JPS6035300B2 - Method for manufacturing single-polarization single-mode optical fiber - Google Patents

Method for manufacturing single-polarization single-mode optical fiber

Info

Publication number
JPS6035300B2
JPS6035300B2 JP57125863A JP12586382A JPS6035300B2 JP S6035300 B2 JPS6035300 B2 JP S6035300B2 JP 57125863 A JP57125863 A JP 57125863A JP 12586382 A JP12586382 A JP 12586382A JP S6035300 B2 JPS6035300 B2 JP S6035300B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
mode optical
cladding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57125863A
Other languages
Japanese (ja)
Other versions
JPS5918125A (en
Inventor
隆夫 枝広
勝就 岡本
壽一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57125863A priority Critical patent/JPS6035300B2/en
Publication of JPS5918125A publication Critical patent/JPS5918125A/en
Publication of JPS6035300B2 publication Critical patent/JPS6035300B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は偏光した光信号を偏光方向を保ちながら伝ぱん
することのできる単一偏波単一モード光フアィバにおい
て、対称性に優れ、偏光保持に優れ、かつ低損失な単一
偏波単一モード光フアィバの製造方法に関する。
Detailed Description of the Invention The present invention provides a single-polarization, single-mode optical fiber that can propagate polarized optical signals while maintaining the polarization direction, which has excellent symmetry, excellent polarization maintenance, and low loss. The present invention relates to a method for manufacturing a single-polarization single-mode optical fiber.

コアおよびクラッドからなる単−偏波単一モード光フア
ィバは、HE,.モードと呼ばれる基本モードのみの光
を伝えることができるが、コアに非対称的な複屈折率を
生じさせると、HE,.モードはHEも,HEr,モー
ドという光の電界振動方向が互いに直交した方向に振動
する二つのモードに分かれ、一方のモードのみを励振す
ると、光フアィバ中を一方の振動モードのみを伝えるよ
うになる。
Single-polarized single-mode optical fibers consisting of a core and a cladding are HE, . It is possible to transmit light in only the fundamental mode called mode, but if an asymmetric birefringence is created in the core, HE, . The mode is divided into HE, HEr, and two modes in which the electric field vibration directions of light vibrate in directions perpendicular to each other, and if only one mode is excited, only one vibration mode will be transmitted through the optical fiber. .

このような単一偏波単一モード光フアィバの製造方法と
して、従来、第1図に示すようなジャケット法が知られ
ている(持願昭56−894斑:単一偏波単一モード光
フアィバの製造方法−特開昭57−205333)。第
1図において、1はコア部、2はクラッド部、3は応力
付与用ガラス、4は空間を埋めるためのスベーサ、5は
ジャケット管である。
As a method for producing such a single-polarized single-mode optical fiber, the jacket method as shown in Fig. 1 has been known. Fiber manufacturing method - JP-A-57-205333). In FIG. 1, 1 is a core portion, 2 is a cladding portion, 3 is a glass for applying stress, 4 is a spacer for filling a space, and 5 is a jacket tube.

