JPH0930823A - Optical fiber preform, optical fiber and its production - Google Patents
Optical fiber preform, optical fiber and its productionInfo
- Publication number
- JPH0930823A JPH0930823A JP7185946A JP18594695A JPH0930823A JP H0930823 A JPH0930823 A JP H0930823A JP 7185946 A JP7185946 A JP 7185946A JP 18594695 A JP18594695 A JP 18594695A JP H0930823 A JPH0930823 A JP H0930823A
- Authority
- JP
- Japan
- Prior art keywords
- softening temperature
- optical fiber
- tubular member
- stress
- applying member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/01217—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/30—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
- C03B2203/31—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、偏波保持光ファイバを
製造するための光ファイバ母材及びその製造方法、並び
に偏波保持光ファイバ及びその製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber preform for producing a polarization maintaining optical fiber, a method for producing the same, a polarization maintaining optical fiber and a method for producing the same.
【0002】[0002]
【従来の技術】偏波保持光ファイバの製造方法として
は、従来から特公平3−7613に開示されるような方
法が知られている。これは、通常の光ファイバ母材のコ
ア中心に対して対称の位置に少なくとも一組の貫通孔を
形成し、その貫通孔にクラッドとは熱膨張係数の異なる
応力付与部材を挿入してから、加熱処理によりクラッ
ドと応力付与部材を一体化した後、線引を行って、ある
いは加熱による一体化と同時に線引を行って応力型の
偏波保持光ファイバを製造する方法である。2. Description of the Related Art As a method of manufacturing a polarization maintaining optical fiber, a method disclosed in Japanese Patent Publication No. 3-7613 has been known. This is to form at least one set of through-holes at symmetrical positions with respect to the core center of the ordinary optical fiber preform, and insert a stress-applying member having a different thermal expansion coefficient from the clad into the through-holes, In this method, a stress-type polarization-maintaining optical fiber is manufactured by integrally drawing the cladding and the stress-applying member by heat treatment, and then performing drawing, or drawing simultaneously with integration by heating.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、通常、
応力付与部材とクラッドでは、両者の物性値、特に軟化
温度が大きく異なっており、そのため、加熱一体化の際
に、両者の接合界面に気泡が残存することが多々あっ
た。これは、軟化温度に差があると、どちらか一方のみ
が軟化してしまい、他方の表面が加熱により十分に平滑
化される前に一体化してしまう結果、接合界面に気泡が
発生しやすくなるからである。However, usually,
The stress-applying member and the clad have greatly different physical property values, particularly the softening temperature. Therefore, during heating and integration, air bubbles often remain at the bonding interface between the two. This is because if there is a difference in softening temperature, only one of them will soften and the other surface will be integrated before being sufficiently smoothed by heating, resulting in easy occurrence of bubbles at the bonding interface. Because.
【0004】このため、上記の方法によりクラッドと
応力付与部材を加熱一体化した場合には、クラッドと応
力付与部材との界面に気泡が発生した光ファイバ母材が
作製されてしまうことになる。光ファイバ母材の内部に
気泡が発生しているとそれだけで割れの原因になるほ
か、母材を線引して得られる光ファイバの特性を劣化さ
せることになり、好ましくない。Therefore, when the clad and the stress applying member are heated and integrated by the above method, an optical fiber preform having bubbles generated at the interface between the clad and the stress applying member is produced. If air bubbles are generated inside the optical fiber preform, this alone causes cracking and deteriorates the characteristics of the optical fiber obtained by drawing the preform, which is not preferable.
【0005】また、上記の方法によりクラッドと応力
付与部材を加熱一体化しながら線引を行った場合は、ク
ラッドと応力付与部材との界面に気泡が発生しながら線
引が行われるため、線引途中で光ファイバが断裂しやす
い。また、断裂せず光ファイバが製造されたとしても、
その光ファイバは内部に気泡を含んでいるため、十分な
伝送特性や強度を有していない。Further, when the drawing is performed while heating and integrating the clad and the stress applying member by the above method, the drawing is performed while bubbles are generated at the interface between the clad and the stress applying member. The optical fiber is easy to break on the way. Moreover, even if the optical fiber is manufactured without breaking,
Since the optical fiber contains bubbles inside, it does not have sufficient transmission characteristics or strength.
【0006】本発明は、上記の問題点を解決するために
なされたもので、気泡の発生を防止しながら製造するこ
とのできる構造を有し、偏波保持光ファイバを良好に製
造できる光ファイバ母材及びその製造方法、並びに気泡
が発生しにくい光ファイバの製造方法及び気泡の発生を
防止しながら製造することのできる構造の光ファイバを
提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and has a structure that can be manufactured while preventing the generation of bubbles, and an optical fiber that can satisfactorily manufacture a polarization-maintaining optical fiber. It is an object of the present invention to provide a base material and a method for manufacturing the same, a method for manufacturing an optical fiber in which bubbles are less likely to occur, and an optical fiber having a structure that can be manufactured while preventing the generation of bubbles.
【0007】[0007]
【課題を解決するための手段】上記の問題点を解決する
ために、本発明に係る光ファイバ母材は、(a)柱状の
コアと、(b)このコアを包囲する管状のクラッドであ
って、その管壁に軸方向に沿った貫通孔が中心軸と所定
の間隔をあけて設けられ、その貫通孔の表層部において
第1の熱膨張係数及び第1の軟化温度を有するものと、
(c)上記の貫通孔に挿入され、第1の熱膨張係数と異
なる第2の熱膨張係数及び第1の軟化温度と異なる第2
の軟化温度をその表層部において有する柱状の応力付与
部材と、(d)上記の貫通孔に挿入され、応力付与部材
を包囲する管状部材であって、第1及び第2の軟化温度
の間で設定された径方向軟化温度分布を有するものとを
備えている。In order to solve the above problems, the optical fiber preform according to the present invention comprises (a) a columnar core and (b) a tubular clad surrounding the core. A through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and has a first thermal expansion coefficient and a first softening temperature in the surface layer portion of the through hole;
(C) A second thermal expansion coefficient different from the first thermal expansion coefficient and a second softening temperature different from the first softening temperature inserted into the through hole.
A columnar stress-applying member having a softening temperature of 1. in the surface layer portion, and (d) a tubular member which is inserted into the through hole and surrounds the stress-applying member, between the first and second softening temperatures. Having a set radial softening temperature distribution.
【0008】上記の管状部材は、略一定の径方向軟化温
度分布を有していても良い。ここで、略一定の径方向軟
化温度分布とは、管状部材がその表面側から中心側まで
第1及び第2の軟化温度の間の軟化温度をほぼ一定に維
持していることをいう。このとき、この一定の軟化温度
は、第1及び第2の軟化温度のいずれとも異なってお
り、特に、第1及び第2の軟化温度を平均した軟化温度
であると好ましい。The tubular member may have a substantially constant radial softening temperature distribution. Here, the substantially constant radial softening temperature distribution means that the tubular member maintains the softening temperature between the first and second softening temperatures substantially constant from the surface side to the center side. At this time, this constant softening temperature is different from both the first and second softening temperatures, and is preferably a softening temperature obtained by averaging the first and second softening temperatures.
【0009】また、上記の管状部材は、その表面側から
中心側に向かって第1の軟化温度から第2の軟化温度ま
で連続的に変化する径方向軟化温度分布を有していても
良い。The tubular member may have a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side.
【0010】また、応力付与部材及び管状部材の屈折率
は、クラッドの屈折率以下であると良い。Further, the refractive index of the stress applying member and the tubular member is preferably less than or equal to the refractive index of the clad.
【0011】次に、本発明に係る光ファイバ母材の製造
方法の第1の態様は、(a)柱状のコア及びこのコア
を包囲する管状のクラッドであってその管壁に軸方向に
沿った貫通孔が中心軸と所定の間隔をあけて設けられそ
の貫通孔の表層部において第1の熱膨張係数及び第1の
軟化温度を有するものを備える孔開き母材と、上記の
貫通孔に挿入されるべき柱状の応力付与部材であって、
第1の熱膨張係数と異なる第2の熱膨張係数及び前記第
1の軟化温度と異なる第2の軟化温度をその表層部にお
いて有するものとを用意する第1の工程と、(b)応力
付与部材を包囲すべき管状部材であって上記の第1及び
第2の間で設定された径方向軟化温度分布を有するもの
を、i)上記の貫通孔の表面上、 ii)応力付与部材の表面
と貫通孔の表面との中間、あるいはiii)応力付与部材の
表面上、のうち一以上の位置に設けるとともに、孔開き
母材、応力付与部材及び管状部材を一体化する第2の工
程とを備えている。Next, a first aspect of the method for producing an optical fiber preform according to the present invention is (a) a columnar core and a tubular clad that surrounds the core, the axial wall extending along the axial direction. And a through hole having a first thermal expansion coefficient and a first softening temperature in the surface layer portion of the through hole, the through hole having a predetermined distance from the central axis, and the through hole. A columnar stress applying member to be inserted,
A first step of preparing a second thermal expansion coefficient different from the first thermal expansion coefficient and a second softening temperature different from the first softening temperature in its surface layer portion; and (b) applying stress A tubular member which should surround the member and has a radial softening temperature distribution set between the first and second, i) on the surface of the through hole, ii) on the surface of the stress applying member Between the surface of the through hole and iii) or on the surface of the stress applying member at one or more positions, and a second step of integrating the hole forming base material, the stress applying member and the tubular member. I have it.
【0012】上記の第2工程は、貫通孔の表面上に管状
部材を形成し、次いで、応力付与部材をこの管状部材の
中空部に挿入し、この後、応力付与部材と管状部材を一
体化する工程であっても良い。In the second step, the tubular member is formed on the surface of the through hole, the stress applying member is then inserted into the hollow portion of the tubular member, and then the stress applying member and the tubular member are integrated. It may be a step of performing.
【0013】また、上記の第2工程は、応力付与部材の
表面上に管状部材を形成し、次いで、応力付与部材及び
管状部材からなる柱状体を孔開き母材の貫通孔に挿入
し、この後、柱状体と孔開き母材を一体化する工程であ
っても良い。In the second step, a tubular member is formed on the surface of the stress-applying member, and then a columnar body composed of the stress-applying member and the tubular member is inserted into the through hole of the perforated base material. After that, a step of integrating the columnar body with the perforated base material may be performed.
【0014】また、上記の第2工程は、管状部材を前記
貫通孔に挿入するとともに、この管状部材の中空部に応
力付与部材を挿入し、この後、孔開き母材、応力付与部
材及び管状部材を一体化する工程であっても良い。In the second step, the tubular member is inserted into the through hole, the stress applying member is inserted into the hollow portion of the tubular member, and then the perforated base material, the stress applying member and the tubular member. It may be a step of integrating members.
【0015】なお、孔開き母材、応力付与部材及び管状
部材の一体化は、これらの部材がガラスである場合に
は、例えば加熱処理によりガラス同士を接合することで
達成することができる。If the perforated base material, the stress-applying member and the tubular member are made of glass, they can be achieved by joining the glasses together by, for example, heat treatment.
【0016】本発明に係る光ファイバ母材の製造方法の
第2の態様は、(a)柱状のコア及びこのコアを包囲
する管状のクラッドであってその管壁に軸方向に沿った
貫通孔が中心軸と所定の間隔をあけて設けられその貫通
孔の表層部において第1の熱膨張係数及び第1の軟化温
度を有するものを備える孔開き母材と、第1の熱膨張
係数と異なる第2の熱膨張係数及び第1の軟化温度と異
なる第2の軟化温度をその表層部において有する中央部
を備えた柱状の応力付与部材であって第1及び第2の軟
化温度の間で設定された径方向軟化温度分布を有する管
状部材をその表層部(応力付与部材の表層部)に備えた
ものとを用意する第1の工程と、(b)応力付与部材を
孔開き母材の貫通孔に挿入する第2の工程と、(c)応
力付与部材と孔開き母材を一体化する第3の工程とを備
えている。A second aspect of the method for producing an optical fiber preform according to the present invention is (a) a columnar core and a tubular clad surrounding the core, and a through hole extending along the axial direction in the tube wall. Different from the first thermal expansion coefficient, and a perforated base material having a first thermal expansion coefficient and a first softening temperature in the surface layer portion of the through hole provided at a predetermined distance from the central axis. A columnar stress-applying member having a central portion having a second thermal expansion coefficient and a second softening temperature different from the first softening temperature in its surface layer portion and set between the first and second softening temperatures. First step of preparing a tubular member having the specified radial softening temperature distribution on its surface layer portion (surface layer portion of the stress applying member), and (b) perforating the stress applying member with a base material. Second step of inserting into hole, (c) stress applying member and hole opening mother And a third step of integrating.
【0017】なお、孔開き母材と応力付与部材の一体化
は、これらの部材がガラスである場合には、例えば加熱
処理によりガラス同士を接合することで達成することが
できる。If the perforated base material and the stress applying member are made of glass, they can be integrated by joining the glasses together by, for example, heat treatment.
【0018】上記第1及び第2の態様に係る母材製造方
法において、上記の管状部材は、略一定の径方向軟化温
度分布を有していても良い。ここで、略一定の径方向軟
化温度分布とは、管状部材がその表面側から中心側まで
第1及び第2の軟化温度の間の軟化温度をほぼ一定に維
持していることをいう。このとき、この一定の軟化温度
は、第1及び第2の軟化温度のいずれとも異なってお
り、特に、第1及び第2の軟化温度を平均した軟化温度
であると好ましい。In the base material manufacturing methods according to the first and second aspects, the tubular member may have a substantially constant radial softening temperature distribution. Here, the substantially constant radial softening temperature distribution means that the tubular member maintains the softening temperature between the first and second softening temperatures substantially constant from the surface side to the center side. At this time, this constant softening temperature is different from both the first and second softening temperatures, and is preferably a softening temperature obtained by averaging the first and second softening temperatures.
【0019】また、上記第1及び第2の態様において、
上記の管状部材は、表面側から中心側に向かって第1の
軟化温度から第2の軟化温度まで連続的に変化する径方
向軟化温度分布を有していても良い。Further, in the above-mentioned first and second aspects,
The tubular member may have a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side.
