface of the molten pool.The slag will be blown away by the arc force, causing slag splashing, and when it is difficult to perform electroslag welding. becomes. Therefore, the slag-forming agent must be supplied from the wire to the extent necessary to improve the bead shape over the entire length of the weld line, that is, to generate enough slag to just cover the bead surface. Therefore, the amount of slug required for each pass is directly related to the bead surface area at that time. That is, a copper abutment is applied to both sides of the groove, and a bead surface is formed on both sides of the groove. P. In side welding, etc., the estimated value of the surface area of the front and back beads is represented by the sum of the areas L x 1 and G x 1 on both sides of the joint, so this value is S. Figure opening F. P. In the case of welding joints such as joints, only one side of the weld where the copper abutment is located becomes the bead surface, and slag adhesion occurs only on this side of the surface. Therefore, the tip surface area S in such a case is L×] as described above. In addition, in vertical welding, even if the plate thickness changes, the joint width on the front and back sides hardly changes, so the peed width remains almost constant, and the slag consumption per unit weld length hardly changes. . Therefore, in the case of a thin plate, since the amount of welded metal is small, the slag consumption is relatively large compared to the amount of welded metal, and the slag forming agent in the wire is released, so a composite wire must be selected. On the other hand, in the case of thick plates, a wire containing a small amount of slag forming agent must be selected and used. Next, the present inventors machined a 50kg HT steel plate with a plate thickness of 6 to 35 ribs into the groove shown in Figure 1A, and determined the volume V of the joint where the deposited metal accumulates even with a welding length of 2h, and the slag produced. We clarified the relationship between the ratio S/V of the bead surface area S, which corresponds to the bead surface area on which the slag-forming agent adheres and solidifies, and the filling rate y of the slag forming agent in the composite wire. In this case, the outer sheath material of the composite wire was made of mild steel, the diameter was on the 1.6 side, and the cross-sectional shape was A in FIG. The alloy composition of the wire is 6
It was adjusted for 0kg HT steel, and the slag forming agent was mainly metal fluoride added in an amount of 0 to 9% by weight relative to the wire. The welding conditions were 310A-32V for the 6-thickness plate, and 450A-42V for the 12.7-thickness side and above. For plate thicknesses of 12.7 ribs or more, the wire is vibrated 120 times/min in the plate thickness direction within the groove to disperse the arc generation points and homogenize the heat input distribution. We aimed to improve the shape of the melt.
In either case, the shielding gas was C02 and flowed at 301/min, and a fixed steel abutment was applied to the back side of the groove, and a sliding steel abutment was applied to the front side, and vertical automatic welding was performed. Looking at Figure 3 showing the experimental results, the ratio S/V of the bead surface area S (ground), which is the estimated value of the total bead surface area of the front and back surfaces or at least one of them, and the volume V (clump), which is the estimated value of the amount of deposited metal. It can be seen that the filling rate y (%) of the slag forming agent in the composite wire required to perform good welding increases in proportion to .