コア1およびクラッド2からなる母材の周囲に応力付与
母材3、スベーサ4を配置して、ジャケット管5中に挿
入して線引きすることが有効な方法として知られている
が、この方法ではジャケット管5の中に配置する素材は
、実際に製造する場合、完全に動かないように設けるこ
とは不可能、一部素材が線引時に移動することがいよい
よあった。この結果、得られた光フアィバの端面を見る
と、第1図Bに示されるように、応力付与部はコア中心
軸から眺める方向に0の変動を生じることがある。この
場合、通常2〜5o程度であるが、この変動が光フアィ
バ長手方向にゆらいでいると、単一偏波単一モード光フ
アィバの偏波保持性に重大な影響を及ぼすことが知られ
ている。このため従来方法で偏波保持性に優れた光フア
ィバを製造するためには、各構成素材の要求される寸法
精度はきわめて高いもので、この加工には高度な技術が
要求される。しかも各素材間に隙間も多く、時として気
泡を取り込み、この気泡が光フアィバに悪影響を与える
ことがあるなどの欠点があつた。本発明はこれら従来技
術のもつ欠点を解決するため、光フアィバ母材自体に加
工を施し、偏波保持性を高めるとともに、再現性を高め
るため発明したものであって、以下本発明の具体的手段
を、図面により詳細に説明する。
It is known as an effective method to arrange a stress-applying base material 3 and a base material 4 around a base material consisting of a core 1 and a cladding 2, insert them into a jacket tube 5, and draw the wire. During actual manufacturing, it is impossible for the material placed inside the jacket tube 5 to be completely immovable, and some of the material may move during drawing. As a result, when looking at the end face of the obtained optical fiber, as shown in FIG. 1B, the stress-applying portion sometimes causes zero fluctuation in the direction viewed from the core central axis. In this case, it is usually about 2 to 5 degrees, but it is known that if this fluctuation occurs in the longitudinal direction of the optical fiber, it will seriously affect the polarization maintenance of a single-polarized single-mode optical fiber. There is. Therefore, in order to manufacture an optical fiber with excellent polarization maintaining properties using conventional methods, the dimensional accuracy of each constituent material is required to be extremely high, and this processing requires advanced technology. In addition, there are many gaps between the materials, which sometimes traps air bubbles, which can have a negative effect on the optical fiber. In order to solve these drawbacks of the prior art, the present invention was invented to improve polarization maintenance and reproducibility by processing the optical fiber base material itself. The means will be explained in detail with reference to the drawings.

光フアィバ母材を合成する手段としてよく知られている
方法には、気相軸付け法(VAD法.〔第2図A〕と外
付け法〔第2図B〕がある。第2図において、6は種綾
、7は堆積した多孔質母材、8はコア母村合成用バーナ
、9はクラッド合成用バーナである。SICそ4 ,G
らCそ4 ,PCそ3 などのガラス形成原料ガスを酸
水素ガス等とともにバーナ8もしくは9から噴出させ、
火炎内で火炎加水分解反応を生ぜしめる。反応によって
生成したガラス微粒子は種棒の先端〔第2図A〕もしく
は周囲〔第2図B〕に堆積させる。第2図A(VAD法
)にあっては種棒6を回転させるとともに、多孔質母村
の成長に従って上方に引き上げてゆけば多孔質母村7が
軸方向に成長する。
Well-known methods for synthesizing optical fiber base materials include the vapor deposition method (VAD method [Figure 2A]) and the external attachment method [Figure 2B]. , 6 is a seed yarn, 7 is a deposited porous base material, 8 is a burner for core matrix synthesis, and 9 is a burner for cladding synthesis. SIC So4, G
A glass-forming raw material gas such as C so 4 or PC so 3 is ejected from a burner 8 or 9 along with oxyhydrogen gas, etc.
Produces a flame hydrolysis reaction within the flame. The glass particles produced by the reaction are deposited on the tip of the seed rod (FIG. 2A) or around it (FIG. 2B). In FIG. 2A (VAD method), the porous matrix 7 grows in the axial direction by rotating the seed rod 6 and pulling it upward as the porous matrix grows.

