JPS6035647A - Antiskid controller - Google Patents

Antiskid controller

Info

Publication number
JPS6035647A
JPS6035647A JP58145259A JP14525983A JPS6035647A JP S6035647 A JPS6035647 A JP S6035647A JP 58145259 A JP58145259 A JP 58145259A JP 14525983 A JP14525983 A JP 14525983A JP S6035647 A JPS6035647 A JP S6035647A
Authority
JP
Japan
Prior art keywords
level
speed
wheel
acceleration
wheel speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58145259A
Other languages
Japanese (ja)
Other versions
JPH044175B2 (en
Inventor
Shoichi Masaki
彰一 正木
Kimio Tamura
公男 田村
Teruyoshi Wakao
若尾 輝良
Noriyuki Nakajima
則之 中島
Ken Asami
謙 浅見
Kazunori Sakai
和憲 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP58145259A priority Critical patent/JPS6035647A/en
Priority to EP84305376A priority patent/EP0133598B1/en
Priority to DE8484305376T priority patent/DE3475505D1/en
Priority to US06/638,722 priority patent/US4665490A/en
Publication of JPS6035647A publication Critical patent/JPS6035647A/en
Publication of JPH044175B2 publication Critical patent/JPH044175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/415Short-circuit, open circuit failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/416Wheel speed sensor failure

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To obtain the superior control for antiskid by judging the mu level of the frictional coefficient by comparing the speed and acceleration calculated by a wheel speed and acceleration calculating means with a standard speed and a standard accleration and varying the brake pressure decompression completion level in accordance with the mu level. CONSTITUTION:Each wheel speed signal supplied from car-speed sensors (c) and (d) is input into a control circuit (e). The wheel speed/acceleration calculating means (f) in the control circuit (e) calculates the wheel speed and acceleration on the basis of the above-described signals, and the wheel speed and acceleration which are calculated by a judging means (g) are compared with a standard speed and a standard acceleration for estimating the frictional coefficient mu between a road and a tire, and the mu level is judged. A varying means (h) outputs the signal for varying the decompression completion standard level of the brake hydraulic pressure according to the judged mu level and controls the adjusting members (a) and (b) for brake hydraulic pressure.

Description

【発明の詳細な説明】 本発明は車両用のアンチスキッド制御装置、特に、路面
とタイヤとの間の摩擦係数71を推定すると共に、μレ
ベルに応じてブレーキ油圧の減圧終了基準レベルを変更
するようにしたアンチスキッド制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an anti-skid control device for a vehicle, and in particular, estimates a coefficient of friction 71 between the road surface and tires, and changes a brake oil pressure reduction end reference level according to the μ level. The present invention relates to an anti-skid control device.

車両用のアンデスキッド制御装置は、車両制動時にお(
プる車両の操舵性、走行安定性の確保及び制動距離の短
縮を図るべくブレーキ油圧の調整部材を駆動し、ブレー
キ油圧が車両走行状態に応じて自動的に少なくども増圧
、保持、減圧されるJ:うにしている。
The undesired skid control device for vehicles is designed to prevent
In order to ensure steering performance, running stability, and shorten braking distance of the vehicle, the brake hydraulic pressure is automatically increased, maintained, or decreased depending on the vehicle running condition. RuJ: I'm doing it.

しかし車両の走行状態は多岐にわたり、路面自体の性質
(ドライコンクリートに代表される高μ路、ウエットア
スファル1−に代表される中間μ路、水路に代表される
低μ路)、タイヤの摩耗度、種類、天候による路面の状
態、等により路面とタイ1フとの間の摩擦係数μが様々
であり、この様な車両の走す状態の如何に拘りなくアン
デスキッド制御が良好に行なわれることが望まれる。
However, the driving conditions of vehicles vary widely, including the nature of the road surface itself (high μ roads typified by dry concrete, intermediate μ roads typified by wet asphalt, and low μ roads typified by waterways), the degree of tire wear, etc. The coefficient of friction μ between the road surface and the tie 1 varies depending on the road surface condition due to type, weather, etc., and undesired skid control can be performed well regardless of the driving condition of the vehicle. is desired.

本発明は上記に鑑みなされたものであり、路面とタイV
との間の摩擦係数μの如何に拘らず」−分良好なアンデ
スキッド制御が得られるようにりることを目的とする。
The present invention has been made in view of the above, and is designed to improve road surface and tie V
The object of the present invention is to make it possible to obtain good undesired skid control regardless of the friction coefficient .mu.

このため本発明のアンチスキッド制御装置は第1図に図
示づる如く、 電気信号に応動しブレーキ油圧を自動的に調整りる調整
部月a、・・・、bと、車輪速度に対応した(ci弓を
発生する中速センサc1・・・、dと、該車速センサC
1・・・、dからの信号を受(〕車両走行状態に応じた
ブレーキ油圧制御用駆動信号を上記調整部月a 、・・
・、bに出力づ゛る制御回路eであって少/、「<ども
車輪速度・加速度演亦手段fを有Jるものどを[1if
iえに)Iンヂスキッド制御装置において、上記制御回
路eに、 路面とタイA2との間の摩擦係数μを推定するための阜
準速I良、基準加速度と、上記車輪速度・加速麿演緯手
段fにて鋒出された車輪速度、車輪加速度と、を大小比
較しμレベルを判定Jる判定手段gと、 該判定手段Qにて判定されたμレベルに応じてブレーキ
油圧の減圧終了基準レベルを変更覆る変更手段りと、 を設けたことを特徴どする。以下、図面を参照しつつ本
発明を説明する。
For this reason, the anti-skid control device of the present invention, as shown in FIG. Medium speed sensors c1..., d that generate ci bow, and the vehicle speed sensor C
1..., d () The above-mentioned adjustment parts a, . . .
・If the control circuit e has an output to
i) In the engine skid control device, the control circuit e is provided with the reference speed and reference acceleration for estimating the friction coefficient μ between the road surface and the tie A2, and the wheel speed and acceleration rate described above. determining means g for determining the μ level by comparing the wheel speed and wheel acceleration determined by means f; It is characterized by providing a means of changing the level. The present invention will be described below with reference to the drawings.

第2図は後輪駆動の車両に装備されたアンデスキッド制
御装置の全体構成を概略的に表わした系統図である。
FIG. 2 is a system diagram schematically showing the overall configuration of an undesired skid control device installed in a rear wheel drive vehicle.

図において、1ないし4は車両の各車輪を表わしており
、1は右前輪、2は左前輪、3は右後輪、4は左後輪で
ある。5dいし7はそれぞれ車輪速度を検出するための
電磁ピックアップ式あるいは光電変換式の車速センサで
あり、これらのうち、5は右前輪1イ4近に取りイ′N
1りられ、右前輪1の回転に応じて信号を発生Jる右前
輪Jij速しンザ、6は左前輪2付近に取り付けられ、
左前輪2の回転に応じて信号を発生する左前輪車速セン
ソー、7は駆動輪である右後輪3及び左後輪4に動力を
伝えるブ[1ベラシト71−8に取り(=Jりられ、右
後輪3どス:後輪4の平均回転数に対応Jるプロペラシ
ャフト8の回転に応じて信号を発生覆る後輪車速セン4
〕である。9ないし12はそれぞれ油圧ブレーキ8A茸
であり、油圧ブレーキ装置9は右前輪1に、油圧ブレー
キ装置10は左前輪2に、油圧プレー−1−装Vfri
 11は右後輪3に、油圧ブレーキ装置12は左後輪4
に−でれぞれ配ムpされている。13はブレーキペダル
、14は該ブレーキペダル13の状rバ1に応じて制動
111、非制動時を検出するためのストップスイッチ、
15はプレー4ペダル13が踏み込まれるとブレーキ油
圧を発生覆る油圧シリンダ、10は十ンジン回転に応じ
て油圧を発生づる111I Dボンノ゛を表わ’J 、
、 17ないし19は油圧シリンダ15おJ、び油圧ボ
ンア16がらの油圧を後述の電子制御回路2Gからの出
力に応じて調整し油圧ツレ−L ’JA ti?7≦)
ないし12に送る)7クチコエータであり、このうlう
17は右前輪1の油圧ブレーキ装置 (まh丁前輸2の油圧ブレーキ装置10に対応−4る/
I:前輪アクチュエータ、19は後輪3.4の油圧ブレ
ーキ装置11.12に対応する後輪アクナコ」二一夕で
ある。20ないし23はアクチュエータ17ないし19
から油圧ブレーキ装置9ないし12へ調整後の油圧を導
くための油圧管路であり、このうち20は右前輪)アク
チュエータ17と右前輪1の油圧ブレーキ装置9との間
に++*tJられた油L1管路、21(1左前輪アクチ
ュエータ18と左前輪2の油圧ブレーキ装置10との間
に設(〕られた油圧管路、22は後輪アクチュエータ1
つと右後輪3の油圧ブレーキ装置11との間に段りられ
た油圧管路、23は後輪アクチュエータ19と左後輪4
の油圧ブレーキ装置1“2との間に設りられだ油圧管路
を表わづ。24は電子制御回111826の出力に応じ
てアクヂュ1−タ17ないし19の電磁ソレノイドと電
力供給源との間の接続をスイッチングJ゛るメインリレ
ー、25は電磁ソレノイド断線時あるいはストツプスイ
ッヂ14断線時など)ノンヂスギッド制御装置に故障が
発![シた場合に電子制御回路2Gの出)jに応じて運
転化にシスラ11に5% ’7jjか発生した旨を通知
Jるためのインジケータランゾを表401゜26は雷了
制911回銘であり、巾)*ヒンリ5ないし7、及びス
トップスイッチ14からの信号を受【J1ノノンヂスキ
ッド制御のための演t>処ljp (I:どを(jない
、〕〕7クヂユ]二−タ1ないし19、メインリレー2
4及びインジケータラン−Jf 25を1ll1112
1+ する出ツノを発生づるものを表わJ0]−配布前
輪アクチュエータ171、左前輪アクチュエータ18、
及び後輪アクチユエータ19は第3図に図示りる如く、
それぞれ、油圧ポンプ1Gからの油圧を所定圧に調整J
るレギュレータ部27と、ブレーキ油圧の増減方向を切
り換えるための増/減制御用の電磁ソレノイドを含む制
罪弁部28と、ブレーキ油圧の増減勾配を緩急2段階に
切り換えるための緩/急制ill用の電磁ソレノイドを
含むブレーキ油圧調整部29とが備えられており、各ア
クヂコ−[−夕から出力された油圧は各油yF管路を介
して各油圧ブレーキ装置のブレーキ・ホイール・シリン
ダに伝達され各中輪にブレーキをか(Jることとなる。
In the figure, 1 to 4 represent each wheel of the vehicle; 1 is the right front wheel, 2 is the left front wheel, 3 is the right rear wheel, and 4 is the left rear wheel. 5d and 7 are electromagnetic pickup type or photoelectric conversion type vehicle speed sensors for detecting the wheel speed, respectively. Of these, 5 is located near the right front wheel 1 and 4.
1, the right front wheel generates a signal according to the rotation of the right front wheel 1, and 6 is attached near the left front wheel 2,
A left front wheel speed sensor generates a signal according to the rotation of the left front wheel 2, and 7 is a sensor that transmits power to the right rear wheel 3 and the left rear wheel 4, which are drive wheels. , Right rear wheel 3rd position: Generates a signal according to the rotation of the propeller shaft 8 corresponding to the average rotation speed of the rear wheel 4 Rear wheel speed sensor 4
]. 9 to 12 are hydraulic brakes 8A, respectively, the hydraulic brake device 9 is attached to the right front wheel 1, the hydraulic brake device 10 is attached to the left front wheel 2, and the hydraulic brake device 9 is attached to the left front wheel 2.
11 is attached to the right rear wheel 3, and a hydraulic brake device 12 is attached to the left rear wheel 4.
They are arranged in -. 13 is a brake pedal; 14 is a stop switch for detecting braking 111 and non-braking according to the shape of the brake pedal 13;
15 represents a hydraulic cylinder that generates brake hydraulic pressure when the play pedal 13 is depressed, and 10 represents a 111ID bonnet that generates hydraulic pressure in response to engine rotation.
, 17 to 19 adjust the oil pressure of the hydraulic cylinders 15 and 16 according to the output from the electronic control circuit 2G, which will be described later. 7≦)
The last one (17) corresponds to the hydraulic brake device 10 of the right front wheel 1 (corresponds to the hydraulic brake device 10 of the front right wheel 1).
I: Front wheel actuator, 19 is a rear wheel actuator corresponding to the hydraulic brake device 11.12 of the rear wheel 3.4. 20 to 23 are actuators 17 to 19
This is a hydraulic pipe line for guiding the adjusted hydraulic pressure from the hydraulic brake device 9 to 12, and 20 of these are hydraulic pipes for guiding the adjusted hydraulic pressure from the front right wheel) actuator 17 and the hydraulic brake device 9 of the right front wheel 1. L1 pipe, 21 (hydraulic pipe installed between the left front wheel actuator 18 and the hydraulic brake device 10 of the left front wheel 2, 22 is the rear wheel actuator 1)
A hydraulic pipe line 23 is stepped between the rear wheel actuator 19 and the hydraulic brake device 11 of the right rear wheel 3;
The hydraulic line 24 is connected between the electromagnetic solenoids of the actuators 17 to 19 and the power supply source according to the output of the electronic control circuit 111826. The main relay 25 switches the connection between Table 401゜26 is the 911th inscription of the Rairyo system, width) *Hinri 5 to 7, and the indicator runzo to notify that 5% '7jj has occurred in Sisla 11. Receiving the signal [Processing for J1 non-skid control] Controllers 1 to 19, main relay 2
4 and indicator run - Jf 25 1ll1112
1+ Represents the thing that generates the exit horn J0] - distributed front wheel actuator 171, left front wheel actuator 18,
and the rear wheel actuator 19 as shown in FIG.
Adjust the oil pressure from the hydraulic pump 1G to the specified pressure J
a regulator section 27, a control valve section 28 including an electromagnetic solenoid for increasing/decreasing control for switching the increase/decrease direction of the brake oil pressure, and a slow/sudden control ill for switching the increase/decrease gradient of the brake oil pressure into two stages, slow and fast. A brake hydraulic pressure adjustment unit 29 including an electromagnetic solenoid for the hydraulic brake is provided, and the hydraulic pressure output from each hydraulic brake is transmitted to the brake wheel cylinder of each hydraulic brake device via each oil pipe. This will cause brakes to be applied to each middle wheel.