【0020】次に、本発明に係る光ファイバの製造方法
の第1の態様は、(a)柱状のコア及びこのコアを包
囲する管状のクラッドであってその管壁に軸方向に沿っ
た貫通孔が中心軸と所定の間隔をあけて設けられその貫
通孔の表層部において第1の熱膨張係数及び第1の軟化
温度を有するものを備える孔開き母材と、上記の貫通
孔に挿入されるべき柱状の応力付与部材であって、第1
の熱膨張係数と異なる第2の熱膨張係数及び第1の軟化
温度と異なる第2の軟化温度をその表層部において有す
るものを用意する第1の工程と、(b)応力付与部材を
包囲すべき管状部材であって第1及び第2の軟化温度の
間で設定された径方向軟化温度分布を有するものを、i)
上記の貫通孔の表面上、 ii)応力付与部材の表面と貫通
孔の表面との中間、あるいはiii)応力付与部材の表面
上、のうち一以上の位置に設ける第2の工程と、(c)
孔開き母材、応力付与部材及び管状部材からなる複合体
を加熱して、孔開き母材、応力付与部材及び管状部材を
一体化しながらこの複合体を線引する第3の工程とを備
えている。Next, a first aspect of the method for producing an optical fiber according to the present invention is (a) a columnar core and a tubular clad surrounding the core, which penetrates the tube wall in the axial direction. A perforated base material having holes having a predetermined distance from the central axis and having a first coefficient of thermal expansion and a first softening temperature in the surface layer portion of the through hole, and the hole is inserted into the through hole. A columnar stress applying member to be
A second step of preparing a second layer having a second coefficient of thermal expansion different from the coefficient of thermal expansion and a second softening temperature different from the first softening temperature in its surface layer portion, and (b) surrounding the stress applying member. A tubular member having a radial softening temperature distribution set between the first and second softening temperatures, i)
A second step provided at one or more positions on the surface of the through-hole, ii) intermediate between the surface of the stress-applying member and the surface of the through-hole, or iii) on the surface of the stress-applying member; )
A third step of heating the composite body composed of the perforated base material, the stress applying member and the tubular member to draw the composite body while integrating the perforated base material, the stress applying member and the tubular member There is.
【0021】なお、孔開き母材、応力付与部材及び管状
部材の一体化は、これらの部材がガラスである場合に
は、例えば加熱処理によりガラス同士を接合することで
達成することができる。In the case where these members are made of glass, the perforated base material, the stress applying member and the tubular member can be integrated by, for example, joining the glasses by a heat treatment.
【0022】上記の第2工程は、孔開き母材の貫通孔の
表面上に管状部材を形成し、次いで、応力付与部材をこ
の管状部材の中空部に挿入する工程であっても良い。The above-mentioned second step may be a step of forming a tubular member on the surface of the through hole of the perforated base material and then inserting the stress applying member into the hollow portion of the tubular member.
【0023】また、第2工程は、応力付与部材の表面上
に管状部材を形成し、次いで、応力付与部材及び管状部
材からなる柱状体を孔開き母材の貫通孔に挿入する工程
であっても良い。The second step is a step of forming a tubular member on the surface of the stress-applying member, and then inserting a columnar body composed of the stress-applying member and the tubular member into the through hole of the base material. Is also good.
【0024】また、第2工程は、管状部材を貫通孔に挿
入するとともに、この管状部材の中空部に応力付与部材
を挿入する工程であっても良い。The second step may be a step of inserting the tubular member into the through hole and inserting the stress applying member into the hollow portion of the tubular member.
【0025】本発明に係る光ファイバの製造方法の第2
の態様は、(a)柱状のコア及びこのコアを包囲する
管状のクラッドであってその管壁に軸方向に沿った貫通
孔が中心軸と所定の間隔をあけて設けられその貫通孔の
表層部において第1の熱膨張係数及び第1の軟化温度を
有するものを備える孔開き母材と、第1の熱膨張係数
と異なる第2の熱膨張係数及び第1の軟化温度と異なる
第2の軟化温度をその表層部において有する中央部を備
えた柱状の応力付与部材であって、第1及び第2の軟化
温度の間で設定された径方向軟化温度分布を有する管状
部材をその表層部(応力付与部材の表層部)に備えたも
のとを用意する第1の工程と、(b)応力付与部材を孔
開き母材の貫通孔に挿入する第2の工程と、(c)孔開
き母材及び応力付与部材からなる複合体を加熱して、孔
開き母材及び応力付与部材を一体化しながらこの複合体
を線引する第3の工程とを備えている。Second Method of Manufacturing Optical Fiber According to the Present Invention
(A) is a columnar core and a tubular clad that surrounds the core, and a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and the surface layer of the through hole is A base material having a first coefficient of thermal expansion and a first softening temperature in a portion, and a second coefficient of thermal expansion different from the first coefficient of thermal expansion and a second coefficient different from the first temperature of softening. A columnar stress-applying member having a central portion having a softening temperature in its surface layer portion, wherein a tubular member having a radial softening temperature distribution set between the first and second softening temperatures is formed in the surface portion ( A first step of preparing a stress-applying member for the surface layer portion), (b) a second step of inserting the stress-applying member into a through hole of a perforated base material, and (c) a perforated mother Heating a composite of material and stress-applying member to give a perforated base material and stress While integrated wood and a third step of drawing the complex.
【0026】上記第1及び第2の態様に係る光ファイバ
製造方法において、上記の管状部材は、略一定の径方向
軟化温度分布を有していても良い。ここで、略一定の径
方向軟化温度分布とは、管状部材がその表面側から中心
側まで第1及び第2の軟化温度の間の軟化温度をほぼ一
定に維持していることをいう。このとき、この一定の軟
化温度は、第1及び第2の軟化温度のいずれとも異なっ
ており、特に、第1及び第2の軟化温度を平均した軟化
温度であると好ましい。In the optical fiber manufacturing methods according to the first and second aspects, the tubular member may have a substantially constant radial softening temperature distribution. Here, the substantially constant radial softening temperature distribution means that the tubular member maintains the softening temperature between the first and second softening temperatures substantially constant from the surface side to the center side. At this time, this constant softening temperature is different from both the first and second softening temperatures, and is preferably a softening temperature obtained by averaging the first and second softening temperatures.
【0027】また、上記第1及び第2の態様において、
上記の管状部材は、その表面側から中心側に向かって第
1の軟化温度から第2の軟化温度まで連続的に変化する
径方向軟化温度分布を有していても良い。Further, in the above first and second aspects,
The tubular member may have a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side to the center side.
【0028】次に、本発明の光ファイバは、(a)柱状
のコアと、(b)このコアを包囲する管状のクラッドで
あって、その管壁に軸方向に沿った貫通孔が中心軸と所
定の間隔をあけて設けられ、その貫通孔の表層部におい
て第1の熱膨張係数及び第1の軟化温度を有するもの
と、(c)上記の貫通孔に挿入され、第1の熱膨張係数
と異なる第2の熱膨張係数及び第1の軟化温度と異なる
第2の軟化温度をその表層部において有する柱状の応力
付与部材と、(d)上記の貫通孔に挿入され、応力付与
部材を包囲する管状部材であって、前記第1及び第2の
軟化温度の間で設定された径方向軟化温度分布を有する
ものとを備えている。Next, the optical fiber of the present invention comprises (a) a columnar core and (b) a tubular clad surrounding the core, and a through hole along the axial direction is formed in the tube wall along the central axis. And having a first coefficient of thermal expansion and a first softening temperature at the surface layer portion of the through hole, and (c) the first thermal expansion inserted into the through hole. A columnar stress-applying member having a second coefficient of thermal expansion different from the coefficient and a second softening temperature different from the first softening temperature in its surface layer portion; and (d) the stress-applying member inserted into the through hole, An enclosing tubular member having a radial softening temperature distribution set between the first and second softening temperatures.
【0029】上記の管状部材は、略一定の径方向軟化温
度分布を有していても良い。ここで、略一定の径方向軟
化温度分布とは、管状部材がその表面側から中心側まで
第1及び第2の軟化温度の間の軟化温度をほぼ一定に維
持していることをいう。このとき、この一定の軟化温度
は、第1及び第2の軟化温度のいずれとも異なってお
り、特に、第1及び第2の軟化温度を平均した軟化温度
であると好ましい。The above-mentioned tubular member may have a substantially constant radial softening temperature distribution. Here, the substantially constant radial softening temperature distribution means that the tubular member maintains the softening temperature between the first and second softening temperatures substantially constant from the surface side to the center side. At this time, this constant softening temperature is different from both the first and second softening temperatures, and is preferably a softening temperature obtained by averaging the first and second softening temperatures.
【0030】また、上記の管状部材は、その表面側から
中心側に向かって第1の軟化温度から第2の軟化温度ま
で連続的に変化する径方向軟化温度分布を有していても
良い。The above-mentioned tubular member may have a radial softening temperature distribution which continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side.
【0031】また、応力付与部材及び管状部材の屈折率
は、クラッドの屈折率以下であると良い。The refractive index of the stress applying member and the tubular member is preferably less than or equal to that of the clad.
【0032】[0032]
(1)本発明の光ファイバ母材では、第1及び第2の軟
化温度の間で設定された径方向軟化温度分布を有する管
状部材がクラッドと応力付与部材との間に存在している
ため、クラッドの表層部と管状部材との間、あるいは管
状部材と応力付与部材の表層部との間の軟化温度変化
は、管状部材がない場合のクラッドの表層部と応力付与
部材の表層部との間の軟化温度変化よりも緩和される。
従って、本発明の光ファイバ母材は、その製造時におい
て加熱処理によりクラッドと応力付与部材を一体化する
際にも、クラッドと管状部材との接合界面や管状部材と
応力付与部材との接合界面に気泡が発生しにくい構造を
有している。(1) In the optical fiber preform of the present invention, the tubular member having the radial softening temperature distribution set between the first and second softening temperatures is present between the clad and the stress applying member. The softening temperature change between the surface layer of the clad and the tubular member, or between the surface layer of the tubular member and the stress imparting member, between the surface layer of the clad and the surface layer of the stress imparting member in the absence of the tubular member, It is more relaxed than the change in the softening temperature.
Therefore, the optical fiber preform of the present invention has a joint interface between the clad and the tubular member or a joint interface between the tubular member and the stress imparting member even when the clad and the stress imparting member are integrated by a heat treatment during manufacturing. It has a structure that does not easily generate bubbles.
【0033】管状部材が第1及び第2の軟化温度の間で
設定された略一定の径方向軟化温度分布を有している場
合は、クラッドと管状部材との軟化温度差、あるいは管
状部材と応力付与部材との軟化温度差が、クラッドと応
力付与部材との軟化温度差よりも小さくなるため、気泡
が発生しにくい構造となる。When the tubular member has a substantially constant radial softening temperature distribution set between the first and second softening temperatures, the difference in softening temperature between the cladding and the tubular member or the tubular member Since the difference in softening temperature between the stress applying member and the cladding is smaller than the difference in softening temperature between the clad and the stress applying member, it becomes a structure in which bubbles are less likely to be generated.
【0034】また、管状部材がその表面側から中心側に
向かってクラッドの下限となる軟化温度から応力付与部
材の上限となる軟化温度まで連続的に変化する径方向軟
化温度分布を有する場合は、クラッドの表層部から応力
付与部材の表層部までほぼ連続的に変化するような軟化
温度分布が形成されるため、より気泡が発生しにくい構
造となる。特に、クラッドと応力付与部材との接合界面
で軟化温度が等しくなっていれば、その接合界面におい
て気泡が極めて発生しにくい構造となる。When the tubular member has a radial softening temperature distribution which continuously changes from the surface side to the center side of the cladding, the softening temperature being the lower limit of the cladding to the softening temperature being the upper limit of the stress applying member, Since the softening temperature distribution is formed so as to change almost continuously from the surface layer portion of the clad to the surface layer portion of the stress applying member, it becomes a structure in which bubbles are less likely to be generated. In particular, if the softening temperature is the same at the joint interface between the clad and the stress applying member, it becomes a structure in which bubbles are extremely unlikely to be generated at the joint interface.
【0035】また、上記の応力付与部材や管状部材の屈
折率がクラッドの屈折率以下であると、本発明の光ファ
イバ母材を線引して得られる偏波保持光ファイバにおい
て光を伝搬させた場合にも、コアから応力付与部材また
は管状部材への光パワーの移動は生じにくくなる。If the stress-applying member or tubular member has a refractive index lower than that of the cladding, light is propagated in the polarization-maintaining optical fiber obtained by drawing the optical fiber preform of the present invention. Even in the case, the movement of the optical power from the core to the stress applying member or the tubular member is less likely to occur.
【0036】(2)次に、本発明に係る光ファイバ母材
の製造方法の第1の態様では、第2工程において、孔開
き母材の貫通孔の表面上、応力付与部材の表面と貫通孔
の表面との中間、あるいは応力付与部材の表面上のうち
一以上の位置に管状部材を設けるとともに、孔開き母
材、応力付与部材及び管状部材を一体化することで本発
明の光ファイバ母材が製造される。(2) Next, in the first aspect of the method for producing an optical fiber preform according to the present invention, in the second step, the surface of the through hole of the perforated preform and the surface of the stress applying member are penetrated. The optical fiber mother of the present invention is provided by providing the tubular member at an intermediate position with the surface of the hole or at one or more positions on the surface of the stress applying member, and integrating the hole preform, the stress applying member and the tubular member. The material is manufactured.
【0037】この方法では、管状部材を設けることでク
ラッドの表層部と管状部材との間の軟化温度変化、ある
いは管状部材と応力付与部材の表層部との間の軟化温度
変化が、管状部材がない場合のクラッドの表層部と応力
付与部材の表層部との間の軟化温度変化よりも緩和され
る。このため、孔開き母材、応力付与部材及び管状部材
を一体化して母材を完成させる際にも、クラッドと管状
部材との接合界面や管状部材と応力付与部材との接合界
面に気泡が発生しにくい。In this method, by providing the tubular member, the change in the softening temperature between the surface layer portion of the clad and the tubular member, or the change in the softening temperature between the tubular member and the surface layer portion of the stress applying member, It is more relaxed than the change in the softening temperature between the surface layer portion of the clad and the surface layer portion of the stress-applying member in the absence of the stress. Therefore, bubbles are generated at the joint interface between the clad and the tubular member or at the joint interface between the tubular member and the stress applying member even when the perforated base material, the stress applying member and the tubular member are integrated to complete the base material. Hard to do.