コァ母材の周囲にクラッド用のガラス微粒子をバーナ9
により堆積させれば母材になる。一方、第2図Bにあっ
ては、種棒6は回転させておき、バーナ9からガラス形
成原料を酸水素ガスとともに噴出し、バーナ前面に形成
される火炎中で反応させ、ガラス微粒子を形成するとと
もに、バーナ9を左右に往復移動させれば、多孔質母材
7が形成される。当初バーナからコア用組成(例えばS
iQ−蛇02)の蒸気を噴出させ、所望の厚さ堆積した
後、クラッド用組成(SiQ)の蒸気を噴出させれば、
光フアィバ用多孔賢母材が得られる。このような工程で
作製した母村を第3図に示す工程に従って加工すればよ
い。すなわち、第3図において、10はコア部、11は
クラッド部、12は外付け法で作製した母材中心部に生
成される孔、13はクラッド部の一部に形成した孔部、
13′はその孔である。
Burner 9 applies fine glass particles for cladding around the core base material.
If it is deposited by On the other hand, in FIG. 2B, the seed rod 6 is kept rotating, and the glass forming raw material is ejected from the burner 9 together with oxyhydrogen gas, reacts in the flame formed in front of the burner, and forms glass fine particles. At the same time, by reciprocating the burner 9 from side to side, a porous base material 7 is formed. Initially, the core composition (e.g. S
If the steam of iQ-Snake 02) is ejected and the desired thickness is deposited, then the vapor of the cladding composition (SiQ) is ejected.
A porous base material for optical fiber is obtained. The mother village produced through these steps may be processed according to the steps shown in FIG. That is, in FIG. 3, 10 is a core part, 11 is a cladding part, 12 is a hole created in the center of the base material produced by the external attachment method, 13 is a hole formed in a part of the cladding part,
13' is the hole.

第2図に示す工程では、クラッド部はガラス多孔質で充
実しているが、このクラッド部の13に相当する領域を
第3図Cに示すように、炭酸ガスレーサ(CQレーザ)
14からの光を反射鏡15で反射させ、多孔賢母材11
に導くと、照射された部分は高温加熱されて孔13′が
あく。鏡15としーザ14の位置を制御系16で制御す
れば、13の部分に所望の形の孔13′を形成すること
ができる。多孔質母村の見掛け密度は0.2〜0.5g
/が程度であるが、レーザ光を利用する場合は低密度で
あることが望ましい。一方、この孔あげ加工には機械的
にドリルを用いてもよく、その手段は問わない。13の
領域に孔あげ加工した多孔質母材は第3図Dに示す電気
炉17により約1500午0に加熱すると、第3図Dに
示すように蛾結して透明な母材に変わる。
In the process shown in Figure 2, the cladding part is filled with glass porous material, and as shown in Figure 3C, the area corresponding to 13 of this cladding part is exposed to a carbon dioxide laser (CQ laser).
The light from 14 is reflected by the reflecting mirror 15, and the light from the porous base material 11 is
The irradiated area is heated to a high temperature and a hole 13' is formed. By controlling the positions of the mirror 15 and the scissor 14 by the control system 16, a hole 13' of a desired shape can be formed in the portion 13. The apparent density of the porous mother village is 0.2 to 0.5 g.
/ is the degree, but when using laser light, it is desirable to have a low density. On the other hand, a drill may be used mechanically for this drilling process, and any means thereof is not limited. When the porous base material with holes drilled in the region 13 is heated at about 1500 o'clock in the electric furnace 17 shown in FIG. 3D, it becomes a transparent base material as shown in FIG. 3D.

この透明化工程時に雰囲気ガスとして、脱水処理効果の
著しいCZ2もしくはSOCそ2 などの脱水処理ガス
を流せば、透明母村中に残留するOH基は容易に0.1
ppm程度に下げることが可能である。透明母村を第3
図Dに示すa−a′の面で切断した断面図は、第3図E
に示されるように、コア10、クラツド11、孔13′
が形成されている。この母材は必要に応じて、所望径の
外径になるように延伸加工してもよい。
If a dehydrating gas such as CZ2 or SOC2, which has a remarkable dehydrating effect, is flowed as an atmospheric gas during this transparentization process, the OH groups remaining in the transparent matrix can be easily reduced to 0.1
It is possible to lower it to about ppm. Transparent mother village 3rd
The sectional view taken along the plane a-a' shown in Figure D is Figure 3E.
As shown in FIG.
is formed. This base material may be stretched to have a desired outer diameter, if necessary.