また上記増/減制御用電磁ソレノイドは例えば通電時に
油圧を減少し、緩/急制御用°電磁ソレノイドは例えば
通電時に増減勾配を急勾配にづるようにされている。
Further, the electromagnetic solenoid for increasing/decreasing control reduces the hydraulic pressure when energized, and the electromagnetic solenoid for slow/sudden control makes the increase/decrease gradient steeper, for example, when energized.

上記電子制御回路26は第4図に示す如き回路構成とな
っており、図に4ハブる30ないし32(本¥れぞれ波
形整形増幅回路であり、波形整形増幅回路30は車速セ
ンサ5の18″;:3をマイクロコンビイータ35によ
る処理に適したパルス(コgとし、他の波形整形増幅回
路31.32’t)それぞれIrJ1様なパルス信8と
するよう構成されている。33はストップスイッチ14
に電気的に接続されたバッファ回路、34はイグニッシ
ョンスィッチ41オン時にマイクロコンビイータ35な
どに定電圧を供給するための電源回路、35はCPU3
5a 。
The electronic control circuit 26 has a circuit configuration as shown in FIG. 18'';:3 is configured to be a pulse signal suitable for processing by the microcombi eater 35 (cog, and other waveform shaping amplifier circuits 31 and 32't), respectively, into an IrJ1-like pulse signal 8.33 is Stop switch 14
34 is a power supply circuit for supplying a constant voltage to the microcombi eater 35 etc. when the ignition switch 41 is turned on; 35 is a power supply circuit electrically connected to the CPU 3;
5a.

ROM35b 、ROM35b 、I10回路35dな
どを輸1えノこマイクロコンビコータを表わt、36な
いし40はそれそ゛れマイクに1コンビコータ35から
の制御信丹に応じlζ出力をする駆動回路であり、これ
らのうち36は右前輪アクチュエータ17の電磁ソレノ
イドを駆動するための右前輪アクチコエータ駆動回路、
37(よ)1前輸アクチユエータ゛1Bの電磁ソレノイ
ドを駆動するためのか前輪アクチュエータ駆動回路、3
8は後輪アクチュエータ19の電磁ソレノイドを駆動づ
るための後輪ノ′クブ」エーク駆動回路、39は常開接
点24aをもつメインリレー24のコイル24. bに
通電し常開接点24aをオンさUるためのメインリレー
駆動回路、40はインジケータランプ25を点)3さl
るためのインジケータランプ駆動回路を表わづ。
ROM 35b, ROM35b, I10 circuit 35d, etc. are used to represent the micro combicoater, and 36 to 40 are drive circuits that output lζ output to the microphone in accordance with the control signal from the combicoater 35, and these Of these, 36 are right front wheel actuator drive circuits for driving the electromagnetic solenoid of the right front wheel actuator 17;
37 (Yo) 1 Front wheel actuator drive circuit for driving the electromagnetic solenoid of front transport actuator 1B, 3
8 is a rear wheel drive circuit for driving the electromagnetic solenoid of the rear wheel actuator 19, and 39 is a coil 24 of the main relay 24 having a normally open contact 24a. The main relay drive circuit for turning on the normally open contact 24a by energizing B, 40 turns on the indicator lamp 25) 3.
This figure shows the indicator lamp drive circuit for

次にこのJ、うにtf4成されk 、l’ンチスキツド
制御ll装百の処理および動作を説明づる。
Next, we will explain the processing and operation of this J, tf4, k, and l'inch skid control system.

イグニッションスィッチ41がオンされると、電源回路
34による定電圧がマイクロコンピコ−゛り35などに
印加され、マイクロコンビイータ夕35のCP U 3
5 a t;L ROM 35 bに予め設定されたヅ
11グラムに従−)て演紳処即を実行開始づる。
When the ignition switch 41 is turned on, a constant voltage from the power supply circuit 34 is applied to the microcomputer 35, etc., and the CPU 3 of the microcomputer 35
5 at; The execution of the program starts in accordance with the program preset in the ROM 35b.

第5図(,1この演膣処理のうち主たるもの(!′表わ
した概略〕I−J〜ブl+ −1−であり、この処1!
I!におい(’ l;l:1.L ス処I!l! 17
tl始時0) ミ;/、 jラフ 101 ニT 後続
の処理のだめの初期化処理、例えば後述する各種フラグ
のリセットなどを行なう。
Figure 5 (, 1) The main part of this vaginal treatment (!' schematic representation) is I-J~Bl+ -1-, and here 1!
I! 17
tl start time 0) Mi;/, j Rough 101 D T Performs initialization processing before subsequent processing, such as resetting various flags to be described later.

その後においては、ステップ107による判定結果に応
じて、ステップ102とステップ103とステップ10
4とステップ105どス゛フップ10Gとステップ10
7とからなる一3i1iの処理、あるいは、ステップ1
02とステップ103とステップ104とステップ10
5とスフツブ106とステップ107とステップ108
とステップ109とからなる一連の処理がイグニッショ
ンスィッチ41がスフされるまで繰り返し実行される。
After that, steps 102, 103, and 10 are performed according to the determination result in step 107.
4 and step 105, flip 10G and step 10
7 and 13i1i processing, or step 1
02 and step 103 and step 104 and step 10
5, step 106, step 107, and step 108
A series of processes consisting of and step 109 are repeatedly executed until the ignition switch 41 is turned off.

これら一連の処理においては、ステップ102にて制n
++ yr可’l”l ”;jl処理J′3よび制91
1開始判定処理を実行する。即ら、後)小する推定車体
速度弾出処理ステップ104にて推定車体通電を締出り
る際、複数の推定車体速度候補のうらの1候補どなる中
輪速度について選定変更を指示Jるためのム′1可フラ
グFactのセット・リレット処狸を行なうと其に、後
述づる走行路判別処理スーアップ103の処理内容変更
指示、後述づるタイマ割込ルーチンにJンりるフ′クヂ
]」ニー1−パターン選1尺スデップ20G宿の実行許
否についての指示、および後述Jる1、目11)禾麿剪
1出処理ステップ105にて演咋す−ベさj(t il
+−速度の選定ti?示を行なうためのIjil始フラ
グF!i I ;IのUツト・リレン1〜処)vlを行
なう。
In this series of processing, control is performed at step 102.
++ yr possible'l"l"; jl processing J'3 and control 91
1 Execute start determination processing. That is, to instruct a change in the selection of the middle wheel speed of one of the plurality of estimated vehicle speed candidates when shutting off the estimated vehicle body energization in step 104 of the estimated vehicle speed output processing step 104. When the ``1'' flag Fact is set and reset, an instruction to change the processing content of the running route determination processing step 103, which will be described later, and a timer interrupt routine, which will be described later, are executed. Knee 1 - Instructions as to whether or not to execute pattern selection 1 shaku step 20G accommodation, and instructions on whether to execute the pattern selection 1 shaku step 20G, and perform it at step 105, which will be described later.
+- Speed selection ti? Ijil start flag F! i I ; Execute Uttu Reren 1 to vl of I.