この場合、y<≦の関係にある領域ではビード表面に付
着、凝固して消費されるスラグの生成が不足し、溶接ビ
ードを完全に彼包することができず、ビード外観‘ま美
麗‘こなぬかった。一方、y〉2‐寿の関係にある領域
ではビード表面で消費されるスラグ量より、生成するス
ラグの方が多く、溶融池は生成したスラグであふれスラ
グ鞍6を頻発し、安定した溶接を継続することができな
かった。従って、本発明においてスラグ生成に過不足が
なく、安定した溶接が実現できるのはワイヤ中のスラグ
生成剤の充填率仰きと2‐寿との間肌さままれた領域内
にある場合であることが判った。なお、本発明に用いる
複合ワイヤのスラグ生成剤としてはCaF2,NaF,
LiF,CeF3等の金属ふっ化物を主として用いるが
、CaC03,弦C03,LiC03等の金属炭酸塩と
Ti02,Si02,Mn02,Zr02等の金属酸化
物をも使用することができ、本発明で云うスラグ生成剤
の充填率yとはこれら金属ふっ化物、金属炭酸塩、金属
酸化物のワイヤ全重量に対する充填重量比率(百分率)
である。
In this case, in the region where y < It was dry. On the other hand, in the region where the relationship y〉2-life exists, the amount of slag generated is greater than the amount of slag consumed on the bead surface, and the molten pool is overflowing with the generated slag, resulting in frequent occurrence of slag saddle 6, which prevents stable welding. I couldn't continue. Therefore, in the present invention, stable welding with no excess or deficiency of slag generation can be achieved when the filling rate of the slag forming agent in the wire is within a range between the filling rate and the life span. It turned out that. Note that the slag forming agent for the composite wire used in the present invention includes CaF2, NaF,
Metal fluorides such as LiF and CeF3 are mainly used, but metal carbonates such as CaC03, C03 and LiC03 and metal oxides such as Ti02, Si02, Mn02 and Zr02 can also be used, and the slag referred to in the present invention The filling rate y of the generating agent is the filling weight ratio (percentage) of these metal fluorides, metal carbonates, and metal oxides to the total weight of the wire.
It is.

ところで、本発明の適用には特に制限を設けるものでは
なく、どの様な開先形状であっても前記開先体積Vと関
先表面積Sとの比S/Vと、ワイヤ中のスラグ生成剤の
充填率yとが本発明の関係にあれば、V開先,×開先の
区別,ルートフェ−スの有無、ワイヤ径の大小に係らず
広く適用することができる。しかし、施工能率、溶接部
性能の観点からすれば溶接すべき関先はなるべく狭い方
が良く、例ばルート間隙は4〜7肋、表面間隙は15肌
程度の狭開先とするのが望ましい。さらに厚板の狭関先
溶接では溶接ワイヤを板厚方向に30〜200回/分程
度振動させ、アーク点の移動により入熱の分散を図り、
母材両面の溶け込みを完全にするとより望ましい結果が
得られる様である。適用し得る鋼種は軟鋼、50キロH
T鋼、60キロHT鋼だけでなく、低温用鋼等にも適用
できる。また、本発明に使用する複合ワイヤの外皮材と
しては欧鋼の他、低合金鋼あるいは高合金鋼をも使用で
き、径、断面形状についても特に制限するものではない
が溶接入熱を減少させ、溶接部性能の向上を図るために
は落着速度が大きい2.仇豚以下の紬蚤ワイヤの採用が
望ましい。複合ワイヤには鉄粉、0.5〜1.5%のS
i,1.0〜3.5%のMnの他3%以下のMo,10
%以下のNiとCr,1.5%以下のTi,AI,Zr
,V或いは0.04%以下のBの1種以上を適宜添加し
溶接金属の機械性能を改善することができる。本発明に
なる溶接法のシールドガスはC02が最も一般的である
が、C02一02,Ar−C02,Ar−02等の混合
ガスも使用できる。
By the way, there are no particular restrictions on the application of the present invention, and regardless of the groove shape, the ratio S/V of the groove volume V to the joint surface area S and the slag forming agent in the wire If the filling rate y is in the relationship according to the present invention, it can be widely applied regardless of the distinction between V-groove and x-groove, the presence or absence of a root face, and the size of the wire diameter. However, from the viewpoint of construction efficiency and weld performance, it is better to have the joint to be welded as narrow as possible. For example, it is desirable to have a narrow gap with a root gap of 4 to 7 ribs and a surface gap of about 15 skins. . Furthermore, when welding thick plates with narrow joints, the welding wire is vibrated in the thickness direction of the plate at approximately 30 to 200 times per minute to disperse the heat input by moving the arc point.
It appears that more desirable results can be obtained by perfecting the penetration of both sides of the base material. Applicable steel type is mild steel, 50kgH
It can be applied not only to T steel and 60kg HT steel, but also to low temperature steel, etc. Furthermore, in addition to European steel, low-alloy steel or high-alloy steel can be used as the sheath material of the composite wire used in the present invention, and there are no particular restrictions on the diameter or cross-sectional shape, but it is possible to reduce welding heat input. 2. In order to improve the performance of welded parts, the settling speed is high. It is desirable to use tsumugi flea wire that is smaller than the size of a pig. Composite wire contains iron powder, 0.5-1.5% S
i, 1.0-3.5% Mn and 3% or less Mo, 10
% or less Ni and Cr, 1.5% or less Ti, AI, Zr
, V, or 0.04% or less of B can be appropriately added to improve the mechanical performance of the weld metal. The shielding gas of the welding method according to the present invention is most commonly C02, but mixed gases such as C02-02, Ar-C02, Ar-02, etc. can also be used.