【0038】次に、本発明に係る光ファイバ母材の製造
方法の第2の態様では、表層部に第1及び第2の軟化温
度の間の径方向軟化温度分布を有する管状部材を備えた
応力付与部材を孔開き母材の貫通孔に挿入した後、応力
付与部材と孔開き母材を一体化することで、本発明の光
ファイバ母材が製造される。Next, in a second aspect of the method for producing an optical fiber preform according to the present invention, the surface layer portion is provided with a tubular member having a radial softening temperature distribution between the first and second softening temperatures. The optical fiber preform of the present invention is manufactured by inserting the stress applying member into the through hole of the perforated preform and then integrating the stress applying member and the perforated preform.
【0039】この方法では、応力付与部材の表層部に上
記の管状部材が存在しているため、クラッドの表層部と
応力付与部材の中央部の表層部(管状部材がないとした
場合の応力付与部材の表層部)との間の軟化温度変化
が、管状部材がない場合のクラッドの表層部と応力付与
部材の表層部との間の軟化温度変化よりも緩和される。
このため、孔開き母材と応力付与部材を一体化して母材
を完成させる際にも、クラッドと応力付与部材の接合界
面に気泡が発生しにくい。In this method, since the above-mentioned tubular member is present in the surface layer portion of the stress applying member, the surface layer portion of the clad and the central surface layer portion of the stress applying member (stress application in the absence of the tubular member) The change in the softening temperature between the surface layer of the member and the change in the softening temperature between the surface layer of the clad and the surface layer of the stress-applying member in the absence of the tubular member is more moderate.
For this reason, even when the base material with holes and the stress applying member are integrated to complete the base material, bubbles are less likely to be generated at the bonding interface between the clad and the stress applying member.
【0040】上記第1及び第2の態様に係る母材製造方
法において、第1及び第2の軟化温度の間で設定された
略一定の径方向軟化温度分布を有している場合は、クラ
ッドと管状部材との軟化温度差、あるいは管状部材と応
力付与部材との軟化温度差がクラッドと応力付与部材と
の軟化温度差よりも小さくなることにより、気泡が発生
しにくくなる。In the base material manufacturing methods according to the first and second aspects, when the clad has a substantially constant radial softening temperature distribution set between the first and second softening temperatures, Since the difference in softening temperature between the tubular member and the stress applying member or the difference in softening temperature between the tubular member and the stress applying member is smaller than the difference in softening temperature between the clad and the stress applying member, bubbles are less likely to be generated.
【0041】また、管状部材がその表面側から中心側に
向かって第1の軟化温度から第2の軟化温度まで連続的
に変化する径方向軟化温度分布を有している場合は、ク
ラッドから応力付与部材までほぼ連続的に変化するよう
な軟化温度分布が形成されることにより、気泡が発生し
にくくなる。When the tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side to the center side, stress from the clad is applied. Since the softening temperature distribution is formed so as to change almost continuously up to the applying member, bubbles are less likely to be generated.
【0042】(3)次に、本発明に係る光ファイバ製造
方法の第1の態様では、第1及び第2の軟化温度の間で
設定された径方向軟化温度分布を有する管状部材をクラ
ッドと応力付与部材との間に介在させた後、孔開き母
材、応力付与部材及び管状部材を一体化しながら線引を
行うことで光ファイバが製造される。得られた光ファイ
バは、応力付与部材がコアに付与する応力の作用によっ
て偏波保持光ファイバとなる。(3) Next, in the first aspect of the optical fiber manufacturing method according to the present invention, the tubular member having the radial softening temperature distribution set between the first and second softening temperatures is used as the cladding. An optical fiber is manufactured by interposing the perforated base material, the stress-applying member and the tubular member after the interposing between the stress-applying member and the stress-applying member. The obtained optical fiber becomes a polarization-maintaining optical fiber by the action of the stress applied to the core by the stress applying member.
【0043】この方法では、管状部材を介在させること
でクラッドの表層部と管状部材との間の軟化温度変化、
あるいは管状部材と応力付与部材の表層部との間の軟化
温度変化が、管状部材がない場合のクラッドの表層部と
応力付与部材の表層部との間の軟化温度変化よりも緩和
される。このため、孔開き母材、応力付与部材及び管状
部材を一体化しながら線引を行う際にも、クラッドと管
状部材との接合界面や管状部材と応力付与部材との接合
界面に気泡が発生しにくい。In this method, the softening temperature change between the surface layer of the clad and the tubular member is caused by interposing the tubular member,
Alternatively, the softening temperature change between the tubular member and the surface layer portion of the stress applying member is more moderate than the softening temperature change between the surface layer portion of the clad and the surface layer portion of the stress applying member in the absence of the tubular member. Therefore, bubbles are generated at the joint interface between the clad and the tubular member or the joint interface between the tubular member and the stress applying member even when the wire drawing is performed while integrating the perforated base material, the stress applying member and the tubular member. Hateful.
【0044】次に、本発明に係る光ファイバの製造方法
の第2の態様では、表層部に第1及び第2の軟化温度の
間の径方向軟化温度分布を有する管状部材を備えた応力
付与部材を孔開き母材の貫通孔に挿入した後、応力付与
部材と孔開き母材を一体化しながら線引を行うことで、
光ファイバが製造される。得られた光ファイバは、応力
付与部材がコアに付与する応力の作用によって偏波保持
光ファイバとなる。Next, in the second aspect of the method for producing an optical fiber according to the present invention, the stress imparting is provided with the tubular member having the radial softening temperature distribution between the first and second softening temperatures in the surface layer portion. After inserting the member into the through hole of the perforated base material, by performing drawing while integrating the stress applying member and the perforated base material,
Optical fibers are manufactured. The obtained optical fiber becomes a polarization-maintaining optical fiber by the action of the stress applied to the core by the stress applying member.
【0045】この方法では、応力付与部材の表層部に上
記の管状部材が存在しているため、クラッドの表層部と
応力付与部材の中央部の表層部(管状部材がないとした
場合の応力付与部材の表層部)との間の軟化温度変化
が、管状部材がない場合のクラッドの表層部と応力付与
部材の表層部との間の軟化温度変化よりも緩和される。
このため、孔開き母材と応力付与部材を一体化しながら
線引を行う際にも、クラッドと応力付与部材の接合界面
に気泡が発生しにくい。In this method, since the above-mentioned tubular member is present in the surface layer portion of the stress imparting member, the surface layer portion of the clad and the central surface layer portion of the stress imparting member (stress imparting when there is no tubular member) The change in the softening temperature between the surface layer of the member and the change in the softening temperature between the surface layer of the clad and the surface layer of the stress-applying member in the absence of the tubular member is more moderate.
Therefore, even when the wire drawing is performed while the perforated base material and the stress applying member are integrated, bubbles are less likely to be generated at the bonding interface between the clad and the stress applying member.
【0046】上記第1及び第2の態様に係る光ファイバ
製造方法において、管状部材が第1及び第2の軟化温度
の間で設定された略一定の径方向軟化温度分布を有して
いる場合は、クラッドと管状部材との軟化温度差、ある
いは管状部材と応力付与部材との軟化温度差がクラッド
と応力付与部材との軟化温度差よりも小さくなることに
より、気泡が発生しにくくなる。In the optical fiber manufacturing methods according to the first and second aspects, when the tubular member has a substantially constant radial softening temperature distribution set between the first and second softening temperatures. Is less likely to generate bubbles because the difference in softening temperature between the clad and the tubular member or the difference in softening temperature between the tubular member and the stress applying member is smaller than the difference in softening temperature between the clad and the stress applying member.
【0047】また、管状部材がその表面側から中心側に
向かって第1の軟化温度から第2の軟化温度まで連続的
に変化する径方向軟化温度分布を有している場合は、母
材の内部でクラッドから応力付与部材までほぼ連続的に
変化するような軟化温度分布が形成されることにより、
気泡が発生しにくくなる。When the tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side to the center side, By forming a softening temperature distribution that changes almost continuously from the clad to the stress applying member inside,
Bubbles are less likely to occur.
【0048】(4)次に、本発明の光ファイバは、第1
及び第2の軟化温度の間で設定された径方向軟化温度分
布を有する管状部材がクラッドと応力付与部材との間に
存在しているため、クラッドの表層部と管状部材との間
の軟化温度変化、あるいは管状部材と応力付与部材の表
層部との間の軟化温度変化は、管状部材がない場合のク
ラッドの表層部と応力付与部材の表層部との間の軟化温
度変化よりも緩和されている。従って、本発明の光ファ
イバは、その製造時において加熱処理によりクラッドと
応力付与部材を一体化する際にも、クラッドと管状部材
との接合界面や管状部材と応力付与部材との接合界面に
気泡が発生しにくい構造を有している。(4) Next, the optical fiber of the present invention comprises the first
And a tubular member having a radial softening temperature distribution set between the second softening temperature and the second softening temperature is present between the clad and the stress applying member, the softening temperature between the surface layer portion of the clad and the tubular member. The change, or the softening temperature change between the tubular member and the surface layer portion of the stress applying member, is softer than the softening temperature change between the surface layer portion of the cladding and the surface layer portion of the stress applying member in the absence of the tubular member. There is. Therefore, when the optical fiber of the present invention is integrated with the clad and the stress-applying member by the heat treatment at the time of its production, bubbles are not formed in the joint interface between the clad and the tubular member or the joint interface between the tubular member and the stress-applying member. Has a structure that does not easily generate
【0049】管状部材が第1及び第2の軟化温度の間で
設定された略一定の径方向軟化温度分布を有している場
合は、クラッドと管状部材との軟化温度差、あるいは管
状部材と応力付与部材との軟化温度差がクラッドと応力
付与部材との軟化温度差よりも小さくなることにより、
気泡が発生しにくい構造となる。When the tubular member has a substantially constant radial softening temperature distribution set between the first and second softening temperatures, the difference in softening temperature between the cladding and the tubular member or the tubular member Since the difference in softening temperature between the stress-applying member and the clad and the stress-applying member is smaller,
The structure prevents bubbles from being generated.
【0050】また、管状部材がその表面側から中心側に
向かってクラッドの下限となる軟化温度から応力付与部
材の上限となる軟化温度まで連続的に変化する径方向軟
化温度分布を有する場合は、母材の内部でクラッドから
応力付与部材までほぼ連続的に変化するような軟化温度
分布が形成されることで、気泡が発生しにくい構造とな
る。特に、クラッドと応力付与部材との接合界面で軟化
温度が等しくなっていれば、クラッドと応力付与部材と
の接合界面に気泡が極めて発生しにくい構造となる。When the tubular member has a radial softening temperature distribution that continuously changes from the surface side to the center side of the cladding, the softening temperature being the lower limit of the cladding to the softening temperature being the upper limit of the stress applying member, By forming a softening temperature distribution that changes almost continuously from the clad to the stress-applying member inside the base material, it becomes a structure in which bubbles are less likely to be generated. In particular, if the softening temperature is the same at the joint interface between the clad and the stress applying member, bubbles will be extremely unlikely to be generated at the joint interface between the clad and the stress applying member.
【0051】上記の応力付与部材や管状部材の屈折率が
クラッドの屈折率以下であると、光ファイバ内で光を伝
搬させた場合にも、コアから応力付与部材または管状部
材への光パワーの移動は生じにくい。When the refractive index of the stress applying member or the tubular member is equal to or lower than the refractive index of the clad, the optical power from the core to the stress applying member or the tubular member is increased even when light is propagated in the optical fiber. Movement is unlikely to occur.
【0052】[0052]
【実施例】以下、添付図面を参照しながら本発明の実施
例を詳細に説明する。なお、図面の説明において同一の
要素には同一の符号を付し、重複する説明を省略する。
また、図面の寸法比率は説明のものと必ずしも一致して
いない。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
Also, the dimensional ratios in the drawings do not always match those described.
【0053】実施例1 図1は、本実施例の光ファイバ母材100の構造を示す
斜視図である。この光ファイバ母材100は、偏波保持
光ファイバの作製用のもので、コア10、クラッド2
0、管状部材30及び31、並びに応力付与部材40及
び41から構成されている。Example 1 FIG. 1 is a perspective view showing the structure of an optical fiber preform 100 of this example. The optical fiber preform 100 is used for manufacturing a polarization maintaining optical fiber, and includes a core 10 and a clad 2.
0, tubular members 30 and 31, and stress applying members 40 and 41.
【0054】コア10は円柱状のガラスロッドであり、
クラッド20はこのコア10の側面を包囲する円管状の
ガラスチューブである。コア10とクラッド20の中心
軸は一致している。The core 10 is a cylindrical glass rod,
The clad 20 is a circular glass tube that surrounds the side surface of the core 10. The central axes of the core 10 and the clad 20 coincide with each other.
【0055】コア10及びクラッド20は、ともに石英
(SiO2 )系ガラスから構成されている。クラッド2
0はほぼ純粋な石英ガラスから構成されているが、コア
10を構成する石英ガラスには屈折率上昇材である酸化
ゲルマニウム(GeO2 )が添加されており、これによ
りコアの屈折率はクラッドよりも高くなっている。Both the core 10 and the clad 20 are made of quartz (SiO 2 ) glass. Cladding 2
0 is composed of almost pure silica glass, but the silica glass forming the core 10 contains germanium oxide (GeO 2 ) which is a refractive index increasing material, so that the core has a refractive index higher than that of the cladding. Is also getting higher.
【0056】管状部材30及び31は石英系ガラス製の
円管であり、自らの軸方向とクラッド20の軸方向とを
一致させながらクラッド20内に埋設されている。この
管状部材30及び31は、コア10の中心軸に対して互
いに対称な位置に配置されている。The tubular members 30 and 31 are circular tubes made of quartz glass, and are embedded in the clad 20 while making their axial directions coincide with the axial direction of the clad 20. The tubular members 30 and 31 are arranged at positions symmetrical to each other with respect to the central axis of the core 10.