次(ごスノッ1103にて、現右巾両が走行している)
0路の[ト類、路面状態などにLtづく摩擦係数μおJ
、び路面の凹凸状態を11定し、走行路がドライ二Jン
クリー1−に代表されるような高μ路、つ」ッ1〜アス
ク77k l’のような中間μ路、もしくは水路などに
代表される低μ路であるが、凹凸の度合h′X極めて緩
′X5かないわゆる良路、凹凸の1立合がある程瓜δに
しいいわゆる悪路、もしくは凹凸の度合が極めC激しく
アンチスキッド制御にとって支障を111さ易いいわゆ
る極悪路(波状路を含む。〉なと道路自体のfl:貿を
特定の条件に従って判別する走行路判別処理を実行4る
。この判別処理の内容を概略的に述べると、個々の[1
1速センシ5.6.7からの信号を基に演篇された、対
応りる車輪速I良V Wデータ(但し後輪の車輪速度に
ついては右後輪3の実際の車輪速度と左後輪4の実際の
車輪速度との平均車輪速度に相当するものであるa)、
車輪加速磨守Wデータ、ROM35b内に予め格納され
た複数レベルのん(準加速度データ、および阜11(速
度線用処理スデツブ105にて算出された複数の基準速
度データを基に、個〕1の車輪17jに、車輪速度、車
輪加速度と、基準速度、基準加速度どの各種部み合せに
よる大小比較に対応する処理が行なわれると共に、この
処理結果に従ってインクリメン1へ、デクリメン1〜さ
れる力・クンタの1直と予め定めた設定値との大小比較
が行なわれ、この比較結果に基づいて最終的に走行状態
判別が1−1なわれる。
Next (Currently right-hand side cars are running at Gosunotto 1103)
The friction coefficient μ and J of road 0, which depends on the road surface condition, etc.
11, and the unevenness of the road surface is determined, and the driving route is a high μ road such as a dry road, an intermediate μ road such as a 77k l' road, or a waterway. The typical low μ road is a so-called good road where the degree of unevenness is h'X extremely gentle' A so-called extremely bad road (including a wavy road) that easily poses a problem to the control is executed.A traveling route discrimination process is executed to discriminate the FL: trade of the road itself according to specific conditions.The contents of this discrimination process are summarized below. To state, each [1
The corresponding wheel speed I/VW data is generated based on the signal from the 1st speed sensor 5.6.7 (however, the wheel speed of the rear wheel is based on the actual wheel speed of the right rear wheel 3 and the left rear wheel speed). a), which corresponds to the average wheel speed with the actual wheel speed of wheel 4;
Based on the wheel acceleration W data, the multiple levels of semi-acceleration data stored in advance in the ROM 35b, and the multiple reference speed data calculated by the speed line processing block 105, Processing corresponding to the magnitude comparison of various parts such as wheel speed, wheel acceleration, reference speed, reference acceleration, etc. is performed on the wheel 17j, and the force/kunta to be incremented to increment 1 to decremented according to the processing result is A comparison is made between the first shift and a predetermined set value, and the driving state is finally determined based on the comparison result.

次にステップ10/1にC推定車体速度算出処理が実行
される。この処理の概要を)ホベると、If定用体速度
データを作J戊するに当って3つの候補速度、即ち、演
算された車輪速度と、実際の車両走行状態(制動中を含
む。)から取り得る走行加速度の上、下限値、前回の推
定車体速度算出処理により算出されIこ推定車体速度な
どに基づく2つの!ul G’式のそれぞれにより等用
された第1、第2のltl、定巾体速度とからなる速度
、のうち中間値となるものを111定車体速度として決
定する。この場合、上記候補速度の1つである上記車輪
速度は上記制御++ v’レリ、17fl胎判定処理ス
テップ102に−C上述した如きrF許可フラグact
がリレット状態にある期間にd5いては、3つの車輪速
度のうら中間値をとる車輪速度が候補として選択され、
一方、上記許可フラグl” actがレフ1〜状態にあ
る期間においては最大firIをとる車輪速1隻が候補
とし′C選択される。
Next, in step 10/1, C estimated vehicle speed calculation processing is executed. To give an overview of this process, there are three candidate speeds when creating If constant vehicle speed data: the calculated wheel speed and the actual vehicle running state (including braking). The upper and lower limits of the travel acceleration that can be taken from the previous estimated vehicle speed calculation process, and the two values based on the estimated vehicle speed, etc. Among the speeds consisting of the first and second ltl and constant width body speed equally applied by each of the ul G' formulas, the intermediate value is determined as the 111 constant vehicle body speed. In this case, the wheel speed, which is one of the candidate speeds, is determined by the above-mentioned control ++v'reri, -C in the 17fl fetus determination processing step 102, and the rF permission flag act as described above.
In the period d5 when is in the relet state, the wheel speed that takes the middle value of the three wheel speeds is selected as a candidate,
On the other hand, during the period in which the permission flag l''act is in the reflex 1~state, one wheel speed having the maximum firI is selected as a candidate.

次にステップ105にて基準速度樟出処狸が実?テされ
る。この処理内容の11λ要は、上記間々(3フラク「
slaがりロンl−状態がらレットに反転されるまCつ
より減圧開始く制御開始どもいえる。)までの間におい
ては、IIJ III 1719.(f判定具i(速度
を痒出し、J二tic!開始フラグFstaセット後つ
まり制il+開始後にJ5いては、路面ノイズ、電気ノ
イズ等にJζる7クヂユエータ17ないし19の誤作動
を防止Jるための路1fiiノイズ(車体振動)対11
【速度、1ト戊汗を開始さけるための1つの%4LQ+
+となる減圧判定基準速度、中間μ路を判定づるための
基型となる中間μ判定基準速度、および、低μ路を判定
Jるための基準となる低μ判定基準)*度にそれぞれ対
応するデータを少なくともII定車体速麿を含む所定の
演算式J:り作成づる。なお、上記制御l+開始判定基
¥=速度については、特に悪路での緩ブレーキによりア
クヂコエータ17ないし19の少なくとも1個が非所望
な減圧を開始することを未然に防止するために上記走行
路判別処理ステップ103にて判別された道路自体の竹
!1に応じて演紳式中の被減粋数の値を可変としている
。また上記路面ノイズ(車体振動)対策見Q!−通電お
よび減圧判定基tIl速度についても、′それぞれ、対
1+i5 ’Jる演O式中の被減専数の値が可変とされ
、道路の状態に応じて減圧速度基準を切り換えることに
にり過制御ににる減圧しすぎを防止できるようなされて
いる。
Next, in step 105, is the standard speed Kode-dokoro Tanuki real? be tested. 11λ of this processing content is the above-mentioned interval (3 frac "
It can be said that the control starts when the sla is reversed from the long state to the let state, and the depressurization starts. ), IIJ III 1719. (f judgment tool i (starts the speed, J2tic! After the start flag Fsta is set, that is, after the control il+ starts, J5 is used to prevent malfunctions of the 7-drivers 17 to 19 due to road noise, electrical noise, etc.) road 1fii noise (vehicle vibration) vs. 11
[Speed, 1% 4LQ+ to avoid starting sweating
Decompression judgment standard speed that is +, intermediate μ judgment standard speed that is the basis for determining intermediate μ roads, and low μ judgment standard that is the standard for determining low μ roads) * Corresponds to each degree. A predetermined calculation formula including at least II constant vehicle speed is created. Regarding the above-mentioned control l + start judgment criterion ¥ = speed, the above-mentioned traveling route discrimination is used to prevent at least one of the actuators 17 to 19 from starting an undesired pressure reduction due to slow braking, especially on a rough road. Bamboo on the road itself determined in processing step 103! 1, the value of the subtractive number in the engenshiki is variable. Also, look at the road noise (vehicle vibration) measures mentioned above! - Regarding the energization and depressurization judgment criteria tIl speed, the value of the deductible in the equation 1+i5'J, respectively, is made variable, and the decompression speed standard is changed according to the road condition. It is designed to prevent excessive depressurization due to overcontrol.

次にステップ106にてシステム異;’jjチ1ツクを
実行する。この処理においては、ROM35b内に予め
格納されたシステム正常動作11.5のシスjム要拳の
肋fl状態に対応J8f−夕と当該処理時に取り込まれ
た上記システム要素の動作状態を表わリデータとを比較
検問し、システム異常と判断しl= JN合に(まシス
テム動作状態を示1異常フラグをけツ1へし、一方異常
なしと判断した場合には異常フラグをリレット状態に維
持もしくは反転させるJ、うにりる。
Next, in step 106, the system executes a check. In this process, the J8f-Y corresponds to the state of system normal operation 11.5 stored in advance in the ROM 35b, and the operating state of the above system elements taken in at the time of the process is re-dataled. If it is determined that there is a system abnormality, then (indicates the system operating status) the abnormality flag is set to 1, and if it is determined that there is no abnormality, the abnormality flag is maintained in the ret state or Invert J, Uniruru.

次にステップ107にて上記異常フラグをみ−Cシステ
ム異常か否かを判定づる。異常フラグがレッ1−され−
Cいない旨判断された場合、即し、シスシームがIl二
常に動作している揚台に(。1、に述した如き制+++
+ ;、II IIJ、開始判定処1q、! 7.−i
ツI 102 ニ進む。
Next, in step 107, the abnormality flag is checked to determine whether or not the -C system is abnormal. The abnormality flag is set to 1.
If it is determined that there is no system seam, the system seam is immediately placed on a constantly operating platform (as described in 1).
+;, II IIJ, start determination process 1q,! 7. -i
TS I 102 Go forward.

−ブJ %1?、怒−ノラグがレッ1−されている旨判
断された場合、即ち、シス7ムに灰常が発生し、bt、
<は〜゛り常動作中(ある場合には、ステップ108お
にびスノップ109が順次大fjされた十で」二記制り
11fl: B1、開始判定処理ステップ102に進む
- Bu J %1? , If it is determined that Anger Norag is being attacked, that is, a crisis occurs in the system, and bt,
< is ~ ~ is in constant operation (in some cases, step 108 and snop 109 are sequentially increased to fj). Two-note system 11fl: B1, proceed to start determination processing step 102.

スノップ1081.Lシステムに異常が発生した旨を運
転賃に通知さuシlンチスキッド制御がイj効でないご
どを1ilc 認できるにうにりるためのステップであ
り、このステップ1.08に83いては、F記の如き判
定ステップ107実行によりシステム異常が発生した旨
が最初に判断されたどきのみインジケータランプ点灯の
為の制御信号をインジケータランプ駆動回路40に出力
1−る。この制御信号を入力したインジケータランプ駆
動回″l 40 t;にこの制御信号をラッチしてイン
ジケータランブ25が点灯しつづ(ノるようにする。こ
のステップ108においては、上記の如き制御信号出力
後、システムが正常動作状態に自動復帰したような場合
にはインジク゛−タランブ25をdlj幻さUるための
制御イ32づをインジケータランプ駆動回路40に出力
する処理をvlせC実行づるようにしてしJ:い。
Snop 1081. This is a step to notify the operator that an abnormality has occurred in the L system, and to acknowledge that the pinch skid control is not effective. A control signal for lighting the indicator lamp is output to the indicator lamp drive circuit 40 only when it is first determined that a system abnormality has occurred by executing the judgment step 107 as described in F. This control signal is latched into the indicator lamp drive circuit ``l40t;'' into which this control signal is input, so that the indicator lamp 25 continues to light up.In step 108, after outputting the control signal as described above, , when the system automatically returns to the normal operating state, a process is executed to output a control signal 32 to the indicator lamp drive circuit 40 to turn off the indicator lamp 25. Shi J: Yes.