特にArとの混合ガスはスパッタの減少に効果的である
。次に実施例を用いて本発明の効果をさらに具体的に説
明する。
In particular, a mixed gas with Ar is effective in reducing spatter. Next, the effects of the present invention will be explained in more detail using Examples.

実施例 第1表に実施例の結果を総括して示す。Example Table 1 summarizes the results of the Examples.

第1表 第1表 (備考)※は比較 第1表において、試験舷.1〜M.4とNo.7〜No
.9が本発明になる熔接法であり、M.5,地.6およ
びNo.10が比較例である。
Table 1 Table 1 (Notes) *In Comparison Table 1, test ship. 1~M. 4 and no. 7~No
.. 9 is the welding method of the present invention, M. 5. Earth. 6 and no. 10 is a comparative example.

当金としては裏面に水冷固定鋼板、表側に水冷摺動鋼板
を用い、溶接長は2.軸とした。
A water-cooled fixed steel plate was used on the back side and a water-cooled sliding steel plate was used on the front side as the welding material, and the welding length was 2. It was the axis.

本発明になる試験No.の場合、開先形状、あるいは複
合ワイヤの径、外皮材質にかかわらず溶接中適正量のス
ラグを生成し、溶接ビードを完全に薄く均一に覆う結果
、平滑で、美麗なビードが得られた。
Test No. according to the present invention. In this case, the appropriate amount of slag was generated during welding regardless of the groove shape, the diameter of the composite wire, or the material of the outer sheath, and as a result, the weld bead was completely covered thinly and uniformly, resulting in a smooth and beautiful bead.

一方、試験No.5の比較例の場合は生成スラグが多く
なり過ぎ熔接長が300側当りからスラグ銚を起こし始
め、50仇蚊ではスラグが溶融池を完全に覆った状態と
なり、溶接を継続することができなかった。
On the other hand, test no. In the case of Comparative Example No. 5, too much slag was produced, and slag problems started to occur when the welding length reached 300mm, and at 50mm, the slag completely covered the molten pool, making it impossible to continue welding. Ta.

また、No.6とNo.10の比較例の場合はスラグが
不足しスラグは溶接ビード全面を覆うことができず表面
に斑状に付着するのみで、ビード形状を改善する効果は
全くなく、却って、ビード表面に凹凸を作る要因となり
、美麗な外観のビードを得ることができなかった。
Also, No. 6 and no. In the case of Comparative Example No. 10, there was insufficient slag, and the slag could not cover the entire surface of the weld bead and only adhered to the surface in spots, which had no effect of improving the bead shape at all, and on the contrary, caused unevenness on the bead surface. Therefore, beads with a beautiful appearance could not be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた開先形状を示す図、第2図は本
発明に用いる複合ワイヤの断面形状例を示す図、第3図
は関先形状と複合ワイヤ中のスラグ生成剤量の関係を表
わす図である。 髪2図 多ノ図 多3図
Fig. 1 is a diagram showing the groove shape used in the example, Fig. 2 is a diagram showing an example of the cross-sectional shape of the composite wire used in the present invention, and Fig. 3 is the joint shape and the amount of slag forming agent in the composite wire. FIG. Hair 2 drawings Tano drawings 3 drawings

Claims (1)