透明化した母材の孔13′の部分に熱膨張係数がクラッ
ド11の熱膨張係数より大きなガラス(例えばSj02
−B203−蛇02)榛18を挿入するとともに、全体
をジャケット管19中に挿入する。組み合わせた母村は
カーボン炉等で210000程度に加熱して線引きすれ
ば、第3図日こ示す母材とほぼ相似の断面をもつ光フア
ィバが得られる。透明母材11の外蓬が充分に厚ければ
、ジャケット管19へ挿入する必要はなくなることは言
うまでもない。工部13に挿入するガラスとしては、ク
ラツド部の熱膨張係数より小さな熱膨張係数をもつSi
02−Ti02ガラスであってもよい。
A glass whose thermal expansion coefficient is larger than that of the cladding 11 (for example, Sj02
-B203-Snake 02) Insert the shank 18 and the whole into the jacket tube 19. If the combined matrix is heated to about 210,000 ℃ in a carbon furnace or the like and drawn, an optical fiber having a cross section almost similar to that of the matrix shown in FIG. 3 can be obtained. Needless to say, if the outer cover of the transparent base material 11 is sufficiently thick, there is no need to insert it into the jacket tube 19. The glass to be inserted into the working part 13 is Si, which has a coefficient of thermal expansion smaller than that of the cladding part.
02-Ti02 glass may also be used.

また第3図において、第3図Cにより孔あげ加工した後
、この孔部13に応力付与用の組成をもつ多孔質ガラス
棒を挿入し、その後、脱水処理、透明化すれば、コア、
クラッド、応力付与部が一体化された母材が得られる。
第4図は本発明の他の実施例を示し、孔あげ加工した母
村11の孔13′からガラス形成原料を酸素ガスととも
に流し、外部から加熱源20‘こより加熱すれば、孔1
3′内に応力付与用ガラス組成をもつガラス膜が形成さ
れる。
In addition, in FIG. 3, after drilling according to FIG.
A base material in which the cladding and the stress applying part are integrated is obtained.
FIG. 4 shows another embodiment of the present invention, in which the glass forming raw material is flowed together with oxygen gas through the hole 13' of the drilled hole 11, and heated from an external heating source 20'.
A glass film having a stress-imparting glass composition is formed within 3'.

この方法は応力付与用ガラス棒を挿入する手法と異なり
、より低損失な光フアィバ用母材とすることができる。
第5図は、母材のクラッド部11に孔13′および21
をあげ、孔13′には大きな熱膨張係数をもつガラスを
、孔21には小さな熱膨ヒ張係数をもつガラスを挿入す
れば、より一層大きな複屈折率を譲起することができる
。具体的な例として、第2図A,Bにより、コアの組成
(97モル%Si02,3モル%W02)、クラッド組
成(100%Si02)、応力付与ガラス棒組成(80
%モル%Si02,15モル%B。
This method differs from the method of inserting a stress-applying glass rod, and can provide a base material for optical fiber with lower loss.
FIG. 5 shows holes 13' and 21 in the cladding part 11 of the base material.
If a glass having a large coefficient of thermal expansion is inserted into the hole 13' and a glass having a small coefficient of thermal expansion is inserted into the hole 21, an even larger birefringence can be obtained. As a specific example, as shown in FIG.
%mol%Si02, 15mol%B.

3,5モル%蛇02)、透明化後、コァ径5風、クラッ
ド外蓬50側、孔径1仇岬、孔中心とコア中心の距離1
5肋とする。
3.5 mol% snake 02), after transparentization, core diameter 5 wind, cladding outer wall 50 side, pore diameter 1 x cape, distance between hole center and core center 1
There should be 5 ribs.