ステップ109はシステム異常動作時に71−ルローフ
処理を行なうステップであり、このステップ109にお
いては、31固のノlクブーコ]二−夕17.18.1
9のそれぞれに(13りる増/減111j御用電磁ソレ
ノイドおJ:び緩/急制御用ta磁ソレノイドの当該時
点における各駆動状態の如何にかかわらず非アンデスキ
ッド制御モード即ちブレーキ油圧ル13の踏み込力に応
じたブレーキ油圧にJ、つ(制動が行なわれる)m′常
モードにスイッチングづlクク、メインリレー24のコ
イル24bに対づ−る通電をカットするための制御信号
を出力する処理がfjなわれる。コイル241)が通電
状態でなくなると、イれまで閉成されていた常開接点2
4.aが通常の開放状態にスイッチングされ、これにJ
:りシフクチ−1−1−一夕17.18.19のぞれぞ
れにJ3(プる電磁ソレノイドに対する電源供給が遮断
され、少なくともシステム異常が解除されるまひの間は
通常モードのらとで制動が行なわれる。このシスjl\
)」−ルし一フ処理ステップ109においては、更に安
全111を向上させるために上記の如き電源カッ1〜を
<−iなうと共に、各アクヂjエータ駆動回路36.3
7.38に対し−C電磁ソレノイドをAノさせるための
制御信号を出ツノする処理をイ)11!−(実(−j!
J8J、うにしてしよい。
Step 109 is a step for performing a 71-roulow process when the system is operating abnormally.
9 (13 increase/decrease 111j regular electromagnetic solenoid J: slow/sudden control) Regardless of the driving state of the magnetic solenoid at the relevant time, the non-undeskid control mode, that is, the brake hydraulic It outputs a control signal to change the brake hydraulic pressure according to the depression force (braking is performed) to the normal mode and cut off the current to the coil 24b of the main relay 24. When the coil 241) is no longer energized, the normally open contact 2, which had been closed until then, is closed.
4. a is switched to its normally open state, and J
:Rishifukuchi-1-1-Itoyo 17th, 18th, 19th, J3 Braking is performed at this system.
)" - In order to further improve safety 111, in step 109, the power supplies 1 to 1 are turned off as described above, and each actuator drive circuit 36.3 is
For 7.38, process to output the control signal to make the -C electromagnetic solenoid A) a) 11! -(actual(-j!
J8J, let it out.

第6図は第5図にC上述した如き主たる演わ処理の実1
j途中に所定の周+llJ ′r″実行間9f1される
タイマ割込ルーチンをIIIR略的に表わしたフローヂ
ャーI−である。
Figure 6 shows the main performance processing as described above.
Flowchart I- is a schematic representation of a timer interrupt routine that is executed during a predetermined cycle +llJ'r'' during execution of 9f1.

このタイマ割込ルーチンにd5いてIJ、まずステップ
201にて各車輪角の車輪速度を演Q!Iる処理が実行
される。この車輪速度演悼スデップ201においては、
現在の処理実行の際での中途パルスのカラン1〜値と前
回の処理実行の際での中途パルスのカラン1〜値との差
と、時間間隔と、定数とを含む所定の演算式を演IF 
Tlると共に、必要に応じてフィルタ処理、即ち、′&
続した複数回の該演算式演算により得られた車輪)虫度
を平均化Jる処理がOfぜて行なわれる。なお上記車速
パルスの力ラン1〜は後述づる車速割込ルーチンにて実
行される。
At d5 in this timer interrupt routine, IJ first calculates the wheel speed at each wheel angle in step 201! The following process is executed. In this wheel speed performance step 201,
Computes a predetermined arithmetic expression that includes the difference between the 1~ value of the intermediate pulse during the current process execution and the 1~ value of the intermediate pulse during the previous process execution, a time interval, and a constant. IF
Tl and filtering as necessary, i.e. '&
A process of averaging the wheel insect degrees obtained by a plurality of successive calculations of the arithmetic expression is performed. Incidentally, the force runs 1 through 1 of the vehicle speed pulses described above are executed in a vehicle speed interrupt routine to be described later.

次にステップ202に゛C各中中輪の中輪加速度を演算
づる処理が実行される。この車輪加速麿iai粋ステッ
プ202においては、上記中輪迷麿演C11ステップ2
01の実行により算出された車輪速度と前回の車輪速度
演掠スデップ201にJ、り算出された車輪速度との速
度差と、時間と、定数とを含む所定の演算式を油部Jる
どJLに、必要に応じて上記の如きフィルタ処1!I!
が(lf vて(iなゎれる。
Next, in step 202, a process is executed to calculate the middle wheel acceleration of each middle wheel. In this wheel acceleration step 202, the above-mentioned middle wheel acceleration C11 step 2
A predetermined arithmetic expression including the speed difference between the wheel speed calculated by executing step 01 and the wheel speed calculated by the previous wheel speed calculation step 201, time, and a constant is written in the oil section J. JL, if necessary, filter processing 1 as above! I!
(lf vte(i).

次にステップ203に(、第51閾に(上述したら’l
 Ijlノラグ「actがレッ1へされでいるが否かを
判定し、gt[可フラグF actがレットされていな
い場合、即ちストップスイッチ1 /I /J< Aン
されていない等の」場合にt31、ステップ204に進
み、一方、許可フラグF actがレッ1−されている
場合には、ス)−ツブ205ないしステップ208から
なるルー1〜が順次実行される。
Next, in step 203 (, 51st threshold (as described above, 'l
Ijl Norag ``Determine whether or not act has been turned to red 1, and gt [possible flag F if act has not been turned, i.e., stop switch 1 /I /J < A, etc.'' At t31, the process advances to step 204, and on the other hand, if the permission flag Fact is turned on, steps 1 through 205 are sequentially executed.

」−記スラップ204にa3いては、許可フラグFiI
CLのりけツ1へ後の最初の処理11&に、全てのアク
ヂJ丁−タ17.18.19を非作動状態に復帰さlる
べく、そのための制御信号を77クヂユ工−タ駆動回路
3G、37.38のイれぞれに出力する処」IJlが(
jなわれる。この制」1信号を人力した)7クチーt 
I−タIW動回路36.37.38のそれぞイ′口31
この制御イ5月に対応づる状態を保持し、対応するアク
チjュータの電磁ソレノイドに対する通電をl<+ I
I L/、ブレーキ油圧制御が通常モードで行なわれる
ようにづる。なお許fiJフラグ「actリセッ1−後
の第2回目以降の処理においては」−記の如き出ノJ処
理は行なわれな(でよい。この出)っステップ204を
経た後は、通電、処理中内j中の第5図の処理が引き続
き実fjされるようになる。
” - In the slap 204, the permission flag FiI is set in a3.
In the first process 11& after going to the CL connector 1, in order to return all the actuators 17, 18, 19 to the non-operating state, a control signal for that purpose is sent to the 77 actuator drive circuit 3G. , 37. 38." IJl is (
j. This system' 1 signal was manually operated) 7 units
Inlet 31 of I-ta IW circuit 36, 37, 38 respectively
This control maintains the state corresponding to May, and turns off the current to the electromagnetic solenoid of the corresponding actuator.
IL/, brake hydraulic control is performed in normal mode. Note that the permission fiJ flag "in the second and subsequent processes after act reset 1" is not performed (it is fine). The process shown in FIG. 5 during Nakauchi j continues to be executed fj.

一方、許可フラグl”:acttッ1一時に実行される
ステップ205においては、上記車輸通電演紳ステップ
201および上記車輪加速度演棹スー7ツブ202にで
算出されノζ各車輪速度J3J、び各中輪加)用度と、
上記第5図の基準速度(※出処理ステップ105にて算
出された各種の基準速度a5よび予め設定された各種の
基片加速度とを比較する処理が実行される。
On the other hand, in step 205, which is executed at the same time as the permission flag l":actt1, each wheel speed J3J and Each middle wheel) usage and
A process is performed in which the various reference speeds a5 calculated in step 105 of the reference speed (*output process) shown in FIG. 5 are compared with various preset base piece accelerations.

次にステップ20’6にて、上記比較ステップ205に
より得られた結果に基づいて増/減制御用電磁ソレノイ
ドJ3よび緩/急制御用電磁ソレノイドのそれぞれにつ
いでの駆動パターンを選択づる処理が実行される。なお
、各ソレノイドにそれぞれ対応づる各種駆動パターンは
ROM35b内に予め格納されている。
Next, in step 20'6, a process is executed to select a drive pattern for each of the increase/decrease control electromagnetic solenoid J3 and the slow/sudden control electromagnetic solenoid based on the results obtained in the comparison step 205. be done. Note that various drive patterns corresponding to each solenoid are stored in advance in the ROM 35b.

次にステップ207にて、増圧モード、減圧モードの連
続U″1間を■;。祝し、減圧モードが通常のアンデス
キッド制御からみてあり冑ないと予測される11.5量
販−1継続しているような場合にはr、Jl”uJノフ
ラl−、acLがレフ1〜中Cあつ(もシスアム異常と
判1わiL(、次のスンップ208にJ3いC仝−Cの
アクf−1,gl−り17.18.19を強制的に非作
動状態にさUるべり、」二記アクブ]」−1−パターン
選択ス)ツノ゛20Gにて選択された駆動パターンを変
更1Jる処1!11が実行される。
Next, in step 207, the pressure increase mode and the pressure decrease mode are continued for a period of U''1.Congratulations, the pressure decrease mode is expected to be boring from the normal Andeskid control.11.5 Mass sales-1 continuation In such a case, r, Jl"uJ no fuller l-, acL is ref 1 to middle C hot (also system abnormality 1waiL(, next sump 208 is J3-C's ac f -1, gl-17.18.19 forcibly put into non-operating state, change the drive pattern selected at 20G. Step 1!11 is executed.

次にステップ208にて、最終的な駆動パターンにスJ
応りる制御1;1弓を、対応Jるノ7クヂ:Lエータ駆
動回路3G、37.38に出力づる処理が実行される。
Next, in step 208, the final drive pattern is
A process is executed in which the corresponding control 1:1 bow is output to the corresponding J/7/L motor drive circuit 3G, 37.38.

この制till 4jE @を入力したアクデー1」−
−夕駆動回路3G、37.38は、それぞれ、この制り
11信号にIIThiじて、対応づるアクチュエータ1
7.1 B、1つの駆動状態を定める駆動出力を行なう
This system till 4jE @ is input 1”-
- The actuator drive circuits 3G, 37, 38 respectively drive the corresponding actuator 1 according to this control 11 signal IITh.
7.1 B, perform a drive output that defines one drive state.

この出力ステップ208を経た後は、通71;゛、処理
中断中の第5図の処理が引き続き実iiされるようにな
る。
After passing through this output step 208, the process shown in FIG. 5, which has been interrupted, continues to be executed.