【0057】応力付与部材40及び41は、石英系ガラ
スからなる円柱であり管状部材30及び31の中空部に
それぞれ挿入されている。この応力付与部材40及び4
1は、クラッド20よりも大きな熱膨張係数を有してい
る。周知の通り、光ファイバ母材100を線引した後に
光ファイバが冷却する過程において応力付与部材40及
び41は強く収縮するので、これによりコアに大きな応
力が付与される。この結果、線引により得られる光ファ
イバは偏波保持光ファイバとなる。The stress applying members 40 and 41 are cylinders made of silica glass and are inserted in the hollow portions of the tubular members 30 and 31, respectively. The stress applying members 40 and 4
1 has a larger coefficient of thermal expansion than the clad 20. As is well known, the stress applying members 40 and 41 are strongly contracted during the process of cooling the optical fiber after drawing the optical fiber preform 100, so that a large stress is applied to the core. As a result, the optical fiber obtained by drawing becomes a polarization maintaining optical fiber.
【0058】図2〜図6は、光ファイバ母材100の製
造方法を示す工程図である。以下、これらの図を参照し
ながら、光ファイバ母材100の製造方法を説明する。2 to 6 are process drawings showing a method of manufacturing the optical fiber preform 100. Hereinafter, a method of manufacturing the optical fiber preform 100 will be described with reference to these drawings.
【0059】まず、コア10及びこのコアを密着して覆
うクラッド20から構成されるガラス円柱110を用意
する(図2)。このガラス円柱110の外径は25mm
であり、コア10の外径は1.35mmである。ガラス
円柱110は、通常の光ファイバ母材と同様の方法、す
なわち公知のVAD(気相軸付け)法、OVD(外付
け)法、MCVD(内付け)法、ロッドインチューブ法
などを用いて製造することができる。本実施例では、M
CVD法を用いてこれを製造する。First, a glass cylinder 110 composed of a core 10 and a clad 20 which closely covers the core 10 is prepared (FIG. 2). The outer diameter of this glass cylinder 110 is 25 mm
And the outer diameter of the core 10 is 1.35 mm. The glass cylinder 110 is formed by using a method similar to that of a normal optical fiber preform, that is, a known VAD (vapor phase axis attachment) method, OVD (external attachment) method, MCVD (internal attachment) method, rod-in-tube method, or the like. It can be manufactured. In this embodiment, M
This is manufactured using the CVD method.
【0060】次いで、図示しない超音波開孔機を用いて
ガラス円柱110のクラッド20にガラス円柱110の
軸方向に沿って延びる直径8mmの貫通孔50及び51
を形成する(図3)。貫通孔50及び51はコア10と
平行であり、コア10の中心軸に対して対称な位置に形
成される。貫通孔50及び51の中心軸とコア10の中
心軸との距離は、11.6mmである。以下では、貫通
孔50及び51が設けられたガラス円柱110を、孔開
き母材111と呼ぶことにする。Then, using an ultrasonic perforator (not shown), through holes 50 and 51 having a diameter of 8 mm extending in the clad 20 of the glass cylinder 110 along the axial direction of the glass cylinder 110.
Are formed (FIG. 3). The through holes 50 and 51 are parallel to the core 10 and are formed at positions symmetrical with respect to the central axis of the core 10. The distance between the central axis of the through holes 50 and 51 and the central axis of the core 10 is 11.6 mm. Hereinafter, the glass cylinder 110 provided with the through holes 50 and 51 will be referred to as a perforated base material 111.
【0061】次に、貫通孔50及び51の表面上に厚さ
0.5mmのガラス層、すなわち上記の管状部材30及
び31を形成する(図4)。この管状部材30及び31
は、BCl3 (三塩化ホウ素)を毎分150ml、Si
Cl4 (四塩化珪素)を毎分400ml、O2 (酸素)
を毎分1lの流量で貫通孔50及び51の内部に導入し
ながら、孔開き母材111の外面に酸水素炎バーナの火
炎をあてて貫通孔50及び51の内部を加熱することで
形成することができる。酸水素炎バーナの火炎は、バー
ナ内に燃料ガスとしてH2 (水素)を毎分70l、O2
(酸素)を毎分30lずつ導入して形成したものであ
る。管状部材30及び31を形成した後には、管状部材
30及び31の内部に貫通孔52及び53が残る。な
お、図4では、管状部材30及び31が形成された後の
孔開き母材を符号112で示してある。Next, a glass layer having a thickness of 0.5 mm, that is, the above-mentioned tubular members 30 and 31 are formed on the surfaces of the through holes 50 and 51 (FIG. 4). The tubular members 30 and 31
Is 150 ml / min of BCl 3 (boron trichloride), Si
400 ml / min of Cl 4 (silicon tetrachloride), O 2 (oxygen)
Is introduced into the through holes 50 and 51 at a flow rate of 1 l / min, and the flame of an oxyhydrogen flame burner is applied to the outer surface of the perforated base material 111 to heat the inside of the through holes 50 and 51. be able to. The flame of the oxyhydrogen flame burner uses H 2 (hydrogen) as a fuel gas in the burner at 70 l / min, O 2
It is formed by introducing 30 l of (oxygen) per minute. After forming the tubular members 30 and 31, the through holes 52 and 53 remain inside the tubular members 30 and 31. In FIG. 4, the perforated base material after the tubular members 30 and 31 are formed is indicated by reference numeral 112.
【0062】次に、予め用意しておいた応力付与部材4
0及び41を貫通孔52及び53に挿入し、固定する
(図5及び図6)。この応力付与部材40及び41は、
公知のVAD法により作製することができる。具体的に
は、まず、バーナ内に燃料ガスとしてH2 を毎分50
l、O2 を毎分12lずつ導入して酸水素炎を形成し、
この酸水素炎中にSiCl4 を毎分400ml、BCl
3 を毎分300mlずつ導入してガラス微粒子(SiO
2 +B2 O3 )を生成する。次いで、棒状の出発材を回
転させながらバーナからのガラス微粒子を吹きつける
と、出発材の表面上にガラス微粒子がほぼ均一の厚さに
堆積する。出発材を引き上げながらガラス微粒子を吹き
つけることで、軸方向にガラス微粒子を成長させること
ができる。これにより、出発材の表面全体にガラス微粒
子が均一に堆積するので柱状のガラス微粒子体が得られ
る。次に、このガラス微粒子体を焼結炉に入れ、焼結炉
内のヘリウム雰囲気中にBF3 を導入しながら約120
0℃の温度で60分間加熱し、次いで、約1400℃の
温度で60分間加熱した後、徐冷する。これにより、ガ
ラス微粒子が透明ガラス化して、柱状のガラス体(Si
O2 −B2 O3 )が得られる。このガラス体を外径が約
6.8mmになるように加熱延伸すると、本実施例の応
力付与部材40及び41が得られる。二つの応力付与部
材の組成は、ほぼ同一である。なお、応力付与部材40
及び41は、貫通孔52及び53よりも短くしておく。Next, the stress applying member 4 prepared in advance
Insert 0 and 41 into the through holes 52 and 53 and fix them (FIGS. 5 and 6). The stress applying members 40 and 41 are
It can be produced by a known VAD method. Specifically, first, H 2 is supplied as fuel gas in the burner at a rate of 50 per minute.
l and O 2 are introduced at a rate of 12 l / min to form an oxyhydrogen flame,
400 ml / min of SiCl 4 and BCl 4 in this oxyhydrogen flame
300 ml / min of 3 was introduced to the glass particles (SiO 2
2 + B 2 O 3 ). Next, when the rod-shaped starting material is rotated and the glass particles are blown from the burner, the glass particles are deposited on the surface of the starting material in a substantially uniform thickness. By blowing the glass particles while pulling up the starting material, the glass particles can be grown in the axial direction. As a result, the glass particles are uniformly deposited on the entire surface of the starting material, so that a columnar glass particle body is obtained. Next, the glass fine particles are put into a sintering furnace, and BF 3 is introduced into the helium atmosphere in the sintering furnace for about 120 minutes.
Heat at a temperature of 0 ° C. for 60 minutes, then at a temperature of about 1400 ° C. for 60 minutes, followed by slow cooling. As a result, the glass fine particles become transparent glass, and the columnar glass body (Si
O 2 -B 2 O 3) is obtained. When this glass body is heated and stretched to have an outer diameter of about 6.8 mm, the stress applying members 40 and 41 of this embodiment are obtained. The compositions of the two stress applying members are almost the same. The stress applying member 40
And 41 are shorter than the through holes 52 and 53.
【0063】応力付与部材40及び41に添加されたB
2 O3 はSiO2 ガラスの熱膨張係数を高める作用を有
しているため、応力付与部材40及び41はクラッド2
0よりも大きな熱膨張係数を有している。B added to the stress applying members 40 and 41
Since 2 O 3 has a function of increasing the thermal expansion coefficient of SiO 2 glass, the stress-applying members 40 and 41 are used as the cladding 2
It has a coefficient of thermal expansion greater than zero.
【0064】上記のようにして得られた応力付与部材4
0及び41は、孔開き母材112の貫通孔52及び53
に挿入され孔の内部に固定される。以下では、図5及び
図6を参照しながらこの固定方法について説明する。な
お、この固定方法は、特開平4−97920号公報にも
開示されている。Stress-applying member 4 obtained as described above
0 and 41 are through holes 52 and 53 of the perforated base material 112.
And is fixed inside the hole. Hereinafter, this fixing method will be described with reference to FIGS. 5 and 6. This fixing method is also disclosed in Japanese Patent Application Laid-Open No. 4-97920.
【0065】この固定方法を実行するために、まず、外
径約6.8mmの石英ガラス棒60a、60b、61a
及び61b、並びに石英ガラス管70を用意する。ガラ
ス管70は、図5に示されるように、内径の小さなガラ
スリング70bの両端にこれよりも内径の大きいガラス
管70a、70cが取り付けられたものである。In order to carry out this fixing method, first, quartz glass rods 60a, 60b, 61a having an outer diameter of about 6.8 mm are used.
, 61b and the quartz glass tube 70 are prepared. As shown in FIG. 5, the glass tube 70 is formed by attaching glass tubes 70a and 70c having a larger inner diameter to both ends of a glass ring 70b having a smaller inner diameter.
【0066】応力付与部材40及び41を固定するため
には、まず、ガラス管70を孔開き母材112の一端面
に溶着する。次いで、孔開き母材112の他端側から貫
通孔52にガラス棒60a、応力付与部材40、ガラス
棒60bをこの順で挿入する。貫通孔53についても同
様に、ガラス棒61a、応力付与部材41、ガラス棒6
1bの順に挿入する。ガラス棒60a及び61aの先端
は、それぞれ孔開き母材112の端面から突出し、その
端面がガラスリング70bの底面に押し付けられる。こ
れにより、ガラス棒60a及び61aは固定される。ガ
ラス棒60b及び61bとクラッド20とは孔開き母材
112の端部を加熱延伸加工することで一体化される。
これによって、孔開き母材112の一端部が封止される
(図6)。In order to fix the stress applying members 40 and 41, first, the glass tube 70 is welded to one end surface of the base material 112 having a hole. Next, the glass rod 60a, the stress applying member 40, and the glass rod 60b are inserted in this order from the other end side of the perforated base material 112 into the through hole 52. Similarly for the through hole 53, the glass rod 61a, the stress applying member 41, the glass rod 6
Insert in order of 1b. The tips of the glass rods 60a and 61a respectively project from the end surface of the perforated base material 112, and the end surfaces are pressed against the bottom surface of the glass ring 70b. Thereby, the glass rods 60a and 61a are fixed. The glass rods 60b and 61b and the clad 20 are integrated by heating and drawing the end portion of the perforated base material 112.
As a result, one end of the perforated base material 112 is sealed (FIG. 6).
【0067】ガラス管70には真空コネクタ(図示せ
ず)を接続できるようになっているので、これを利用し
て貫通孔52及び53の内部を減圧する。この後、ガラ
ス管70の先端を加熱処理によりコラプス(中実化)し
て封止する。これにより、応力付与部材40及び41が
孔開き母材112に固定される。なお、応力付与部材4
0及び41の固定方法が上記方法に限られないことは言
うまでもない。Since a vacuum connector (not shown) can be connected to the glass tube 70, the inside of the through holes 52 and 53 is depressurized by utilizing this. After this, the tip of the glass tube 70 is collapsed (solidified) by heat treatment and sealed. As a result, the stress applying members 40 and 41 are fixed to the perforated base material 112. The stress applying member 4
It goes without saying that the fixing method of 0 and 41 is not limited to the above method.
【0068】次に、上記のようにして応力付与部材40
及び41が固定された孔開き母材112に対して、加熱
温度1900度、加熱時間120分の加熱処理を施し、
その後、徐冷する。これにより、クラッド20、管状部
材30及び31、並びに応力付与部材40及び41を構
成するガラスが溶融して一体化する。こうして、光ファ
イバ母材が完成する。Next, the stress applying member 40 is processed as described above.
And 41 are fixed to the perforated base material 112, a heating temperature of 1900 ° C. and a heating time of 120 minutes are applied,
After that, it is gradually cooled. As a result, the glass forming the clad 20, the tubular members 30 and 31, and the stress applying members 40 and 41 is melted and integrated. Thus, the optical fiber preform is completed.
【0069】上記のようにして得られた光ファイバ母材
のうち実際に光ファイバの作製に利用できるのは応力付
与部材40及び41を含む部分であり、したがって上記
の方法は実質的に図1の光ファイバ用母材100を製造
するものである。Of the optical fiber preforms obtained as described above, it is the portion including the stress applying members 40 and 41 that can actually be used for producing the optical fiber, and therefore the above method is substantially the same as that shown in FIG. The optical fiber preform 100 is manufactured.