さらに線引用母材とするため、前記5仇岬の母材をクラ
ッド外径が13.5肌になるように延伸し、外径26肌
、内径14肋のジャケット管に挿入後、光フアィバ外径
150ムmに線引きすれば、1.2レmに遮断波長をも
つ単一偏波単一モード光フアィバが得られる。コアに生
じる複屈折率は1×10‐4程度と大きく、しかも長手
方向に均一な光フアイバが得られているので、偏波保存
特性も優れている。波長1.3仏mの損失も0.母B/
物、波長1.斑仏mに生じるOH基の吸収損失も1服/
物と小さいものであった。この実施例において、ジャケ
ット管に相当する領域を第2図Bに示す方法等でガラス
を外付け堆積することも可能である。
Furthermore, in order to use it as a base material for wire reference, the base material of the 5-diameter cladding was stretched so that the outer diameter of the cladding was 13.5 mm, and after inserting it into a jacket tube with an outer diameter of 26 mm and an inner diameter of 14 ribs, the optical fiber was If the fiber is drawn to a diameter of 150 μm, a single-polarization, single-mode optical fiber with a cutoff wavelength of 1.2 μm is obtained. The birefringence produced in the core is as large as about 1×10-4, and since the optical fiber is uniform in the longitudinal direction, it also has excellent polarization preservation properties. The loss at a wavelength of 1.3 m is also 0. Mother B/
Object, wavelength 1. The absorption loss of OH groups that occurs in Madarabutsu m is also 1 dose/
It was a small thing. In this embodiment, it is also possible to externally deposit glass on the area corresponding to the jacket tube by the method shown in FIG. 2B.

以上説明したように、本発明の単−偏波単一モード光フ
アィバの製造方法によれば、クラッド部の一部に応力付
与部が入る孔を多孔質段階であらかじめ加工するので、
透明なガラス榛に孔あげする困難さもなく、加工精度も
充分高い。
As explained above, according to the method for manufacturing a single-polarized single-mode optical fiber of the present invention, a hole into which a stress applying section is inserted is formed in a part of the cladding section in advance at the porous stage.
There is no difficulty in drilling holes in transparent glass sills, and the machining accuracy is sufficiently high.

しかも長手方向に対する寸法精度もあり、偏波保持性も
優れている。酸水処理技術の利用により、低損失な特性
も同時に満足できるなどの有利な点がある。図面の簡単
な説明第1図は従釆の単一偏波単一モード光フアィバの
製造方法を示す断面図、第2図は多孔質母材を合成する
方法を示す図、第3図は本発明による製造方法を示す図
、第4図は本発明の他の実施例を示す図、第5図は他の
実施例を示す図である。
Moreover, it has dimensional accuracy in the longitudinal direction and excellent polarization maintenance. The use of acid water treatment technology has advantages such as the ability to satisfy low loss characteristics at the same time. Brief explanation of the drawings Figure 1 is a cross-sectional view showing a method for manufacturing a single-polarization single-mode optical fiber, Figure 2 is a diagram showing a method for synthesizing a porous base material, and Figure 3 is a cross-sectional view showing a method for manufacturing a single-polarized single-mode optical fiber. FIG. 4 is a diagram showing another embodiment of the invention, and FIG. 5 is a diagram showing another embodiment.

1・・・…コア、2・…・・クラッド、3・・・・・・
応力付与部、4……スベーサ、5……ジャケット管、6
…・・・種棒、7・・・・・・多孔質母村、8・・・・
・・コア用ト−チ、9……クラツド用トーチ、10……
コア、11・・・・・・クラッド、12・・・・・・種
棒の部分に相当する孔、13・・・…応力付与部に相当
する孔部、13′……孔、14……レーザ、15……反
射鏡、16・・・・・・制御装置、17…・・・電気炉
、18・・・・・・ガラス棒(応力付与部材)、19・
・・・・・ジャケット管、20・・・・・・加熱源、2
1・・・・・・孔。
1...Core, 2...Clad, 3...
Stress applying part, 4... Subasa, 5... Jacket pipe, 6
... Seed stick, 7 ... Porous mother village, 8 ...
... Torch for core, 9... Torch for cladding, 10...
Core, 11... Clad, 12... Hole corresponding to the seed rod part, 13... Hole corresponding to the stress applying part, 13'... Hole, 14... Laser, 15...Reflector, 16...Control device, 17...Electric furnace, 18...Glass rod (stress applying member), 19.
... Jacket tube, 20 ... Heat source, 2
1...hole.