第7図は中途ヒン”J−5,6,7のそれぞれに1対1
に対応して実行される中速割込ルーチンであり、この中
途割込ルーチンは車3ルンリJ3J、び波形整形増幅回
路を介して車速パルスがマイクロコンピュータ35に入
ツノされてくると、上述した第5図の処理を中断して実
fJ I!D始される。この場合、2つ以」:の車速パ
ルスにより割込指示が同時に発生する場合を考慮して3
つの車速割込ルーチンに対し予め優先順位を与えCある
ことは、Lうま(もない。
Figure 7 is 1 to 1 for each of "J-5, 6, and 7"
This is a mid-speed interrupt routine that is executed in response to the above-mentioned process. Interrupting the process shown in FIG. 5, the actual fJ I! D is started. In this case, considering the case where two or more vehicle speed pulses cause an interrupt instruction to occur at the same time, three
It is not a good idea to give priority to the two vehicle speed interrupt routines in advance.

この中速割込ルーチンにおいでは、スンツプ301が実
行され、中速パルスのカウントが行イ1われる。なおこ
のカラン1〜11′1は上)ホした如くタイマ割込ルー
チンにお(Jるli輪速度哀演樟スjツブ201の実行
に際用いられる。
In this medium speed interrupt routine, step 301 is executed and medium speed pulses are counted. Note that these commands 1 to 11'1 are used in the timer interrupt routine to execute the wheel speed control subroutine 201 as shown above.

第8図は本発明にかかわるμレヘル判定手段の処理内容
を表わしIζフローヂT−−1−であり、第15図にお
りる走行路判別処理ステップ103の一部を表わしてい
る。
FIG. 8 shows the processing contents of the μ level determination means according to the present invention, and is an Iζ flow T--1, which shows a part of the traveling route determination processing step 103 shown in FIG.

この処理においては、まづ゛ステップ401にて制御間
9(3フラグFstaが「1」ぐあるか占かが判定され
る。制御聞胎前にa5い−CはF staがrOJぐあ
ること1.s +ら、この判定結果がI’ N OJと
なり、他に何ら処理Jることなく本ルーチンを終了づる
In this process, first, in step 401, it is determined whether the control interval 9 (3 flag Fsta is "1") or not. 1.s +, this determination result becomes I' N OJ, and this routine is ended without any other processing.

制御開始77グFsta+J、7レー+SW OFF状
(z J、たは、制御8’l可フラグF actがrO
Jの時(、L、rOJ(・gす、7 L/ −−1; 
S W ON テカツある中輪速瓜Vwが制御開始判定
速度’;!ij; V ssをよざ゛った時(Vw <
Vss) I’ 1 Jとなる。
Control start 77g Fsta+J, 7ray+SW OFF state (z J, or control 8'l enable flag F act is rO
When J(, L, rOJ(・gsu, 7 L/--1;
S W ON The shiny middle wheel speed melon Vw is the control start judgment speed';! ij; When V ss is exceeded (Vw <
Vss) I' 1 J.

制御開始が指示されフラグFStaが「1」になると、
ス)−ツブ’1.01の判定結果がI’ Y E S 
Jに反転され、次にスフツブ402にてμレベルを指示
覆るスデータスフラグsbがrOJであるが否か、1条
丁シリれば走行状態が高μレベル即ちl−+1Jレベル
であるか否かが判定される。走行状態が111ルベルで
あるとづ−ればこのステップ402の判定結果がI″l
 IE S Jであることがら次にステップ403が実
行され、このステップ403にてΦ軸速度Vwがl’ 
M Jレベル判定用Uハf5速度Vsmより小さいか否
かが判定される。VwがVsmよりも大きい、即ち走行
状態が[1−Nレベルであると判定されている場合には
このステップ403の判定結果がrNOj′cあること
から、他に何ら処理をづることなく本ルーチンを抜り出
る。
When the start of control is instructed and the flag FSta becomes "1",
S) - Judgment result of tube '1.01 is I' Y E S
The status flag sb, which is inverted to J and then instructs the μ level in the shift block 402, is rOJ or not. is determined. If the running condition is 111 lbel, the determination result of step 402 is I''l.
Since it is IE S J, step 403 is executed next, and in this step 403, the Φ-axis speed Vw becomes l'
It is determined whether the MJ level determination Uha f5 speed is smaller than the speed Vsm. If it is determined that Vw is larger than Vsm, that is, the running state is at the [1-N level, the determination result of this step 403 is rNOj'c, so this routine is executed without any other processing. Extract.

そのIVWがVSmより6小さくなるどこのステップ4
03の判定結果がr’ Y E S jに反転りること
から、次にステップ404に進み、ステップ407Iに
てスデータスフラグsbが「→1」される、即ちsbの
値は「1」どなり走行状態が「M」レベルに移行したこ
とを示゛りようになる。次にスラップ/1.05に進み
、このステップ4.05にてVWが「L、」レベル判定
用基4(速1良VSIJ、り小さいか盃かが判定される
。この時点においでVwがVs1以上である場合にはこ
のステップ405の判定結果がrNOJであることから
、他に何ら処理づ゛ることなく本ルーチンを1&+プ出
る。
Step 4 where its IVW is 6 less than VSm
Since the determination result of 03 is reversed to r' Y E S j, the process proceeds to step 404, and in step 407I, the data status flag sb is set to "→1", that is, the value of sb becomes "1". This indicates that the driving state has shifted to the "M" level. Next, proceed to Slap/1.05, and in this step 4.05, it is determined whether VW is "L" level judgment base 4 (speed 1 good VSIJ, small or cup). If it is equal to or higher than Vs1, the determination result at step 405 is rNOJ, and this routine is exited by 1&+ without any other processing.

一方、この時点においてVwがV sl、1、リム小さ
い場合には次にステップ406に進みこのスフツブ40
Gにてsbが更に「+1」され、sbの値は「2」とな
る。即ちsbの舶「2」にJ:り走行状態が「L」レベ
ルT:あることが示されるようになる。
On the other hand, if Vw is smaller than V sl,1 at this point, the process proceeds to step 406, and this smooth tube 40
At G, sb is further incremented by "+1", and the value of sb becomes "2". That is, it is shown that the J: running state of the ship "2" in sb is at the "L" level T:.

走行状態がr N JレベルからrMJレベルに移行し
1.、:直後の本ルーチンの処理においては、ステップ
402の判定結果がI’ N OJとなることから次に
ステップ/I07が実行され、このステップ407にて
sbが[1」であるか否かが判定される。
When the running state shifts from the rNJ level to the rMJ level, 1. ,: In the processing of this routine immediately after, since the determination result of step 402 is I' N OJ, step /I07 is executed next, and in this step 407 it is determined whether sb is [1] or not. It will be judged.

31+は11」Cあることから、このステップ407の
判定結果はIYFSJであり、次にステップ7108に
(V〜yがV SIJ、り小さい否かが判定される。こ
の時点においてV wがVs1以上であるとづれはこの
判定ムー果は+’ N OJとなり次にステップ/l 
04.)に進み、ステップ409に(中輪加速爪立Wが
[1(」レベル判定用基t(1,加速度G1−1よりも
人さいか古かが判定される。このI+、’1点にJ3い
−cvwが(’+111メ王(パあるどりればCのステ
ップ409の判定結果がl NOjと4fリホルーチン
を抜り出る。
Since 31+ is 11"C, the determination result in step 407 is IYFSJ. Next, in step 7108, it is determined whether V~y is smaller than VSIJ. At this point, Vw is greater than or equal to Vs1. Then, the result of this judgment is +' N OJ, and then the step /l
04. ), and in step 409, it is determined whether the middle wheel acceleration claw holder W is [1('') level determination base t(1, acceleration G1-1, whether it is old or old. If cvw is ('+111 me), the judgment result of step 409 of C will be l NOj and 4f reholoutine will be extracted.

イの後V〜V/JKVSIよりし小ざくなるど、ステツ
ノ/′lO8の判定結果がI’ Y I三S Jに反転
することlp +ら、スラーツブ40Gが実行され、こ
のステップ406に(Sl)が「→=1」され、sbの
1111は「2」に移行づる。即ち走行υ(態がrMJ
レベルから「l−」レベルに移行したことが示されるこ
とになる。
After I, the judgment result of STETSUNO/'lO8 is reversed to I' Y I3S J, although it becomes smaller than V~V/JKVSI. ) is set to "→=1", and 1111 of sb shifts to "2". That is, traveling υ (state is rMJ
This indicates that the level has shifted to the "l-" level.

また走行状態が「M」レベルであるどきにV WがG1
−1よりも大きくなったどづればスフツノ409の判定
結果がrYEsJに反転することからSbがr−i 、
+され、S11の値は[0」にイする。即ち走行状態が
rMJレベルから「11」レベルに移行したことが示さ
れるようになる。
Also, when the driving condition is at the "M" level, the VW is G1.
Since the judgment result of Dodzubara Suftsuno 409, which is larger than -1, is reversed to rYEsJ, Sb is r-i,
+, and the value of S11 becomes [0]. In other words, it is indicated that the running state has shifted from the rMJ level to the "11" level.

走行状態が「しjレベルであると示されているときの本
ルーチンの処理は、ステップ402.407の判定結果
が共にrNOJであることからステップ411が実行さ
れこのスj−ツブ411にくSbがr 2 J−Cある
か否か、換乙(Jれば走行状態がl’ L Jレベルで
あるか盃かが判定される。上記の如く走行状態はI’ 
1 、ルベルであることから、このスラップ/111の
判定結果G;L l’ Y E S Jであり、次にス
テップ412にてV Wが減11開始1′す定用基準速
1Vshよりも大きいか否かが判定される。
The processing of this routine when the running state is shown to be at the "J level" is that since the judgment results of steps 402 and 407 are both rNOJ, step 411 is executed and this step 411 is set to Sb. It is determined whether there is r 2 J-C or not, and if it is J, it is determined whether the running state is at the l' L J level or a cup.As mentioned above, the running state is I'
1. Since it is a rubel, the judgment result of this slap/111 is G; It is determined whether or not.

VWがVSII未満である場合にはこのスデップ412
の判定結果はrNOJであり本ルーチンを扱()出る。
If VW is less than VSII, this step 412
The determination result is rNOJ, and this routine is processed ().

イの後VWがVshよりし大ぎくなるとこのスラップ/
112の判定れ1.末がr Y fE S Jに反転し
次にステップ/11oが実行されsbが「−11されs
bの(11°自ユrIJに変換ざ、れる。即ら走す状態
が「1−」レベルがらrMJレベルに移行したことが示
されるようになる。
After VW becomes larger than Vsh, this slap/
112 Judgment 1. The end is reversed to r Y fE S J, and then step /11o is executed and sb becomes "-11 and s
(11°) is converted to rIJ. In other words, it is shown that the running state has shifted from the "1-" level to the rMJ level.

この様にNレベル判定手段においては、車輪速度V w
とμレベル判定用基t’l’: 速1a V Sh、y
s+n、ySlどの各種比較、及びΦ輪加速度VWとμ
レベル判定用!;!準加速度G1−1との比較に阜づい
てNレベルを示り゛フラグsbの値をインクリメ> I
−、デクリメン1〜あるいは保JW L/、走行状態が
r’ l−I Jレベルひあるか、rMJレベルである
が、あるいは11−jレベルひあるかが判断される。
In this way, in the N level determination means, the wheel speed V w
and μ level judgment base t'l': Speed 1a V Sh,y
Various comparisons such as s+n, ySl, etc., and Φ wheel acceleration VW and μ
For level determination! ;! Based on the comparison with the quasi-acceleration G1-1, it indicates the N level and increments the value of the flag sb> I
-, decrement 1 to JW L/, it is determined whether the running state is at the r' l-I J level, the rMJ level, or the 11-j level.