【0070】図7は、光ファイバ母材100について径
方向の屈折率分布と軟化温度分布を示す図である。この
図では、光ファイバ母材100の右半分の分布しか示さ
れていないが、左半分の分布も右半分のものと同様であ
る。この図に示されるように、管状部材30及び31
は、クラッド20の軟化温度と応力付与部材40及び4
1の軟化温度とを平均した軟化温度を有している。この
ような軟化温度を持たせるには、上述した管状部材30
及び31の形成工程においてSiO2 の軟化温度低下材
であるB2 O3 の添加量を調節すると良い。FIG. 7 is a diagram showing the refractive index distribution and the softening temperature distribution of the optical fiber preform 100 in the radial direction. In this figure, only the distribution on the right half of the optical fiber preform 100 is shown, but the distribution on the left half is similar to that on the right half. As shown in this figure, tubular members 30 and 31
Is the softening temperature of the clad 20 and the stress applying members 40 and 4
The softening temperature of 1 is averaged. In order to have such a softening temperature, the above-mentioned tubular member 30
In the step of forming Nos. 31 and 31, it is advisable to adjust the addition amount of B 2 O 3 which is a softening temperature lowering agent for SiO 2 .
【0071】応力付与部材を含む光ファイバ母材を製造
するには、加熱処理を施して応力付与部材とクラッドを
一体化する必要がある。二つの物体を一体化する際は、
一般に、両者の接合部分の物性が互いに近いことが望ま
しい。特に、加熱処理により一体化する場合は両者の軟
化温度が近いことが望ましい。接合部分両者の軟化温度
に差がある場合には、どちらか一方のみが先に軟化し、
他方の表面が加熱による効果で十分に平滑化される前に
一体化してしまうため、接合界面に気泡が発生しやすく
なる。In order to manufacture the optical fiber preform including the stress applying member, it is necessary to perform heat treatment to integrate the stress applying member and the clad. When integrating two objects,
Generally, it is desirable that the physical properties of the joints between the two are close to each other. In particular, when they are integrated by heat treatment, it is desirable that the softening temperatures of both are close to each other. If there is a difference in the softening temperature between the two joints, only one of them softens first,
Since the other surface is integrated by the effect of heating before being sufficiently smoothed, bubbles are likely to be generated at the bonding interface.
【0072】本実施例の光ファイバ母材100は、クラ
ッド20と応力付与部材40、41との間に両者の平均
の軟化温度を有する管状部材30、31が存在している
ので、クラッド20と管状部材30、31との軟化温度
差、並びに管状部材30、31と応力付与部材40、4
1との軟化温度差は、クラッド20と応力付与部材4
0、41との軟化温度差よりも小さくなっている。この
ため、製造時に加熱処理によってクラッド20と応力付
与部材40及び41とを一体化する際にも、表面平滑化
効果が十分に作用する。この結果、クラッド20と管状
部材30、31との接合界面や管状部材30、31と応
力付与部材40、41との接合界面における気泡発生が
防止あるいは低減されることになる。従って、光ファイ
バ母材100を線引して光ファイバを製造する際にも、
光ファイバの断裂は生じにくく、また、得られる光ファ
イバは良好な伝送特性や偏波特性を有している。In the optical fiber preform 100 of this embodiment, since the tubular members 30 and 31 having the average softening temperature of both are present between the clad 20 and the stress applying members 40 and 41, Softening temperature difference between the tubular members 30, 31 and the tubular members 30, 31 and the stress applying members 40, 4
The difference in softening temperature between the clad 20 and the stress applying member 4 is
It is smaller than the difference in softening temperature between 0 and 41. Therefore, the surface smoothing effect is sufficiently exerted even when the cladding 20 and the stress applying members 40 and 41 are integrated with each other by the heat treatment during manufacturing. As a result, the generation of bubbles is prevented or reduced at the joint interface between the clad 20 and the tubular members 30 and 31, and at the joint interface between the tubular members 30 and 31 and the stress applying members 40 and 41. Therefore, even when the optical fiber preform 100 is drawn to manufacture an optical fiber,
The optical fiber is unlikely to break, and the obtained optical fiber has good transmission characteristics and polarization characteristics.
【0073】また、光ファイバ内では光は屈折率の高い
部分を伝搬することから、一般的にコア近傍にクラッド
より屈折率の高い部分が存在するとコアからその部分へ
の光パワーの移動が起こり、結果的に伝送損失が増加す
る。この点に鑑み、本実施例では、管状部材30及び3
1、並びに応力付与部材40及び41の屈折率をクラッ
ドよりも低く設定している(図7)。光ファイバは母材
と同様の屈折率分布を有することから、このように屈折
率を設定することで、光ファイバ母材を線引して得られ
る光ファイバ内での光パワーの移動を防ぐことができ、
光ファイバの伝送損失の増加を抑えることができる。In addition, since light propagates in a portion having a high refractive index in the optical fiber, generally, when a portion having a refractive index higher than that of the clad exists near the core, the optical power moves from the core to that portion. As a result, the transmission loss increases. In view of this point, in this embodiment, the tubular members 30 and 3 are
1 and the stress-applying members 40 and 41 are set to have a lower refractive index than the clad (FIG. 7). Since the optical fiber has the same refractive index distribution as the base material, setting the refractive index in this way prevents the movement of optical power in the optical fiber obtained by drawing the optical fiber base material. Can
It is possible to suppress an increase in transmission loss of the optical fiber.
【0074】本実施例では、上述のようにして製造され
た光ファイバ母材100を通常の線引装置を用いて線引
し、偏波保持光ファイバを製造する。具体的には、ま
ず、光ファイバ母材100を加熱炉にて約2000度に
加熱し、線速毎分100mにて外径が125μmになる
ように線引する。線引された光ファイバには、2度にわ
たってUV樹脂のコーティングが施される。被覆後の光
ファイバの外径は約250μmになる。このようにし
て、長さ10kmの偏波保持光ファイバを製造する。In this embodiment, the optical fiber preform 100 manufactured as described above is drawn by using a normal drawing device to manufacture a polarization maintaining optical fiber. Specifically, first, the optical fiber preform 100 is heated to about 2000 ° C. in a heating furnace, and drawn to have an outer diameter of 125 μm at a linear velocity of 100 m / min. The drawn optical fiber is coated with UV resin twice. The outer diameter of the coated optical fiber is about 250 μm. In this way, a polarization maintaining optical fiber having a length of 10 km is manufactured.
【0075】上記のようにして製造した偏波保持光ファ
イバについて偏波特性の一つであるクロストーク特性を
波長1.3μmにて測定したところ、−24dBと非常
に良好な結果を得た。When the crosstalk characteristic which is one of the polarization characteristics of the polarization-maintaining optical fiber manufactured as described above was measured at a wavelength of 1.3 μm, a very good result of −24 dB was obtained. .
【0076】本実施例との比較のため、本発明者らは、
管状部材30及び31を形成せずに応力付与部材を挿入
した光ファイバ母材を線引して10kmの偏波保持光フ
ァイバを製造した。光ファイバ母材の製造方法は、管状
部材30及び31を形成しない点を除いて本実施例と同
様である。この偏波保持光ファイバについてクロストー
ク特性を測定したところ、−8dBと本実施例よりも劣
っていた。この偏波保持光ファイバを詳細に調べた結
果、光ファイバ全長で3箇所にわたりガラス内に気泡が
発見された。この気泡は、応力付与部材とクラッドとの
界面に発生していた。For comparison with this example, the present inventors
An optical fiber preform in which a stress applying member was inserted without forming the tubular members 30 and 31 was drawn to manufacture a polarization-maintaining optical fiber of 10 km. The manufacturing method of the optical fiber preform is the same as that of this embodiment except that the tubular members 30 and 31 are not formed. When the crosstalk characteristic of this polarization maintaining optical fiber was measured, it was -8 dB, which was inferior to that of this example. As a result of detailed examination of this polarization-maintaining optical fiber, bubbles were found in the glass at three locations along the entire length of the optical fiber. These bubbles were generated at the interface between the stress applying member and the clad.
【0077】なお、本実施例では、クラッド20、管状
部材30及び31、並びに応力付与部材40及び41を
加熱一体化して光ファイバ母材100を完成させてから
線引を行って光ファイバを製造したが、加熱一体化と線
引を同時に行うことにより光ファイバを製造することも
可能である。In this embodiment, the cladding 20, the tubular members 30 and 31, and the stress applying members 40 and 41 are heated and integrated to complete the optical fiber preform 100, and then drawing is performed to manufacture an optical fiber. However, it is also possible to manufacture an optical fiber by simultaneously performing heating integration and drawing.
【0078】例えば、上記の方法によって応力付与部材
40及び41を孔開き母材112に固定した後、応力付
与部材40及び41並びに孔開き母材112の複合体を
加熱炉にて約2000度に加熱し、応力付与部材40及
び41とクラッド20と管状部材30及び31とを一体
化しながら、線速毎分100mで外径が125μmにな
るように線引しても光ファイバを製造することができ
る。この場合は、母材の状態を経ずに光ファイバが製造
されることになる。For example, after the stress applying members 40 and 41 are fixed to the perforated base material 112 by the above method, the composite of the stress applied members 40 and 41 and the perforated base material 112 is heated to about 2000 degrees in a heating furnace. An optical fiber can be manufactured by heating and drawing the stress applying members 40 and 41, the clad 20, and the tubular members 30 and 31 while drawing them so that the outer diameter becomes 125 μm at a linear velocity of 100 m / min. it can. In this case, the optical fiber is manufactured without going through the state of the base material.
【0079】この場合も、管状部材30及び31の存在
により加熱一体化の際に表面平滑化効果が十分に作用す
るため、クラッド20と管状部材30、31との接合界
面や管状部材30、31と応力付与部材40、41との
接合界面における気泡発生が防止あるいは低減される。
従って、上記の方法によっても、光ファイバの断裂を防
止しながら、良好な特性の偏波保持光ファイバを製造す
ることができる。In this case as well, the presence of the tubular members 30 and 31 sufficiently exerts the surface smoothing effect at the time of heat integration, so that the joining interface between the clad 20 and the tubular members 30 and 31 and the tubular members 30 and 31. The generation of bubbles at the joint interface between the stress applying members 40 and 41 is prevented or reduced.
Therefore, also by the above method, it is possible to manufacture a polarization-maintaining optical fiber having good characteristics while preventing the optical fiber from breaking.
【0080】実施例2 本実施例では、実施例1と異なる方法で光ファイバ母材
100(図1)を製造する。図8は、本実施例の母材製
造方法を示す図である。本実施例では、まず、VAD法
によってガラス円柱110(図2と同様のもの)を製造
し、超音波開孔機によりクラッド20に軸方向に沿って
延びる貫通孔50及び51を形成して、孔開き母材11
1を作製する。貫通孔50及び51の直径は、8mmで
ある。以上の工程は実施例1とほぼ同様であるが、本実
施例ではコアの組成はSiO2 であり、クラッドの組成
はSiO2 −Fである。FはSiO2 の屈折率低下材で
あり、これがクラッドに添加されていることによりコア
の屈折率はクラッドよりも高くなっている。Example 2 In this example, an optical fiber preform 100 (FIG. 1) is manufactured by a method different from that of Example 1. FIG. 8 is a diagram showing the base material manufacturing method of this embodiment. In this embodiment, first, a glass cylinder 110 (similar to that shown in FIG. 2) is manufactured by the VAD method, and through holes 50 and 51 extending in the axial direction are formed in the clad 20 by an ultrasonic drilling machine. Perforated base material 11
Prepare No. 1. The diameter of the through holes 50 and 51 is 8 mm. The above steps are almost the same as in Example 1, but in this Example, the core composition is SiO 2 and the clad composition is SiO 2 —F. F is a refractive index lowering material of SiO 2 , and by adding this to the clad, the refractive index of the core is higher than that of the clad.
【0081】次に、本実施例では、VAD法を用いて実
施例1と同一の応力付与部材40及び41(外径18m
m)を作製した後、この応力付与部材40及び41の表
面上に管状部材30及び31を堆積形成する。この堆積
形成は、公知のOVD(外付け)法を用いて行うことが
できる。具体的には、酸水素炎バーナ内にSiCl
4(四塩化珪素)を毎分300ml、H2 (水素)を毎
分50l、O2 (酸素)を毎分12lずつ導入し、応力
付与部材40及び41を自らの軸を回転軸として回転さ
せながらバーナの火炎をあて、バーナを軸方向に沿って
応力付与部材40及び41に対し相対的に移動させてい
く。これにより、SiO2 のガラス微粒子が応力付与部
材40及び41の側面上にほぼ均一な厚さで堆積する。Next, in this embodiment, the same stress imparting members 40 and 41 (outer diameter 18 m as in Embodiment 1 are used by using the VAD method.
After producing m), tubular members 30 and 31 are deposited and formed on the surfaces of the stress applying members 40 and 41. This deposition formation can be performed using a known OVD (external attachment) method. Specifically, SiCl in the oxyhydrogen flame burner
300 ml / min of 4 (silicon tetrachloride), 50 l / min of H 2 (hydrogen) and 12 l / min of O 2 (oxygen) were introduced, and the stress applying members 40 and 41 were rotated about their own axes. While applying the flame of the burner, the burner is moved relative to the stress applying members 40 and 41 along the axial direction. As a result, glass particles of SiO 2 are deposited on the side surfaces of the stress applying members 40 and 41 with a substantially uniform thickness.
【0082】次いで、ガラス微粒子が堆積した応力付与
部材40及び41を加熱炉に入れ、加熱炉内のヘリウム
雰囲気中にBF3 及びSiF4 を導入しながら約120
0℃の温度で30分間加熱し、続いて、約1400℃の
温度で30分間加熱した後、徐冷する。この作業によ
り、SiO2 のガラス微粒子にB及びFが添加されると
ともに、ガラス微粒子が透明ガラス化し、応力付与部材
40、41と一体化する。Next, the stress-applying members 40 and 41 in which the glass fine particles are deposited are put into a heating furnace, and BF 3 and SiF 4 are introduced into the helium atmosphere in the heating furnace for about 120 times.
It is heated at a temperature of 0 ° C. for 30 minutes, subsequently heated at a temperature of about 1400 ° C. for 30 minutes, and then gradually cooled. By this operation, B and F are added to the glass particles of SiO 2 , and the glass particles become transparent glass and are integrated with the stress applying members 40 and 41.