第1図第2図 第3図 第3図 第4図 第5図Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 屈折率の高いコア部とそれを取り囲む低い屈折率の
クラツドからなり、コアの中心軸に対し、対称的に配置
した、クラツドを構成するガラスの熱膨張係数の異なる
ガラスからなる、応力付加部により、該コアおよびコア
近傍に複屈折率の分布を生じさせる単一偏波単一モード
光フアイバの製造方法において、反応してガラスになる
ガラス形成原料を熱酸化、火炎加水分解反応等の手段に
より反応させ、生成するガラス微粒子を、石英ガラス、
セラミツクスカーボン等の材料からなる種棒の先端もし
くは周囲に堆積させて得られる多孔質状のコアおよびク
ラツドからなる母材の一部を機械的、光学的もしくは化
学的手法により除去し、必要に応じて脱水処理を施すと
ともに、電気炉等の加熱手段により加熱明化し、所望部
分に孔のある透明化された母材の孔部分に応力付加用の
クラツド部の熱膨張係数より大きいかもしくは小さい熱
膨張係数をもつガラス体を挿入し、線引することを特徴
とする単一偏波単一モード光フアイバの製造方法。 2 特許請求の範囲第1項に記載の単一偏波単一モード
光フアイバの製造方法において、該孔を形成した多孔質
母材の孔部分に熱膨張係数が該クラツド部の熱膨張係数
より大きいかもしくはもしくは小さなガラス組成からな
る応力付加用多孔質ガラス棒を挿入した後、脱水処理、
透明化を行うことを特徴とする単一偏波単一モード光フ
アイバの製造方法。 3 特許請求の範囲第1項に記載の単一偏波単一モード
光フアイバ製造方法により形成される孔あき多孔質母材
もしくは透明母材において、該孔部分に、応力付加用ガ
ラス層を、熱酸化法、火炎加水分解反応、液相反応法の
手法により、堆積することを特徴とする単一偏波単一モ
ード光フアイバの製造方法。 4 特許請求の範囲第1項または第2項に記載の製造方
法において、コア中心軸に対してあける孔を2対すなわ
ち計4個として、各対の孔の中心軸を結ぶ線を互いに直
交させ、各対にそれぞれ熱膨張係数が該クラツド部の熱
膨張係数より大きいガラスと小さいガラスとを、それぞ
れ挿入もしくは形成することを特徴とする単一偏波単一
モード光フアイバの製造方法。
[Claims] 1. A glass comprising a core with a high refractive index and a cladding with a low refractive index surrounding it, which are arranged symmetrically with respect to the central axis of the core, and the glasses constituting the cladding have different coefficients of thermal expansion. A method for producing a single-polarized single-mode optical fiber that produces a birefringent index distribution in the core and the vicinity of the core by means of a stress-applying part, in which a glass-forming raw material that reacts to become glass is thermally oxidized and then flame-formed. The glass fine particles produced by reacting with means such as hydrolysis reaction are treated with quartz glass,
A part of the base material consisting of a porous core and cladding obtained by depositing on or around the tip of a seed rod made of materials such as ceramic carbon is removed by mechanical, optical or chemical methods, and as necessary. At the same time, the base material is heated and cleared using a heating means such as an electric furnace, and the transparent base material with holes in the desired areas is heated with heat that is larger or smaller than the coefficient of thermal expansion of the cladding part to apply stress. A method for manufacturing a single-polarized single-mode optical fiber, which comprises inserting a glass body having an expansion coefficient and drawing the fiber. 2. In the method for manufacturing a single-polarized, single-mode optical fiber according to claim 1, the coefficient of thermal expansion of the hole portion of the porous base material in which the hole is formed is greater than the coefficient of thermal expansion of the cladding portion. After inserting a stress-applying porous glass rod of large or small glass composition, dehydration treatment,
A method for manufacturing a single-polarization single-mode optical fiber, characterized by making it transparent. 3. In the perforated porous preform or transparent preform formed by the method for manufacturing a single-polarized single-mode optical fiber according to claim 1, a stress-applying glass layer is provided in the perforated portion, A method for producing a single-polarized, single-mode optical fiber, which is deposited by a thermal oxidation method, a flame hydrolysis reaction, or a liquid phase reaction method. 4. In the manufacturing method according to claim 1 or 2, two pairs of holes, that is, four in total, are formed with respect to the central axis of the core, and the lines connecting the central axes of each pair of holes are orthogonal to each other. . A method of manufacturing a single-polarization single-mode optical fiber, which comprises inserting or forming in each pair a glass whose thermal expansion coefficient is larger than that of the cladding portion, and a glass whose thermal expansion coefficient is smaller than that of the cladding portion.
JP57125863A 1982-07-21 1982-07-21 Method for manufacturing single-polarization single-mode optical fiber Expired JPS6035300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125863A JPS6035300B2 (en) 1982-07-21 1982-07-21 Method for manufacturing single-polarization single-mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125863A JPS6035300B2 (en) 1982-07-21 1982-07-21 Method for manufacturing single-polarization single-mode optical fiber