【特許請求の範囲】[Claims] 1 溶着金属量の推定値である開先の体積Vと表裏合計
又は少なくともその一方のビード表面積の推定値である
開先の表面積Sとの比S/Vと、これを溶接する複合ワ
イヤ中のスラグ生成剤の充填率yとの関係が第3図の直
線y=S/Vとy=2.5S/Vとの間にはさまれた領
域内にある如く、開先形状若しくは複合ワイヤを選定し
て溶接することを特徴とするエレクトロガスアーク溶接
法。
1 The ratio S/V of the volume V of the groove, which is the estimated value of the amount of deposited metal, and the surface area S of the groove, which is the estimated value of the total bead surface area of the front and back surfaces, or at least one of them, and the ratio S/V of the groove in the composite wire to be welded. The groove shape or the composite wire should be adjusted so that the relationship with the filling rate y of the slag forming agent is within the region sandwiched between the straight lines y=S/V and y=2.5S/V in FIG. An electrogas arc welding method characterized by selective welding.
JP54057613A 1979-05-12 1979-05-12 Electro gas arc welding method Expired JPS6036346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54057613A JPS6036346B2 (en) 1979-05-12 1979-05-12 Electro gas arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54057613A JPS6036346B2 (en) 1979-05-12 1979-05-12 Electro gas arc welding method

Publications (2)

Publication Number Publication Date
JPS55149781A JPS55149781A (en) 1980-11-21
JPS6036346B2 true JPS6036346B2 (en) 1985-08-20

Family

ID=13060710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54057613A Expired JPS6036346B2 (en) 1979-05-12 1979-05-12 Electro gas arc welding method

Country Status (1)

Country Link
JP (1) JPS6036346B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103967A (en) * 1981-12-15 1983-06-21 Sumikin Yousetsubou Kk Butt welding that enables all position welding
JP5692413B2 (en) * 2013-02-06 2015-04-01 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plate and multi-electrode electrogas arc circumferential welding method for steel pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039240A (en) * 1973-08-10 1975-04-11
JPS5152954A (en) * 1974-09-06 1976-05-11 Soudure Electr Autogene
JPS596759A (en) * 1982-06-30 1984-01-13 Hitachi Ltd Rotor for magnet generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039240A (en) * 1973-08-10 1975-04-11
JPS5152954A (en) * 1974-09-06 1976-05-11 Soudure Electr Autogene
JPS596759A (en) * 1982-06-30 1984-01-13 Hitachi Ltd Rotor for magnet generator

Also Published As

Publication number Publication date
JPS55149781A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
US4149063A (en) Flux cored wire for welding Ni-Cr-Fe alloys
Widgery Tubular wire welding
Yuan et al. Relationship between penetration and porosity in horizontal fillet welding by a new process “hybrid tandem MAG welding process”
JPS59500090A (en) Improvements in or relating to fusion welding methods
JPS6036346B2 (en) Electro gas arc welding method
JP3788691B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
JPH0436785B2 (en)
JPH05228691A (en) Flux cored wire for self-shielded arc welding
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
Bushey Welding of cast irons
JPS61169196A (en) Flux cored wire for self-shielded arc welding
JP2000288735A (en) Two-electrode vertically facing electro-gas arc welding method excellent in welding workability and penetration bead appearance
US3760140A (en) Submerged-arc welding with strip electrode and foamed flux
US3420980A (en) Method and material for hard-surfacing
JPS6011600B2 (en) Electro gas arc welding method
JPH11138295A (en) Wire including flux for electrogas arc welding of stainless steel
RU1797505C (en) Method of welding
Yu et al. Electroslag surfacing: a potential process for the rebuilding and restoration of ship components
JPH0327891A (en) Calcined flux for large heat input submerged arc welding
JPH04361877A (en) Gas shielded metal arc welding method
JPH0313296A (en) Method for build-up welding of roll
Liu et al. Electroslag and Electrogas Welding
JPH07314175A (en) High-speed horizontal fillet gas shielded arc welding method
Takenouchi et al. Arc welding of surface treated steel plates