第9図は上述した如きNレベル判定手段にょる動1′1
をわかり易く説明Jるための波形図を示している。
FIG. 9 shows the movement 1'1 by the above-mentioned N level determining means.
A waveform diagram is shown for easy-to-understand explanation.

第9図に示1如く制御間シf1時に13いて走行状態(
Nレベル)がt’ l−Nレベルであると判定されてい
るちとで、制御が開始され、車輪速度VWが図示破線で
示す如く減少してゆきrMlレベル判定用基準速疫通電
mを時点taでよぎるようになるとNレベルはrMJレ
ベルに移行したと判断され、更にVWが減少して「1−
」レベル判定用基準速度VS1を時点tbでよぎるよう
になるとNレベルはrLJレベルに移行される。その後
プレー=Vゆるめにより車輪速度ywが増大してゆき時
点tcにd3いて減圧開始判定用塁tlI−速度VSb
をよさ゛るJ:うになると今度(よNレベルは1゛M」
レベルに移行し、その後車輪加速度9Wがr l−I 
Jレベル判定用基準加速度G1−1よりも人さくなると
Nレベルはr l−1、Iレベルに移行づ°る。尚、第
9爾にJ3りる車輪速1良V w、車輪加速度VWのそ
れぞれの実線波形は走行状態が「1」」レベルに維持さ
れている場合に対応したものである。
As shown in FIG. 9, the control interval is 13 at f1 and is in a running state (
When it is determined that the speed (N level) is at the t'l-N level, the control is started, and the wheel speed VW decreases as shown by the broken line in the figure, and the reference speed energization m for determining the rMl level is set at the time ta. When it starts to waver, it is judged that the N level has shifted to the rMJ level, and the VW further decreases to “1-
'' When the level determination reference speed VS1 is crossed at time tb, the N level is shifted to the rLJ level. After that, the wheel speed yw increases due to the play = V loosening, and at time tc, d3 is reached, and the base for determining the start of decompression tlI - speed VSb
Good J: Next time (YoN level is 1゛M)
level, and then the wheel acceleration 9W is r l-I
When the acceleration becomes lower than the reference acceleration G1-1 for determining the J level, the N level shifts to r1-1 and then to the I level. The solid line waveforms of the wheel speed Vw and the wheel acceleration VW in the ninth section J3 correspond to the case where the running state is maintained at the "1" level.

第10図tよ本発明にかかわるプレール油1[の減圧終
了基19ルベルを変更する変更手段の一部の処理内容を
概略的に表わしたフローブヤ−1〜であり、第5図にお
ける基準速成算出処理ステップ105に対応している。
FIG. 10 t is a flowchart 1 which schematically represents a part of the processing contents of the changing means for changing the decompression termination group 19 level of the prairie oil 1 related to the present invention, and the standard quick production calculation in FIG. This corresponds to processing step 105.

この処理にJ3いてはステップ501にて開始フラグ1
−staが「1」であるか否かが判定される。
In this process, in step 501, start flag 1 is set in J3.
It is determined whether or not -sta is "1".

制ta11開始前におい−ではこの判定結果がrNOJ
であることから次にステップ502にてストツプスイッ
ー7SWがONでかつ、ステップ503である車輪速度
(最小車輪速度VWmin)が、制御開始判定速度基準
VSSを一旦よぎったかどうかが判定される。判定成立
時にはF staを[1」にセラ1〜し、判定不成、5
171 +1i’iはスiツブ50層にC制011開始
刊定111);口1’速1?J V ssヲ次1/) 
式、即チVss−−Ks xVsb−−△ Vs +J
、すt)出−4る。ここでKSは定数であり、またVS
l、lは第5図のスーツツブ104にて締出された推定
中体速磨てあり、ΔVS+は路面の凹凸状態に応じ(’
 jjj変な(1「1をとるしのである。
Before the start of control ta11, this judgment result is rNOJ
Therefore, in step 502, it is determined whether the stop switch 7SW is ON and in step 503, whether the wheel speed (minimum wheel speed VWmin) has once crossed the control start determination speed standard VSS. When the judgment is successful, F sta is set to [1], and the judgment is unsuccessful.
171 +1i'i is for the 50th layer of sub-50th C system 011 start publication 111); mouth 1' speed 1? J V sswoji 1/)
Formula, i.e. Vss--Ks xVsb--△Vs +J
, St) Out-4ru. Here KS is a constant and VS
l and l are the estimated intermediate speeds shut out by the suit knob 104 in Fig. 5, and ΔVS+ is calculated according to the unevenness of the road surface ('
jjj strange (1 "It's the one who takes 1.

−ての後開始フラグにstaがrOJから11」になる
とスラップ5010判定結果がrYEsJにIk転りる
ことから、ステップ506.507.5台で OE′1.509g1順次実すされるJ、うになる。こ
れらのステップのうちステップ506にd3いてはノイ
ズ対策用4を準速度VS11が次の式、叩らVS11=
KlI XVSEI−AVnにより締出され、ステップ
507においては減圧ff1l始基準速度vsl+が次
の式、即ちV sh= K h x V sb −A 
vhより算出され、ステップ508においてはrMJレ
ベル判定用基準速1哀■smが次の式、即しVsm=K
mxVsb−Δ V m より締出され、ステップ509においr l;L t’
 L Jレベル判定用基準速度VSIが次の式、即ちV
sl=’Kl xVsb−△V1 により締出される。
- When sta changes from rOJ to 11'' in the start flag after -, the slap 5010 judgment result changes to rYEsJ, so at step 506, 507.5 units, OE'1. . Among these steps, in step 506 d3, the noise countermeasure 4 is set to the quasi-speed VS11 according to the following formula, VS11=
KlI
In step 508, the reference speed 1sm for determining the rMJ level is calculated from the following formula, that is, Vsm=K
mxVsb-ΔV m , and in step 509 r l;L t'
The reference speed VSI for determining the L J level is determined by the following formula, that is, V
sl='Kl xVsb-ΔV1.

第11図は減圧判定時に走行状態に応じて減圧終了レベ
ルを変更づる処理を表わしに〕「J−チ17−トを示ず
FIG. 11 shows the process of changing the end level of decompression according to the driving condition when determining depressurization.

定し、増圧モニドである場合には他に何ら98理を行な
うことなく本ルーチンを扱は出る。減Jエモ−−C゛あ
る揚台には、次にスフツブ602にて走行状態が111
jレベルであるが否かが判断され、1− LI Jレベ
ルC・ある場合にはそのまま本ルーチンを抜()出る。
If the pressure is increased and the pressure is increased, this routine is executed without performing any other operations. Next, on the platform with reduced J Emo--C, the running state is 111 in Softub 602.
It is determined whether the level is J or not, and if it is 1-LI J level C, this routine is exited as is.

−ブ1rllJレベル(・ないと判断された場i′1に
は、ステップ603に−c11 i1リノ11速度。2
を次の式、即ち G −z = (、i 2 F Δ G 2に、」、す
0゛2に切り換える。次にステップ60/1に(走(j
状態が1−M」レベルであるが否かを判定し、「M」レ
ベルである場合にはステップ605に(、緩減圧終了レ
ベルをG2がら」:記の如きレベル切換後のG−2に切
り換える。−力走行状態が「1−jレベルである場合に
は、スアップ606にC急減II終了レベルをG1がら
1配の如きレベル切1i ff2のG ’−2に切り換
え、次にステップ6゜7に4緩減圧柊tレベ−ルをG2
がら減圧開始判定11J J、”、 il’迷1良V 
sl+ニ切す4% エZ>。
-B1rllJ level (・If it is determined that there is no i'1, go to step 603 -c11 i1 Reno 11 speed.2
is changed to the following formula, i.e., G −z = (, i 2 F Δ G 2, ”, S0゛2. Then, in step 60/1,
It is determined whether or not the state is at the "1-M" level, and if it is at the "M" level, the process proceeds to step 605 (Slow decompression end level is set to G-2 after level switching as described below). - If the power running state is at the "1-j level," switch the C sudden decrease II end level from G1 to G'-2 of level off 1i ff2, such as G1, in step 606, and then step 6 7 to 4 slow decompression Hiiragi T level to G2
Decompression start judgment 11J J,", il' 1 good V
sl+2 cuts 4% EZ>.

このように減圧モード時においては、jk行状態応じた
減圧終了レベルが設定される。
In this way, in the decompression mode, the decompression end level is set according to the state of row jk.

第12図ないし第14図は本発明の主要な動作を説明す
るための説明図であり、第12図は走す状態がI’ l
−1jレベルである場合にd3りる車輪速度、車輪加速
度等の波形図、第13図は走行状態がrMJレベルであ
る場合における同様の図、第14図は走行状態がrMJ
レベルにある間に一時的にrllレベルが判定される場
合の同様の図を示している。
12 to 14 are explanatory diagrams for explaining the main operations of the present invention.
A waveform diagram of the wheel speed, wheel acceleration, etc. shown in d3 when the driving condition is at -1j level, Fig. 13 is a similar diagram when the driving state is at the rMJ level, and Fig. 14 is a waveform diagram when the driving state is at the rMJ level.
A similar diagram is shown where the rll level is temporarily determined while at level.

第12図に示J如く、走行状態がl’11.ルベルであ
る時に一時的にrMJレベルであることが判定されると
このrMJレベル判定期間におい−C]曽/減制御用ソ
レノイドSOLM(7)ON状態からO[F状態への反
転を指示Jる、即ち、減H柊了を指示り°る、ためのW
 t、+!i加速度G2レベルは所定の1ii’jだ【
)増加される。従ってrMJレベル判定明間にa3いて
は減圧期間が増大されゆるめ不足の発生を防止J−るこ
とが可OLとなる。
As shown in FIG. 12, the running condition is l'11. If it is temporarily determined to be at the rMJ level when the level is at the level, during this rMJ level determination period, the solenoid SOLM (7) for solenoid/reduction control instructs the reversal from the ON state to the O[F state. , that is, W for instructing the reduction of H
T,+! The i acceleration G2 level is the predetermined 1ii'j [
) will be increased. Therefore, in the rMJ level judgment interval a3, the decompression period is increased and it becomes possible to prevent the occurrence of insufficient loosening.

また第13図に示づ如く走行状態が「M」レベルである
と判定されている期間に、1′3いては、第12図にて
上述した如き処理と同様に減圧終了基準加m度G2が連
続して高レベル値とされることから走行状態がr l−
I Jレベルにあるどきに比べて減j[終了時点が伸長
されゆるめ不足による車輪ロックの発生を未然に防止づ
ることが可能どなる。
Further, as shown in FIG. 13, during the period in which the running state is determined to be at the "M" level, at 1'3, the decompression end standard acceleration G2 is determined in the same way as the process described above in FIG. is continuously set to a high level value, so the running condition is r l-
Compared to when it is at the IJ level, the end point is extended, making it possible to prevent wheel locking due to insufficient loosening.