Publications (2)

Publication Number Publication Date
JPS5918125A JPS5918125A (en) 1984-01-30
JPS6035300B2 true JPS6035300B2 (en) 1985-08-14

Family

ID=14920795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125863A Expired JPS6035300B2 (en) 1982-07-21 1982-07-21 Method for manufacturing single-polarization single-mode optical fiber

Country Status (1)

Country Link
JP (1) JPS6035300B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613887Y2 (en) * 1988-12-02 1994-04-13 積水化学工業株式会社 Drainage basin connection member
JP2003212581A (en) * 2002-01-21 2003-07-30 Sumitomo Electric Ind Ltd Method for producing polarization maintaining fiber
DE102006011727B3 (en) * 2006-03-14 2007-11-22 Webasto Ag Combined heating / hot water system for mobile applications
CN111138079A (en) * 2019-09-04 2020-05-12 浙江康阔光智能科技有限公司 Optical fiber preform for manufacturing fan-shaped polarization maintaining optical fiber and manufacturing process of fan-shaped polarization maintaining optical fiber

Also Published As

Publication number Publication date
JPS5918125A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US4274854A (en) Polarization-preserving optical fiber
US4561871A (en) Method of making polarization preserving optical fiber
US4395270A (en) Method of fabricating a polarization retaining single-mode optical waveguide
US4478489A (en) Polarization retaining single-mode optical waveguide
US4415230A (en) Polarization retaining single-mode optical waveguide
EP0061901B1 (en) Optical waveguide fiber, and methods of forming an optical waveguide fiber, and an optical waveguide preform
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
US4494968A (en) Method of forming laminated single polarization fiber
US4362545A (en) Support member for an optical waveguide preform
JPS6239805A (en) Low loss fiber optic coupler and manufacture thereof
US4286978A (en) Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
US4351658A (en) Manufacture of optical fibers
JPS6035300B2 (en) Method for manufacturing single-polarization single-mode optical fiber
JPH037613B2 (en)
JP3745895B2 (en) Manufacturing method of base material for polarization optical fiber
JPH0236535B2 (en)
US4289522A (en) Support member for an optical waveguide preform
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JPH0930823A (en) Optical fiber preform, optical fiber and its production
JPS59141438A (en) Manufacture of optical fiber preform
JPS59141437A (en) Manufacture of optical fiber preform
JPS6047216B2 (en) Method for producing base material for optical fiber
JPH01148723A (en) Production of constant-polarization fiber
JPH0930824A (en) Polarization maintaining optical fiber and its production