【0083】本実施例では、上記の方法により、応力付
与部材40及び41の表面に厚さ約2.5mmのガラス
層(SiO2 −B2 O3 −F)を形成する。このガラス
層が、本実施例の管状部材30、31である。なお、応
力付与部材40、41の表面に管状部材30、31を形
成する方法としては、管状部材30、31の材料を用い
て予め作製したガラスパイプの内面に、応力付与部材と
なるべきガラス層をMCVD法により形成し、その後ガ
ラスパイプをコラプス(中実化)する方法を採ることも
できる。In this embodiment, a glass layer (SiO 2 —B 2 O 3 —F) having a thickness of about 2.5 mm is formed on the surfaces of the stress applying members 40 and 41 by the above method. This glass layer is the tubular members 30 and 31 of this embodiment. As a method of forming the tubular members 30 and 31 on the surfaces of the stress applying members 40 and 41, a glass layer to be a stress applying member is formed on the inner surface of a glass pipe previously manufactured using the material of the tubular members 30 and 31. Can be formed by the MCVD method, and then the glass pipe can be collapsed (solidified).
【0084】この後、管状部材30、31と応力付与部
材40、41からなる二つの柱状体を、それぞれ外径が
約7.7mmになるように加熱延伸する。こうして得ら
れた柱状体80、81を、図8のように孔開き母材11
1の貫通孔50、51にそれぞれ挿入した後、実施例1
と同様にして固定する。この後、加熱処理を行って柱状
体80及び81とクラッド20とを一体化すると、光フ
ァイバ母材100(図1)が完成する。After that, the two columnar bodies composed of the tubular members 30 and 31 and the stress applying members 40 and 41 are heated and stretched so that the outer diameters thereof are about 7.7 mm, respectively. The columnar bodies 80 and 81 thus obtained are perforated as shown in FIG.
Example 1 after inserting into the through holes 50 and 51 of No. 1 respectively.
Fix in the same manner as. Thereafter, heat treatment is performed to integrate the columnar bodies 80 and 81 and the clad 20 with each other, whereby the optical fiber preform 100 (FIG. 1) is completed.
【0085】本実施例により製造された光ファイバ母材
も、図7に示される屈折率分布および軟化温度分布を有
している。なお、軟化温度の調節は、上述した管状部材
30及び31の形成工程においてSiO2 の軟化温度変
化材であるB2 O3 及びFの添加量を調節することで行
うことができる。ここで、B2 O3 はSiO2 の軟化温
度を低下させる作用を有しており、FはSiO2 の軟化
温度を低下させる作用を有している。The optical fiber preform manufactured in this example also has the refractive index distribution and the softening temperature distribution shown in FIG. The softening temperature can be adjusted by adjusting the addition amount of B 2 O 3 and F, which are the softening temperature changing material of SiO 2 , in the above-mentioned forming process of the tubular members 30 and 31. Here, B 2 O 3 has an effect of lowering the softening temperature of the SiO 2, F has the effect of lowering the softening temperature of the SiO 2.
【0086】本発明者らが上記のようにして製造した光
ファイバ母材を実施例1と同様に線引して長さ10km
の偏波保持光ファイバを製造し、この光ファイバについ
て偏波特性の一つであるクロストーク特性を波長1.3
μmにて測定したところ、−26dBと非常に良好な結
果を得た。The optical fiber preform manufactured by the present inventors as described above was drawn in the same manner as in Example 1 to obtain a length of 10 km.
Of the polarization-maintaining optical fiber of FIG.
When measured in μm, a very good result of −26 dB was obtained.
【0087】なお、上記の方法に代えて、柱状体80及
び81とクラッド20の加熱一体化を線引と同時に行う
ことにより、母材の状態を経ずに光ファイバを製造する
ことが可能なことは、実施例1と同様である。In place of the above method, the heating and integration of the columnar bodies 80 and 81 and the clad 20 are performed simultaneously with the drawing, so that an optical fiber can be manufactured without going through the state of the preform. This is the same as in the first embodiment.
【0088】実施例3 本実施例も、実施例1及び2と異なる方法で光ファイバ
母材100(図1)を製造するものである。図9は、本
実施例の母材製造方法を示す図である。本実施例でも、
まず、実施例2と同様にして孔開き母材111(図3と
同様のもの)を作製する。本実施例の場合、貫通孔50
及び51の直径は9mmである。次いで、実施例1と同
様の方法により、外径約7.8mmの応力付与部材40
及び41を作製する。Example 3 In this example also, the optical fiber preform 100 (FIG. 1) is manufactured by a method different from those of Examples 1 and 2. FIG. 9 is a diagram showing the base material manufacturing method of this embodiment. Also in this embodiment,
First, a perforated base material 111 (similar to FIG. 3) is manufactured in the same manner as in Example 2. In this embodiment, the through hole 50
The diameter of 51 and 51 is 9 mm. Then, in the same manner as in Example 1, the stress applying member 40 having an outer diameter of about 7.8 mm.
And 41 are made.
【0089】次に、本実施例では、管状部材30及び3
1を孔開き母材111や応力付与部材40、41と独立
して形成する。このためには、まず、VAD法を用いて
柱状のガラス体を作製する。具体的には、酸水素炎バー
ナにH2 (水素)を毎分50l、O2 (酸素)を毎分1
2lずつ導入して形成した酸水素炎中に、SiCl
4(四塩化珪素)を毎分300mlの流量で導入し、火
炎中で生成されるSiO2のガラス微粒子を出発材上に
堆積、成長させて棒状のガラス微粒子体を形成する。こ
のガラス微粒子体を焼結炉に入れ、焼結炉内のヘリウム
雰囲気中にSiF4を導入しながら約1200℃の温度
で30分間加熱し、次いで、約1400℃の温度で60
分間加熱した後、徐冷する。これにより、SiO2 のガ
ラス微粒子はFが添加された後、透明ガラス化する。こ
うして、SiO2 −Fのガラス柱状体が得られる。この
ガラス柱状体を、外径が22mmになるように加熱延伸
した後、超音波開孔機を用いて中央に内径20mmの貫
通孔を形成し、再び加熱延伸して、外径8.8mm、内
径8mmのガラス管を形成する。これが、本実施例の管
状部材30及び31である。Next, in this embodiment, the tubular members 30 and 3 are
1 is formed independently of the perforated base material 111 and the stress applying members 40 and 41. For this purpose, first, a columnar glass body is manufactured by using the VAD method. Specifically, 50 liters of H 2 (hydrogen) per minute and 1 of O 2 (oxygen) per minute are supplied to the oxyhydrogen flame burner.
In the oxyhydrogen flame formed by introducing 2 l each, SiCl
4 (Silicon tetrachloride) is introduced at a flow rate of 300 ml / min, and SiO 2 glass particles produced in a flame are deposited and grown on the starting material to form rod-shaped glass particle bodies. The glass fine particles are put into a sintering furnace and heated at a temperature of about 1200 ° C. for 30 minutes while introducing SiF 4 into a helium atmosphere in the sintering furnace, and then at a temperature of about 1400 ° C. for 60 minutes.
After heating for a minute, cool slowly. As a result, the glass particles of SiO 2 become transparent glass after F is added. Thus, a SiO 2 —F glass columnar body is obtained. This glass columnar body was heated and stretched to have an outer diameter of 22 mm, then a through hole having an inner diameter of 20 mm was formed in the center by using an ultrasonic hole punching machine, and again heat-stretched to have an outer diameter of 8.8 mm. A glass tube having an inner diameter of 8 mm is formed. This is the tubular members 30 and 31 of this embodiment.
【0090】次に、孔開き母材111の一端側から貫通
孔50に管状部材30、応力付与部材40をこの順で挿
入する。貫通孔51についても同様に、管状部材31、
応力付与部材41をこの順で挿入する。応力付与部材4
0、41は、それぞれ管状部材30、31の中空部に挿
入される。管状部材30及び31、並びに応力付与部材
40及び41は実施例1と同様の方法により固定され
る。この後、加熱処理を施して、クラッド20と、管状
部材30及び31と、応力付与部材40及び41とを一
体化すれば、光ファイバ母材100(図1)が完成す
る。Next, the tubular member 30 and the stress applying member 40 are inserted in this order from the one end side of the perforated base material 111 into the through hole 50. Similarly for the through hole 51, the tubular member 31,
The stress applying member 41 is inserted in this order. Stress applying member 4
0 and 41 are inserted into the hollow portions of the tubular members 30 and 31, respectively. The tubular members 30 and 31 and the stress applying members 40 and 41 are fixed by the same method as in the first embodiment. Then, heat treatment is performed to integrate the clad 20, the tubular members 30 and 31, and the stress applying members 40 and 41, whereby the optical fiber preform 100 (FIG. 1) is completed.
【0091】本実施例により製造された光ファイバ母材
も、図7に示される屈折率分布および軟化温度分布を有
している。なお、軟化温度の調節は、上述した管状部材
30及び31の形成工程においてSiO2 の軟化温度変
化材であるFの添加量を調節することで行うことができ
る。The optical fiber preform manufactured according to this example also has the refractive index distribution and the softening temperature distribution shown in FIG. The softening temperature can be adjusted by adjusting the addition amount of F, which is the softening temperature changing material of SiO 2 , in the process of forming the tubular members 30 and 31 described above.
【0092】本発明者らが上記のようにして製造した光
ファイバ母材を線引して長さ9.7kmの偏波保持光フ
ァイバを製造し、この光ファイバについて偏波特性の一
つであるクロストーク特性を波長1.3μmにて測定し
たところ、−26dBと非常に良好な結果を得た。The inventors of the present invention draw the optical fiber preform manufactured as described above to manufacture a polarization maintaining optical fiber having a length of 9.7 km, and one of the polarization characteristics of this optical fiber. The crosstalk characteristic was measured at a wavelength of 1.3 μm, and a very good result of −26 dB was obtained.
【0093】なお、本実施例の製造工程において、管状
部材30及び31の内面や外面に対して研磨等の機械的
平滑化または火炎放射等による加熱平滑化を行い、或い
はこれらの面を洗浄して付着している不純物を除去して
おくと、線引時の加熱一体化による気泡の発生を一層効
果的に防止することができる。In the manufacturing process of this embodiment, the inner and outer surfaces of the tubular members 30 and 31 are mechanically smoothed by polishing or heat-smoothed by flame radiation, or these surfaces are washed. By removing the adhering impurities, it is possible to more effectively prevent the generation of bubbles due to heat integration during drawing.
【0094】また、上記の方法に代えて、クラッド20
と管状部材30及び31と応力付与部材40及び41と
の加熱一体化を線引と同時に行うことにより、母材の状
態を経ずに光ファイバを製造することが可能なことは、
上記実施例と同様である。Further, instead of the above method, the cladding 20
By performing the heating integration of the tubular members 30 and 31 and the stress applying members 40 and 41 simultaneously with the drawing, it is possible to manufacture an optical fiber without going through the state of the preform.
This is the same as the above embodiment.
【0095】実施例4 本実施例では、図1の光ファイバ母材100とは異なる
光ファイバ母材を製造する。最初に、本実施例の光ファ
イバ母材の製造方法を詳細に説明する。図10は、本実
施例の母材製造方法を示す図である。Example 4 In this example, an optical fiber preform different from the optical fiber preform 100 of FIG. 1 is manufactured. First, a method for manufacturing the optical fiber preform of this embodiment will be described in detail. FIG. 10 is a diagram showing a base material manufacturing method of this example.
【0096】本実施例では、まず、公知のMCVD法を
用いてガラス円柱110(図2と同様のもの)を作製
し、超音波開孔機を用いてクラッド20に軸方向に沿っ
て延びる貫通孔50及び51を形成して、孔開き母材1
11を作製する。貫通孔50及び51の直径は8mmで
ある。In this embodiment, first, a glass cylinder 110 (similar to that shown in FIG. 2) is produced by using a known MCVD method, and an ultrasonic perforator is used to penetrate the cladding 20 so as to extend along the axial direction. Forming holes 50 and 51 to form a holed base material 1
11 is produced. The diameter of the through holes 50 and 51 is 8 mm.
【0097】次に、VAD法を用いて応力付与部材42
及び43を作製する。具体的には、酸水素炎バーナにH
2 を毎分50l、O2 を毎分12lずつ導入して形成し
た酸水素炎中に、SiCl4 を毎分300ml、BCl
3 (三塩化ほう素)を毎分300mlずつ導入し、火炎
中で生成されるガラス微粒子(SiO2 −B2 O3 )を
出発材上に堆積、成長させて柱状のガラス微粒子体を形
成する。このガラス微粒子体にはSiO2 の熱膨張係数
を高めるB2 O3 が添加されており、この結果、ガラス
微粒子体は孔開き母材111のクラッド20よりも高い
熱膨張係数を有するようになる。また、B2 O3 はSi
O2 の軟化温度低下材なので、このガラス微粒子体はク
ラッド20よりも低い軟化温度を有している。Next, the stress applying member 42 is formed by using the VAD method.
And 43 are made. Specifically, H for the oxyhydrogen flame burner
Into the oxyhydrogen flame formed by introducing 50 liter of 2 per minute and 12 liter of O 2 per minute, 300 ml of SiCl 4 per minute,
300 ml / min of 3 (boron trichloride) is introduced, and glass particles (SiO 2 —B 2 O 3 ) produced in a flame are deposited and grown on the starting material to form columnar glass particle bodies. . B 2 O 3 which increases the thermal expansion coefficient of SiO 2 is added to this glass fine particle body, and as a result, the glass fine particle body has a higher thermal expansion coefficient than the clad 20 of the perforated base material 111. . Also, B 2 O 3 is Si
Since it is a softening temperature lowering agent for O 2 , this glass fine particle has a softening temperature lower than that of the clad 20.
【0098】次いで、このガラス微粒子体を焼結炉に入
れ、焼結炉内のヘリウム雰囲気中でBF3 を導入しなが
ら約1100℃の温度で60分間加熱し、続いて、焼結
炉内をヘリウムのみの雰囲気としてから、約1400℃
の温度で60分間加熱した後、徐冷する。これにより、
ガラス微粒子体の表面からBが添加され、ガラス微粒子
体の内部でBの酸化物(B2 O3 )が形成される。Next, the glass fine particles were put into a sintering furnace and heated at a temperature of about 1100 ° C. for 60 minutes while introducing BF 3 in a helium atmosphere in the sintering furnace. Approximately 1400 ℃ from the atmosphere of helium only
After heating at the temperature of 60 minutes, it is gradually cooled. This allows
B is added from the surface of the glass particle body, and an oxide of B (B 2 O 3 ) is formed inside the glass particle body.