:L7.:第14図に示す如(走行状態がrMJレベル
であると判定されている状態におい°C走行状態が11
」レベルであると判定されている期間にd3い(は、減
圧終了基準加速庶Q2レベルが上述した如さrMJレベ
ルにあるときのレベル値に比べて更に^レベルとされる
ど共に車輪速1良Vwが減圧判定用j、4準速瓜VS1
1以下になった時点ぐ減圧終了を(jなうJ、うにしC
いるため、走f−7状態がrMJレベルにあるどきに比
べて減圧終了時点(,1更に伸長され、このIこめ走行
状態が1−M」レベルにある117 +、T比l\(史
に生じ易いf’LJレベル11.5のΦ輪Uツク発生を
充分に防止することが可能となる。
:L7. : As shown in Fig. 14 (when the driving condition is determined to be at the rMJ level, the driving condition is 11 °C).
” level, the decompression end reference acceleration Q2 level is further ^ level compared to the level value when it is at the rMJ level as described above, but the wheel speed is 1. Good Vw is for decompression judgment, 4 semi-fast melon VS1
Immediately end the decompression as soon as it becomes 1 or less (j now J, sea urchin C
Therefore, compared to when the running f-7 state is at the rMJ level, the time at the end of decompression (,1 is further extended, and this I-running state is at the 1-M' level. It is possible to sufficiently prevent the occurrence of Φ-wheel U-tsuku at f'LJ level 11.5, which is likely to occur.

なJ3、木’J?施例にJ3いて、走行状態に応じて決
定される浦1[パターンは第15図に示づ如きものであ
る、。
Na J3, Thu'J? In the example, J3 is used, and Ura 1 is determined according to the running condition [the pattern is as shown in FIG. 15].

以上説明した如く、本発明は路面とタイX7どの間の摩
擦係数μを1([定りるために基I((速;哀、基準加
速度と、演紳された車輪速度、中輪加速度とを大小比較
しμレベルを判定づ−るど共に、この判定されたμレベ
ルに応じてプレーニviIIIIJ′の減L1終了基準
レベルを変更するJ:うにし、走行状態がr l−I 
Jレベルにあるときには比較的早い減圧終了0.’i点
どなり、1M」レベルにあるときにはある稈麿減圧終了
時点が近延され、更にrLJレベルにあるどきには減圧
終了時点がかなり近くなるJこうにした。
As explained above, the present invention is based on the basis I((speed), standard acceleration, operated wheel speed, middle wheel acceleration and The μ level is determined by comparing the magnitude of the μ level, and the reduction L1 end reference level of the plani vIIIJ' is changed according to the determined μ level.
When at J level, decompression ends relatively quickly. When it is at the 'i-point, 1M' level, the end point of the decompression is postponed, and when it is at the rLJ level, the end time of the decompression is much closer.

従って本発明によれば、走行状態がr l−I Jレベ
ルからr L Jレベルになるにしたがって結果として
ブレーキゆるめ期間が増大されることから、1’ M 
Jレベル以下においてゆるめ不足から生ずる中輪[1ツ
クを充分に防止りることがjiJ III:となり、あ
らゆる走行状態に最適なファンチスキッド制御を実現づ
ることか可能となる。
Therefore, according to the present invention, as the driving state changes from the r l-I J level to the r L J level, the brake release period is increased as a result.
It is jiJ III: to sufficiently prevent the middle wheel [1] caused by insufficient loosening at J level or below, and it becomes possible to realize the optimum skid control for all driving conditions.

なa3上述した実茄例では、μレベルどじclr l−
I Jレベル、FM」レベル、「1−」レベルの3段階
を判定しかつこれに対応して減圧終了its i、1!
(レベルを変更しているが、本発明はこれのみに限定さ
れるものではなく、多数のμレベルを判定し、この判定
結果に対応して上記基iIレベルを切り換えるようにし
てもよい。
a3 In the actual egg example mentioned above, the μ level is clr l-
The three stages of IJ level, FM level, and 1- level are determined, and the decompression is completed accordingly.
(Although the level is changed, the present invention is not limited to this only. It is also possible to determine a large number of μ levels and switch the base iI level in accordance with the determination result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の特徴を示づためのlI8成図、第2図
は本発明によるアンチスキッド制御装首の一実施例の系
統図、第3図はそのアクヂュ王−タの構成を概略的に表
わした図、第4図り、電子i1+lj陣回路のブロック
構成及びその周辺回路を表わした図、第5図ないし第7
図はそれぞれ処理動作を説明゛するためのフローチャー
トであり、第5図はメインルーヂン、第6図はタイマ割
込ルーヂン、第7図は車速割込ルーチンを示す。第8図
は本発明にかかわるμレベル判定手段の処]!I+内容
を表わしlこフローヂ11−ト、第9図(Jその動作を
説明づるlSめのクイl\ヂsz −1−1第10図J
3よび第11図はそれぞれ本発明にかかわる変更手段の
 部の処理内容を表わしたフローチ1−−1−1第12
図ないし第14図はそれぞれ制御及び動作を概念的に説
明するためのタイムヂト−1〜、第15図は走行状態に
応じ!ζ油13:パターンを表わした図を示づ。 il 、・・・、b・・・・・・調整部材C1・・・、
d・・・・・・車速ヒンジ゛e・・・・・・制御11回
路 [・・・・・・車輪速度・加速1哀演綽手段9・・・・
・・判定手段 11・・・・・・変更手段 代理人 弁即土 定立 勉 はか1名 第1図 ■ 第2図 第3図 77、78.19 / 第7図 第8図 第9図 μレム1し HL M # 第10図 第11図 第12図 第13図 第14図
Fig. 1 is a diagram showing the characteristics of the present invention, Fig. 2 is a system diagram of an embodiment of the anti-skid control head according to the present invention, and Fig. 3 is a schematic diagram of the configuration of the actuator. 4th diagram, diagrams representing the block configuration of the electronic i1+lj circuit and its peripheral circuits, and Figures 5 to 7.
Each figure is a flowchart for explaining the processing operation, and FIG. 5 shows the main routine, FIG. 6 shows the timer interrupt routine, and FIG. 7 shows the vehicle speed interrupt routine. FIG. 8 shows the μ level determining means according to the present invention]! I + represents the contents of the flowchart 11-1, Fig. 9 (J).
3 and 11 are flowcharts 1--1-1 and 12, respectively, representing the processing contents of the changing means section related to the present invention.
Figures 14 to 14 are timetables 1 to 1 for conceptually explaining the control and operation, and Figure 15 is for the running conditions. Zeta oil 13: A diagram showing the pattern is shown. il,...,b...adjustment member C1...,
d...Vehicle speed hinge e...Control 11 circuit [...Wheel speed/acceleration 1 control means 9...
... Judgment means 11 ... Changing means agent Ben Sokudo Seitate Tsutomu Haka 1 person Figure 1 ■ Figure 2 Figure 3 77, 78.19 / Figure 7 Figure 8 Figure 9 μ Rem 1 HL M # Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14

Claims (1)

【特許請求の範囲】 電気信号に応動しブレーキ油圧を自動的に調整りる調整
部材と、車輪速度に対応した信号を発生1jる中速レン
ザと、該中゛速セン(jからの(M f3を受(J車両
走行状態に応じたブレーキ油圧制御用駆動1i! ”−
3を1記調整部材に出力Jる制御回路であって少なくと
も車輪速度・加速度演算手段を右するものどを猫えたア
ンプスキッド制御装置において、上記制御回路に、 路面とタイ1/どの間の摩擦係数μを推定するための基
準通電、基i1(加速;哀と、上記車輪速度・加)虫磨
演粋丁段にC線用された車輪速1良、中輪+J1.l速
1腹ど、を大小比較しμレベルを判定りる判定下段と、 該判定手段にて判定されたμレベルに応じてブレーキ曲
尺の減圧終了基準レベルを変更する変更手段と、 を設けたことを特徴とするアンチスキッド制御装置。
[Scope of Claims] An adjustment member that automatically adjusts the brake oil pressure in response to an electric signal, a medium speed sensor that generates a signal corresponding to the wheel speed, and a (M) sensor from the medium speed sensor (j). Receive f3 (J Brake oil pressure control drive 1i according to vehicle running condition! ”-
In the amplifier skid control device, which includes a control circuit that outputs 3 to the adjustment member 1, which controls at least the wheel speed/acceleration calculation means, the control circuit includes a control circuit that controls the friction between the road surface and the tie 1. The reference energization for estimating the coefficient μ is based on i1 (acceleration; above wheel speed/addition).The wheel speed used for the C line is 1, middle wheel + J1. A lower determination stage for determining the μ level by comparing the magnitudes of 1 speed and 1st inclination, and a changing means for changing the decompression end reference level of the brake curve according to the μ level determined by the determination means. An anti-skid control device characterized by:
JP58145259A 1983-08-09 1983-08-09 Antiskid controller Granted JPS6035647A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58145259A JPS6035647A (en) 1983-08-09 1983-08-09 Antiskid controller
EP84305376A EP0133598B1 (en) 1983-08-09 1984-08-07 Antiskid control with surface friction compensation by prolonged down-pressure operation
DE8484305376T DE3475505D1 (en) 1983-08-09 1984-08-07 Antiskid control with surface friction compensation by prolonged down-pressure operation
US06/638,722 US4665490A (en) 1983-08-09 1984-08-08 Antiskid control with surface friction compensation by prolonged down-pressure operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145259A JPS6035647A (en) 1983-08-09 1983-08-09 Antiskid controller

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3283329A Division JPH0822666B2 (en) 1991-10-29 1991-10-29 Anti-skid controller

Publications (2)

Publication Number Publication Date
JPS6035647A true JPS6035647A (en) 1985-02-23
JPH044175B2 JPH044175B2 (en) 1992-01-27

Family

ID=15380994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145259A Granted JPS6035647A (en) 1983-08-09 1983-08-09 Antiskid controller

Country Status (4)

Country Link
US (1) US4665490A (en)
EP (1) EP0133598B1 (en)
JP (1) JPS6035647A (en)
DE (1) DE3475505D1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227864A (en) * 1986-03-29 1987-10-06 Hino Motors Ltd Power steering used in vehicle
JPS63287655A (en) * 1987-05-20 1988-11-24 Sumitomo Electric Ind Ltd Anti-lock device
JPH01106765A (en) * 1987-10-19 1989-04-24 Yokogawa Electric Corp Anti-skid brake device
JPH01156351A (en) * 1987-12-15 1989-06-19 Mitsui Petrochem Ind Ltd Polyolefin composition
US4929035A (en) * 1988-02-08 1990-05-29 Akebono Brake Industry Co. Ltd. Anti-lock control system for motor vehicles
JPH0354058A (en) * 1989-07-20 1991-03-08 Nippondenso Co Ltd Antiskid control device
US5634699A (en) * 1994-10-20 1997-06-03 Aisin Seiki Kabushiki Kaisha Anti-skid control system for a four-wheel drive vehicle
US5676434A (en) * 1994-07-20 1997-10-14 Aisin Seiki Kabushiki Kaisha Anti-skid control based upon estimated coefficient of friction