【0099】焼結炉内をヘリウムのみの雰囲気とする
と、焼結炉内でガラス微粒子体に添加されるB2 O
3 は、ガラス微粒子体の外表面から雰囲気中へと拡散す
る。拡散される量はガラス微粒子体の表面側ほど多い。
拡散と同時に透明ガラス化が進行するので、ガラス体の
中央部にはほぼ均一な濃度でB2 O3 が添加されるが、
表面から中心に向かって外径の約1/4の厚さを有する
表層部では添加濃度が徐々に減少し、表面近傍では殆ど
B2 O3 が添加されないことになる。このようにして得
られたガラス体を外径約7.7mmに加熱延伸すると、
本実施例の応力付与部材42及び43(SiO2 −B2
O3 )が得られる。When the atmosphere in the sintering furnace is only helium, B 2 O added to the glass fine particles in the sintering furnace
3 diffuses from the outer surface of the glass fine particles into the atmosphere. The amount of diffusion is greater on the surface side of the glass fine particles.
Since transparent vitrification proceeds at the same time as diffusion, B 2 O 3 is added to the center of the glass body at a substantially uniform concentration.
In the surface layer portion having a thickness of about ¼ of the outer diameter from the surface toward the center, the addition concentration gradually decreases, and B 2 O 3 is hardly added near the surface. When the glass body thus obtained is heated and drawn to have an outer diameter of about 7.7 mm,
The stress applying members 42 and 43 (SiO 2 -B 2) of this embodiment are
O 3 ) is obtained.
【0100】この応力付与部材42及び43は、その表
層部において軟化温度が部材の表面側から中心側に向か
ってクラッド20の軟化温度から中央部42a及び43
aの軟化温度まで連続的に変化する。すなわち、応力付
与部材42及び43は、軟化温度が表面側から中心側に
向かってクラッド20の軟化温度から中央部42a及び
43aの軟化温度まで連続的に変化するような軟化温度
分布を有する管状の部材をその表層部42b及び43b
において備えている。The stress imparting members 42 and 43 have a softening temperature in the surface layer portion from the softening temperature of the clad 20 toward the center side from the surface side of the members to the central portions 42a and 43.
It continuously changes up to the softening temperature of a. That is, the stress imparting members 42 and 43 have a tubular shape having a softening temperature distribution in which the softening temperature continuously changes from the softening temperature of the cladding 20 to the softening temperature of the central portions 42a and 43a from the surface side to the center side. The member is attached to its surface layer portions 42b and 43b.
Prepared for.
【0101】こうして得られた応力付与部材42及び4
3を、図10のように孔開き母材111の貫通孔50、
51にそれぞれ挿入、固定した後、加熱処理を施してク
ラッド20と応力付与部材42及び43を一体化する
と、本実施例の光ファイバ母材が完成する。図示はしな
いが、応力付与部材42及び43の固定は、実施例1と
同様の方法により行っている。Stress-applying members 42 and 4 thus obtained
3, the through hole 50 of the base material 111 with holes, as shown in FIG.
The optical fiber preform of this embodiment is completed by inserting and fixing each in 51 and then subjecting it to heat treatment to integrate the clad 20 and the stress applying members 42 and 43. Although not shown, the stress applying members 42 and 43 are fixed by the same method as in the first embodiment.
【0102】本実施例により製造された光ファイバ母材
は、図11に示されるような屈折率分布および軟化温度
分布を有している。本実施例の光ファイバ母材は、孔開
き母材111の貫通孔50及び51に挿入される応力付
与部材の軟化温度分布に特徴がある。すなわち、図11
に示されるように、応力付与部材42及び43の表層部
42b及び43bは、部材の表面側から中心側に向かっ
てクラッド20の軟化温度から中央部42a及び43a
の軟化温度まで連続的に変化するような軟化温度分布を
有している。The optical fiber preform manufactured according to this example has a refractive index distribution and a softening temperature distribution as shown in FIG. The optical fiber preform of this example is characterized by the softening temperature distribution of the stress applying member inserted into the through holes 50 and 51 of the perforated preform 111. That is, FIG.
As shown in FIG. 7, the surface layer portions 42b and 43b of the stress applying members 42 and 43 are located in the central portions 42a and 43a from the softening temperature of the clad 20 from the surface side to the center side of the members.
It has a softening temperature distribution that continuously changes up to the softening temperature.
【0103】本実施例の光ファイバ母材では、応力付与
部材がこのような表層部42b及び43bを有している
ために、クラッド20と応力付与部材42、43との軟
化温度差が緩和されている。特に、クラッド20と応力
付与部材42、43との接合界面では軟化温度がほぼ等
しいので、加熱処理によりクラッド20と応力付与部材
42、43とを一体化する際にも表面平滑化効果が十分
に作用し、クラッド20と応力付与部材42、43との
接合界面における気泡発生が防止あるいは大幅に低減さ
れる。In the optical fiber preform of this embodiment, since the stress applying member has such surface layer portions 42b and 43b, the softening temperature difference between the clad 20 and the stress applying members 42 and 43 is relaxed. ing. In particular, since the softening temperature is substantially equal at the joint interface between the clad 20 and the stress applying members 42 and 43, the surface smoothing effect is sufficient even when the clad 20 and the stress applying members 42 and 43 are integrated by heat treatment. This acts to prevent or significantly reduce the generation of bubbles at the joint interface between the clad 20 and the stress applying members 42 and 43.
【0104】また、本実施例の光ファイバ母材でも、応
力付与部材42及び43の屈折率はクラッドよりも低く
設定されている(図11)。これにより、コアから応力
付与部材42及び43への光パワーの移動が防止される
ので、本実施例の光ファイバ母材を線引して得られる光
ファイバの伝送損失の増加を抑えることができる。Also in the optical fiber preform of this example, the refractive index of the stress applying members 42 and 43 is set lower than that of the clad (FIG. 11). This prevents the optical power from moving from the core to the stress applying members 42 and 43, so that it is possible to suppress an increase in transmission loss of the optical fiber obtained by drawing the optical fiber preform of this embodiment. .
【0105】本実施例の光ファイバ母材を加熱炉にて約
2000℃に加熱し、応力付与部材42及び43と孔開
き母材111とを一体化しながら線速毎分100mにて
線引して外径125μmの光ファイバを製造し、さらに
UV樹脂で被覆して外径約250μm、長9.5kmの
偏波保持光ファイバを製造した。この光ファイバについ
て偏波特性の一つであるクロストーク特性を、波長1.
3μmにて測定したところ、−25dBと非常に良好な
結果を得た。The optical fiber preform of this embodiment was heated to about 2000 ° C. in a heating furnace, and the stress applying members 42 and 43 and the perforated preform 111 were integrated and drawn at a linear velocity of 100 m / min. To produce an optical fiber having an outer diameter of 125 μm and further coated with UV resin to produce a polarization maintaining optical fiber having an outer diameter of about 250 μm and a length of 9.5 km. The crosstalk characteristic, which is one of the polarization characteristics of this optical fiber, is calculated as follows.
When measured at 3 μm, a very good result of −25 dB was obtained.
【0106】なお、上記の方法に代えて、応力付与部材
42及び43とクラッド20の加熱一体化を線引と同時
に行うことにより、母材の状態を経ずに光ファイバを製
造することが可能なことは、上記実施例と同様である。Instead of the above-mentioned method, the stress-applying members 42 and 43 and the clad 20 are heated and integrated with each other at the same time as the drawing, so that the optical fiber can be manufactured without going through the state of the preform. This is the same as in the above embodiment.
【0107】実施例5 本実施例では、図11に示される屈折率分布および軟化
温度分布を有する光ファイバ母材を実施例1に類似した
方法で製造する。具体的には、実施例1と同様の方法に
より孔開き母材111を作製した後、貫通孔50及び5
1の表面上に厚さ0.5mmの管状部材30及び31を
形成する。ここで、管状部材30及び31の形成方法
は、実施例1と若干異なっている。すなわち、本実施例
の管状部材30及び31は、SiCl4 を毎分400m
l、O2 を毎分1lの流量で貫通孔50及び51の内部
に導入すると共に、BCl3 の流量を制御しながら、孔
開き母材111の外面に酸水素炎バーナの火炎をあてて
貫通孔50及び51の内部を加熱することで形成する。
BCl3 は、加熱の当初は全く導入せず、その後、徐々
に流量を増加させて、最終的に毎分150mlの流量で
導入する。これにより、実施例4の表層部42b、43
bと同様の屈折率分布と軟化温度分布を有する管状部材
30、31が形成される。この後、実施例1と同様の製
造工程を実行することで、図11の屈折率分布および軟
化温度分布を有する光ファイバ母材が製造される。Example 5 In this example, an optical fiber preform having the refractive index distribution and softening temperature distribution shown in FIG. 11 is manufactured by a method similar to that of the first embodiment. Specifically, after forming the perforated base material 111 by the same method as in Example 1, the through holes 50 and 5 are formed.
The tubular members 30 and 31 having a thickness of 0.5 mm are formed on the surface of 1. Here, the method of forming the tubular members 30 and 31 is slightly different from that of the first embodiment. That is, the tubular members 30 and 31 of this embodiment contain SiCl 4 at 400 m / min.
l and O 2 are introduced into the through holes 50 and 51 at a flow rate of 1 l / min, and a flame of an oxyhydrogen burner is applied to the outer surface of the perforated base material 111 while controlling the flow rate of BCl 3. It is formed by heating the inside of the holes 50 and 51.
BCl 3 is not introduced at all at the beginning of heating, then the flow rate is gradually increased, and finally BCl 3 is introduced at a flow rate of 150 ml / min. As a result, the surface layer portions 42b and 43 of the fourth embodiment are formed.
The tubular members 30 and 31 having the same refractive index distribution and softening temperature distribution as b are formed. After that, the same manufacturing process as in Example 1 is performed to manufacture the optical fiber preform having the refractive index distribution and the softening temperature distribution shown in FIG. 11.
【0108】実施例6 本実施例では、図11に示される屈折率分布および軟化
温度分布を有する光ファイバ母材を実施例3に類似の方
法で製造する。具体的には、実施例3と同様にして孔開
き母材111及び応力付与部材40及び41を作製する
と共に、管状部材30及び31を、孔開き母材111や
応力付与部材40、41と独立して形成する。ここで、
管状部材30及び31の形成方法は、実施例3と異なっ
ている。Example 6 In this example, an optical fiber preform having the refractive index distribution and softening temperature distribution shown in FIG. 11 is manufactured by a method similar to that of Example 3. Specifically, the perforated base material 111 and the stress applying members 40 and 41 are manufactured in the same manner as in Example 3, and the tubular members 30 and 31 are independent of the perforated base material 111 and the stress applying members 40 and 41. To form. here,
The method of forming the tubular members 30 and 31 is different from that of the third embodiment.
【0109】すなわち、本実施例では、実施例3と同様
にして棒状のガラス微粒子体を形成した後、これを焼結
炉に入れ、焼結炉内のヘリウム雰囲気中にSiF4 を導
入しながら約1200℃の温度で60分間加熱し、続い
て、焼結炉内をヘリウムのみの雰囲気としてから、約1
400℃の温度で60分間加熱した後、徐冷する。焼結
炉内をヘリウムのみの雰囲気とすると、焼結炉内でガラ
ス微粒子体に添加されるFは、ガラス微粒子体の外表面
から雰囲気中へと拡散する。拡散される量はガラス微粒
子体の表面側ほど多い。拡散と同時に透明ガラス化が進
行するので、ガラス体の中心側から表面側に向かってF
濃度が連続的に変化したSiO2 のガラス柱状体が得ら
れることになる。That is, in this example, after forming rod-shaped glass fine particles in the same manner as in Example 3, this was placed in a sintering furnace and SiF 4 was introduced into the helium atmosphere in the sintering furnace. After heating at a temperature of about 1200 ° C. for 60 minutes, the atmosphere in the sintering furnace is made up of only helium, and then about 1
After heating at a temperature of 400 ° C. for 60 minutes, it is gradually cooled. When the atmosphere in the sintering furnace is only helium, F added to the glass particle body in the sintering furnace diffuses from the outer surface of the glass particle body into the atmosphere. The amount of diffusion is greater on the surface side of the glass fine particles. As vitrification progresses at the same time as diffusion, F from the center side of the glass body toward the surface side.
As a result, a glass columnar body of SiO 2 having a continuously changing concentration can be obtained.
【0110】このガラス柱状体を、外径が22mmにな
るように加熱延伸した後、超音波開孔機を用いて中央に
内径20mmの貫通孔を形成し、再び加熱延伸して、外
径8.8mm、内径8mmのガラス管を形成する。これ
により、実施例4の表層部42b、43bと同様の屈折
率分布と軟化温度分布を有する管状部材30及び31が
形成される。この後、実施例3と同様の製造工程を実行
することで、図11の屈折率分布および軟化温度分布を
有する光ファイバ母材が製造される。This glass columnar body was heated and stretched to have an outer diameter of 22 mm, then a through hole having an inner diameter of 20 mm was formed in the center using an ultrasonic perforator, and the outer diameter was 8 A glass tube having a diameter of 0.8 mm and an inner diameter of 8 mm is formed. As a result, the tubular members 30 and 31 having the same refractive index distribution and softening temperature distribution as the surface layer portions 42b and 43b of Example 4 are formed. After that, the same manufacturing process as that of the third embodiment is performed to manufacture the optical fiber preform having the refractive index distribution and the softening temperature distribution of FIG. 11.