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886322A (en) * 1985-02-19 1989-12-12 Kelsey Hayes Company Vehicle anti-lock brake system
JPS61218466A (en) * 1985-03-25 1986-09-27 Nippon Denso Co Ltd Antiskid controller
GB8511068D0 (en) * 1985-05-01 1985-06-12 Automotive Prod Plc Vehicle antilock braking systems
US4715663A (en) * 1985-09-23 1987-12-29 Nippondenso Co., Ltd. Brake oil pressure control device
JPH0678059B2 (en) * 1985-11-20 1994-10-05 トキコ株式会社 Anti-skidding control device
JPH0688532B2 (en) * 1985-12-27 1994-11-09 曙ブレーキ工業株式会社 Anti-skidding control method
JPS62218873A (en) * 1986-03-20 1987-09-26 Fujitsu Ltd Wheel speed identifying and processing system
GB8711310D0 (en) * 1987-05-13 1987-06-17 Sp Tyres Uk Ltd Tyres deflation warning device
GB8711303D0 (en) * 1987-05-13 1987-06-17 Lucas Ind Plc Anti-skid braking systems
JPS63305065A (en) * 1987-06-04 1988-12-13 Sumitomo Electric Ind Ltd Wheel speed controller
JP2646572B2 (en) * 1987-09-04 1997-08-27 日産自動車株式会社 Simulated vehicle speed generator for anti-skid control device
DE3741248C1 (en) * 1987-12-05 1989-06-01 Daimler Benz Ag Method for determining slip thresholds for traction control of a motor vehicle
JP2704623B2 (en) * 1988-02-12 1998-01-26 曙ブレーキ工業株式会社 Anti-lock control method
DE3806213A1 (en) * 1988-02-26 1989-09-07 Lucas Ind Plc METHOD FOR REGULATING BRAKE PRESSURE
DE68926827T2 (en) * 1988-02-29 1996-11-21 Nissan Motor Anti-skid brake control system capable of eliminating noise when deriving wheel acceleration data
US4941099A (en) * 1988-05-16 1990-07-10 American Standard Inc. Electronic adhesion adaptive wheel slide protection arrangement function
US4818037A (en) * 1988-05-16 1989-04-04 Hughes Aircraft Company Method for estimating reference speed and acceleration for traction and anti-skid braking control
DE3819424A1 (en) * 1988-06-07 1989-12-14 Lucas Ind Plc METHOD FOR REGULATING THE BRAKE PRESSURE IN A BLOCK-PROTECTED VEHICLE BRAKE SYSTEM
US5255194A (en) * 1988-08-17 1993-10-19 Robert Bosch Gmbh System for maintaining a vehicle equipped with ABS in driving direction during lateral skidding
DE68925713T2 (en) * 1988-10-13 1996-10-10 Japan Electronics Industry Ltd Road surface friction transducer and road surface friction coefficient transducer and vehicle anti-lock braking system
EP0387783B1 (en) * 1989-03-13 1997-07-16 Sumitomo Electric Industries, Ltd. Brake control device in an antilock brake system
JP2820741B2 (en) * 1989-11-10 1998-11-05 トキコ株式会社 Anti-lock control device
US5050940A (en) * 1990-02-05 1991-09-24 Allied-Signal Inc. Brake control and anti-skid system
US5043896A (en) * 1990-06-11 1991-08-27 Ford Motor Company Vehicle braking system controller/road friction and hill slope tracking system
US5132906A (en) * 1990-06-11 1992-07-21 Ford Motor Company Road surface friction and hill slope estimator
JP2616302B2 (en) * 1991-09-25 1997-06-04 三菱電機株式会社 Anti-skid control device
GB9209137D0 (en) * 1992-04-28 1992-06-10 Lucas Ind Plc Method of and apparatus for estimating surface friction
JPH0761340A (en) * 1993-08-25 1995-03-07 Nippon Denshi Kogyo Kk Control point detecting method in abs device
DE19841543A1 (en) * 1998-09-11 2000-04-06 Schwerionenforsch Gmbh Device and method for monitoring a signal
DK1420822T4 (en) 2002-04-19 2017-10-09 Bavarian Nordic As Modified vaccinia virus Ankara for vaccination of newborns
US8746812B2 (en) 2004-10-08 2014-06-10 Marcia Albright Brake control unit
US8789896B2 (en) 2004-10-08 2014-07-29 Cequent Electrical Products Brake control unit
DE102008043201A1 (en) 2008-10-27 2010-04-29 Robert Bosch Gmbh Device for detecting a change of a generator output signal of a vehicle generator
US10946841B2 (en) 2016-09-16 2021-03-16 Horizon Global Americas Inc. Driver and diagnostic system for a brake controller
US10363910B2 (en) 2016-12-07 2019-07-30 Horizon Global Americas Inc. Automated gain and boost for a brake controller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097789A (en) * 1973-12-29 1975-08-04
JPS5123666A (en) * 1974-08-20 1976-02-25 Matsushita Electric Ind Co Ltd DENKISETSUTENYOJUNKATSUZAI
JPS5319750A (en) * 1977-07-06 1978-02-23 Hitachi Ltd Saw toothed wave generator circuit
JPS5679042A (en) * 1979-11-29 1981-06-29 Nissan Motor Co Ltd Antiskid controlling apparatus
JPS56160245A (en) * 1980-05-15 1981-12-09 Honda Motor Co Ltd Antiskid braking control method
JPS5826660A (en) * 1981-08-11 1983-02-17 Toyota Motor Corp Vehicle anti-skid unit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140353A (en) * 1968-09-20 1979-02-20 Kelsey-Hayes Company Skid control system
US4353601A (en) * 1969-06-30 1982-10-12 Texas Instruments Incorporated Vehicle skid control
JPS4845768A (en) * 1971-10-13 1973-06-29
GB2002473B (en) * 1977-08-10 1982-02-17 Girling Ltd Anti-skid brake control system
HU177628B (en) * 1977-08-10 1981-11-28 Girling Ltd Method and arrangement for operating anti-sleep brake-adjusting systems
US4168866A (en) * 1977-09-09 1979-09-25 Eaton Corporation Anti-wheel lock system
GB2016101B (en) * 1978-01-18 1982-04-07 Honda Motor Co Ltd Anti wheel lock method preventing wheel lock
JPS55123548A (en) * 1979-03-14 1980-09-24 Hitachi Ltd Skid control system in use of microcomputer
DE2930433A1 (en) * 1979-07-26 1981-05-21 Knorr-Bremse GmbH, 8000 München BLOCKED PROTECTIVE BRAKE CONTROL CIRCUIT FOR RAIL VEHICLES
JPS5653943A (en) * 1979-10-09 1981-05-13 Nissan Motor Co Ltd Antiskid controller
JPS56116542A (en) * 1980-01-24 1981-09-12 Nippon Air Brake Co Ltd Safety circuit of antiskid apparatus for vehicles
FR2476008A1 (en) * 1980-02-18 1981-08-21 Lucas Industries Ltd Antilock brake control on vehicle - operates with feedback control to vary modulation cycle times
US4395761A (en) * 1980-05-15 1983-07-26 Honda Giken Kogyo Kabushiki Kaisha Antiskid brake controlling method and apparatus for vehicles
DE3039512A1 (en) * 1980-10-20 1982-05-06 Knorr-Bremse GmbH, 8000 München BLOCKED PROTECTIVE BRAKE CONTROL CIRCUIT
US4530059A (en) * 1982-04-30 1985-07-16 Lucas Industries Public Limited Company Vehicle anti-lock breaking control
GB2119882B (en) * 1982-04-30 1986-10-15 Lucas Ind Plc Vehicle anti-lock braking control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097789A (en) * 1973-12-29 1975-08-04
JPS5123666A (en) * 1974-08-20 1976-02-25 Matsushita Electric Ind Co Ltd DENKISETSUTENYOJUNKATSUZAI
JPS5319750A (en) * 1977-07-06 1978-02-23 Hitachi Ltd Saw toothed wave generator circuit
JPS5679042A (en) * 1979-11-29 1981-06-29 Nissan Motor Co Ltd Antiskid controlling apparatus
JPS56160245A (en) * 1980-05-15 1981-12-09 Honda Motor Co Ltd Antiskid braking control method
JPS5826660A (en) * 1981-08-11 1983-02-17 Toyota Motor Corp Vehicle anti-skid unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227864A (en) * 1986-03-29 1987-10-06 Hino Motors Ltd Power steering used in vehicle
JPH0587428B2 (en) * 1986-03-29 1993-12-16 Hino Motors Ltd
JPS63287655A (en) * 1987-05-20 1988-11-24 Sumitomo Electric Ind Ltd Anti-lock device
JPH01106765A (en) * 1987-10-19 1989-04-24 Yokogawa Electric Corp Anti-skid brake device
JPH01156351A (en) * 1987-12-15 1989-06-19 Mitsui Petrochem Ind Ltd Polyolefin composition
US4929035A (en) * 1988-02-08 1990-05-29 Akebono Brake Industry Co. Ltd. Anti-lock control system for motor vehicles
JPH0354058A (en) * 1989-07-20 1991-03-08 Nippondenso Co Ltd Antiskid control device
US5676434A (en) * 1994-07-20 1997-10-14 Aisin Seiki Kabushiki Kaisha Anti-skid control based upon estimated coefficient of friction
US5634699A (en) * 1994-10-20 1997-06-03 Aisin Seiki Kabushiki Kaisha Anti-skid control system for a four-wheel drive vehicle

Also Published As

Publication number Publication date
EP0133598A3 (en) 1986-08-20
US4665490A (en) 1987-05-12
EP0133598B1 (en) 1988-12-07
DE3475505D1 (en) 1989-01-12
EP0133598A2 (en) 1985-02-27
JPH044175B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
JPS6035647A (en) Antiskid controller
JPS6035646A (en) Antiskid controller
JPS6022548A (en) Antiskid control device
JPS6035650A (en) Antiskid controller
JPS6025836A (en) Wheel speed detection device in vehicular control equipment
JPH0327419B2 (en)
JPH09207745A (en) Antiskid control valve
JP3781429B2 (en) Circuit device for anti-lock control brake system
JP2500857B2 (en) Anti-skidding control device
JPH0370656B2 (en)
JP3517954B2 (en) Vehicle anti-skid control device
JPH06144178A (en) Braking force distribution control device
US5443583A (en) Method for judging friction coefficient of road surface and method for anti-skid brake control using said method
US5150952A (en) Anti-skid control system for an automotive vehicle
JPH09510670A (en) Method and circuit structure for improving steering stability for use in an anti-lock control vehicle
JPS6025837A (en) Calculating device of wheel speed in vehicular running control equipment
CN114987413B (en) ASR-based driving anti-slip control method and electronic equipment
JPH0471739B2 (en)
JPH05208670A (en) Antiskid control device
JPH0251786B2 (en)
JPH04331654A (en) Antiskid controller
JPH0433656B2 (en)
JPH06104445B2 (en) Anti-skidding control device
JP3814889B2 (en) Anti-lock brake control device
JP3726387B2 (en) Anti-lock brake control device