【0111】以上、本発明の実施例を詳細に説明した
が、本発明は上記実施例に限定されるものではなく、様
々な変形が可能である。例えば、コア及びクラッドから
なるガラス円柱、ガラスパイプ或いは応力付与部材の製
造については、VAD法、OVD法、MCVD法等、一
般に知られている製造方法のいかなるものを用いても良
い。貫通孔の表面或いは応力付与部材の表面にガラス層
を形成する場合も、同様である。応力付与部材を挿入す
るための貫通孔の形成方法も、公知技術から種々の方法
を選択することができる。同様に、貫通孔及び応力付与
部材の断面形状も、偏波保持光ファイバに関する公知技
術から任意に選択することができる。Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the above embodiments, and various modifications can be made. For example, for manufacturing a glass cylinder, a glass pipe or a stress applying member composed of a core and a clad, any of generally known manufacturing methods such as VAD method, OVD method and MCVD method may be used. The same applies when the glass layer is formed on the surface of the through hole or the surface of the stress applying member. As the method of forming the through hole for inserting the stress applying member, various methods can be selected from known techniques. Similarly, the cross-sectional shapes of the through hole and the stress applying member can be arbitrarily selected from known techniques regarding polarization-maintaining optical fibers.
【0112】また、貫通孔の表面或いは応力付与部材の
表面にガラス層を形成した後、ガラス層の表面に対して
研磨等の機械的平滑化または火炎放射等による加熱平滑
化を行い、或いはこれらの面を洗浄して付着している不
純物を除去しておくと、加熱一体化の際の気泡発生をよ
り効果的に防止することができる。Further, after the glass layer is formed on the surface of the through hole or the surface of the stress applying member, the surface of the glass layer is subjected to mechanical smoothing such as polishing or heat smoothing by flame radiation, or the like. By cleaning the surface of (1) and removing the attached impurities, it is possible to more effectively prevent the generation of bubbles during heat integration.
【0113】また、石英ガラスの軟化温度の調節に用い
る軟化温度変化材としては、以下のようなものがある。The softening temperature changing material used for adjusting the softening temperature of quartz glass is as follows.
【0114】 第1グループ(軟化温度、屈折率とも低下させるもの)
…B、F 第2グループ(軟化温度を低下させ、屈折率を上昇させ
るもの)…Ge、P 第3グループ(軟化温度、屈折率とも上昇させるもの)
…Al、Ti、Zr これらの軟化温度変化材は、第1グループから一つ以
上を選択して添加する、第1グループから一つ以上を
選択し、かつ、第2グループから一つ以上を選択して添
加する、第1グループから一つ以上を選択し、かつ、
第3グループから一つ以上を選択して添加する、第1
グループから一つ以上、第2グループから一つ以上、第
3グループから一つ以上をそれぞれ選択して添加する、
のいずれかの方法により使用すると良い。First group (those that lower both the softening temperature and the refractive index)
... B, F Second group (for lowering softening temperature and increasing refractive index) ... Ge, P Third group (for increasing both softening temperature and refractive index)
... Al, Ti, Zr These softening temperature changing materials are selected by adding one or more from the first group, one or more from the first group, and one or more from the second group. Select one or more from the first group, and
Select one or more from the third group and add, first
Select one or more from the group, one or more from the second group, one or more from the third group, and add,
It is good to use by any of the methods.
【0115】[0115]
【発明の効果】以上、詳細に説明した通り、本発明の光
ファイバ母材は、クラッドと管状部材との接合界面や管
状部材と応力付与部材との接合界面に気泡が発生しにく
い構造を有しているので、割れが生じにくく、また、こ
の母材を線引することで良好な伝送特性及び偏波特性を
示す偏波保持光ファイバを製造することができる。As described above in detail, the optical fiber preform of the present invention has a structure in which bubbles are less likely to be generated at the joint interface between the clad and the tubular member or the joint interface between the tubular member and the stress applying member. As a result, it is possible to manufacture a polarization-maintaining optical fiber exhibiting good transmission characteristics and polarization characteristics by drawing the base material.
【0116】本発明の光ファイバ母材のうち応力付与部
材或いは管状部材の屈折率がクラッドの屈折率以下であ
るものによれば、母材を線引して得られる光ファイバに
おいてコアから応力付与部材或いは管状部材への光パワ
ーの移動は生じにくいので、伝送損失の少ない偏波保持
光ファイバを得ることができる。According to the optical fiber preform of the present invention in which the stress-applying member or the tubular member has a refractive index not higher than that of the cladding, stress is applied from the core in the optical fiber obtained by drawing the preform. Since it is difficult for the optical power to move to the member or the tubular member, it is possible to obtain a polarization-maintaining optical fiber with less transmission loss.
【0117】次に、本発明に係る光ファイバ母材の製造
方法の第1の態様によれば、応力付与部材及び管状部材
を一体化して母材を完成させる際にも、クラッドと管状
部材との接合界面や管状部材と応力付与部材との接合界
面に気泡が発生しにくいので、偏波保持光ファイバ用の
母材を好適に製造することができる。Next, according to the first aspect of the method for producing an optical fiber preform according to the present invention, even when the stress applying member and the tubular member are integrated to complete the preform, the cladding and the tubular member are Since bubbles are unlikely to be generated at the bonding interface of (1) or at the bonding interface of the tubular member and the stress applying member, it is possible to preferably manufacture the preform for the polarization maintaining optical fiber.
【0118】また、本発明に係る光ファイバ母材の製造
方法の第2の態様によれば、孔開き母材と応力付与部材
を一体化して母材を完成させる際にも、クラッドと応力
付与部材の接合界面に気泡が発生しにくいので、偏波保
持光ファイバ用の母材を好適に製造することができる。Further, according to the second aspect of the method for manufacturing an optical fiber preform according to the present invention, even when the preform and the stress applying member are integrated to complete the preform, the cladding and the stress applying member are provided. Since bubbles are less likely to be generated at the bonding interface of the members, it is possible to preferably manufacture the preform for the polarization maintaining optical fiber.
【0119】次に、本発明に係る光ファイバ製造方法の
第1の態様によれば、孔開き母材、応力付与部材及び管
状部材を一体化しながら線引を行う際にも、クラッドと
管状部材との接合界面や管状部材と応力付与部材との接
合界面に気泡が発生しにくいので、線引中の光ファイバ
の断裂を防止するとともに、良好な伝送特性及び偏波特
性を示す偏波保持光ファイバを得ることができる。Next, according to the first aspect of the method for producing an optical fiber of the present invention, the cladding and the tubular member are also used when the wire drawing is performed while the perforated base material, the stress applying member and the tubular member are integrated. Since bubbles are less likely to be generated at the bonding interface with and the bonding interface between the tubular member and the stress-applying member, it prevents the optical fiber from breaking during drawing, and maintains polarization with good transmission and polarization characteristics. An optical fiber can be obtained.
【0120】また、本発明に係る光ファイバの製造方法
の第2の態様では、孔開き母材と応力付与部材を一体化
しながら線引を行う際にも、クラッドと応力付与部材の
接合界面に気泡が発生しにくいので、線引中の光ファイ
バの断裂を防止するとともに、良好な伝送特性及び偏波
特性を示す偏波保持光ファイバを得ることができる。Further, in the second aspect of the method for producing an optical fiber according to the present invention, even when the wire drawing is performed while the perforated base material and the stress applying member are integrated, the joining interface between the clad and the stress applying member is formed. Since bubbles are less likely to be generated, it is possible to prevent the optical fiber from being broken during drawing and obtain a polarization-maintaining optical fiber having good transmission characteristics and polarization characteristics.
【0121】次に、本発明の光ファイバは、製造時にク
ラッドと管状部材との接合界面や管状部材と応力付与部
材との接合界面に気泡が発生しにくい構造を有している
ので、線引中に断裂することなく製造でき、良好な伝送
特性及び偏波特性を有している。Next, the optical fiber of the present invention has a structure in which bubbles are less likely to be generated at the joint interface between the clad and the tubular member or the joint interface between the tubular member and the stress applying member at the time of manufacture. It can be manufactured without breaking inside, and has excellent transmission characteristics and polarization characteristics.
【0122】本発明の光ファイバのうち応力付与部材や
管状部材の屈折率がクラッドの屈折率以下であるもの
は、コアから応力付与部材或いは管状部材への光パワー
の移動が生じにくいため、伝送損失が少ないという利点
を有している。Among the optical fibers of the present invention, those in which the stress-applying member or the tubular member has a refractive index equal to or lower than the refractive index of the clad are difficult to transfer the optical power from the core to the stress-applying member or the tubular member. It has the advantage of low loss.
【図1】実施例1〜3で製造される光ファイバ母材の構
成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of an optical fiber preform manufactured in Examples 1 to 3.
【図2】実施例1の母材製造方法を説明するための第1
の工程図である。FIG. 2 is a first diagram for explaining a base material manufacturing method of Example 1;
FIG.
【図3】実施例1の母材製造方法を説明するための第2
の工程図である。FIG. 3 is a second diagram for explaining the base material manufacturing method according to the first embodiment.
FIG.
【図4】実施例1の母材製造方法を説明するための第3
の工程図である。FIG. 4 is a third diagram for explaining the base material manufacturing method according to the first embodiment.
FIG.
【図5】実施例1の母材製造方法を説明するための第4
の工程図である。FIG. 5 is a fourth diagram for explaining the base material manufacturing method according to the first embodiment.
FIG.
【図6】実施例1の母材製造方法を説明するための第5
の工程図である。FIG. 6 is a fifth diagram for explaining the base material manufacturing method according to the first embodiment.
FIG.
【図7】実施例1〜3で製造される光ファイバ母材につ
いて径方向に沿った屈折率分布及び軟化温度分布を示す
図である。FIG. 7 is a diagram showing a refractive index distribution and a softening temperature distribution along the radial direction of the optical fiber preforms manufactured in Examples 1 to 3.
【図8】実施例2の母材製造方法を説明するための図で
ある。FIG. 8 is a drawing for explaining the base material manufacturing method of the second embodiment.
【図9】実施例3の母材製造方法を説明するための図で
ある。FIG. 9 is a drawing for explaining the base material manufacturing method according to the third embodiment.
【図10】実施例4の母材製造方法を説明するための図
である。FIG. 10 is a drawing for explaining the base material manufacturing method according to the fourth embodiment.
【図11】実施例4で製造される光ファイバ母材につい
て径方向に沿った屈折率分布及び軟化温度分布を示す図
である。11 is a diagram showing a refractive index distribution and a softening temperature distribution along the radial direction of the optical fiber preform manufactured in Example 4. FIG.
10…コア、20…クラッド、30及び31…管状部
材、40及び41…応力付与部材、50〜53…貫通
孔、100…光ファイバ母材。10 ... Core, 20 ... Clad, 30 and 31 ... Tubular member, 40 and 41 ... Stress giving member, 50-53 ... Through hole, 100 ... Optical fiber preform.
フロントページの続き (72)発明者 内山 幸一 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内Front page continuation (72) Inventor Koichi Uchiyama 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works
Claims (22)
に軸方向に沿った貫通孔が中心軸と所定の間隔をあけて
設けられ、その貫通孔の表層部において第1の熱膨張係
数及び第1の軟化温度を有するものと、 前記貫通孔に挿入され、前記第1の熱膨張係数と異なる
第2の熱膨張係数及び前記第1の軟化温度と異なる第2
の軟化温度をその表層部において有する柱状の応力付与
部材と、 前記貫通孔に挿入され、前記応力付与部材を包囲する管
状部材であって、前記第1及び第2の軟化温度の間で設
定された径方向軟化温度分布を有するものと、 を備える光ファイバ母材。1. A columnar core and a tubular clad surrounding the core, wherein a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis. A surface layer having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and the first softening temperature, which is inserted into the through hole, and Different second
A columnar stress-applying member having a softening temperature of its surface layer portion, and a tubular member that is inserted into the through hole and surrounds the stress-applying member, and is set between the first and second softening temperatures. And an optical fiber preform having a radial softening temperature distribution.
度分布を有することを特徴とする請求項1記載の光ファ
イバ母材。2. The optical fiber preform according to claim 1, wherein the tubular member has a substantially constant radial softening temperature distribution.
に向かって前記第1の軟化温度から前記第2の軟化温度
まで連続的に変化する径方向軟化温度分布を有すること
を特徴とする請求項1記載の光ファイバ母材。3. The tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side. The optical fiber preform according to claim 1.
折率が、前記クラッドの屈折率以下であることを特徴と
する請求項1記載の光ファイバ母材。4. The optical fiber preform according to claim 1, wherein the refractive index of the stress applying member and the tubular member is less than or equal to the refractive index of the clad.
のクラッドであってその管壁に軸方向に沿った貫通孔が
中心軸と所定の間隔をあけて設けられその貫通孔の表層
部において第1の熱膨張係数及び第1の軟化温度を有す
るものを備える孔開き母材と、前記貫通孔に挿入される
べき柱状の応力付与部材であって前記第1の熱膨張係数
と異なる第2の熱膨張係数及び前記第1の軟化温度と異
なる第2の軟化温度をその表層部において有するものと
を用意する第1の工程と、 前記応力付与部材を包囲すべき管状部材であって前記第
1及び第2の軟化温度の間で設定された径方向軟化温度
分布を有するものを、前記貫通孔の表面上、前記応力付
与部材の表面と前記貫通孔の表面との中間、あるいは前
記応力付与部材の表面上のうち一以上の位置に設けると
ともに、前記孔開き母材、応力付与部材及び管状部材を
一体化する第2の工程と、 を備える光ファイバ母材の製造方法。5. A columnar core and a tubular clad surrounding the core, wherein through holes along the axial direction are provided in the tube wall at a predetermined interval from the central axis, and at the surface layer portion of the through holes. A perforated base material having a first thermal expansion coefficient and a first softening temperature, and a columnar stress applying member to be inserted into the through hole, which is different from the first thermal expansion coefficient. A thermal expansion coefficient and a second softening temperature different from the first softening temperature in a surface layer portion thereof, and a tubular member which should surround the stress applying member, One having a radial softening temperature distribution set between the first and second softening temperatures is provided on the surface of the through hole, between the surface of the stress applying member and the surface of the through hole, or the stress applying. At one or more positions on the surface of the member Kicking with the perforated base material, the second step and the method for manufacturing an optical fiber preform comprising integrating the stress applying member and the tubular member.
に前記管状部材を形成し、次いで、前記応力付与部材を
この管状部材の中空部に挿入し、この後、前記応力付与
部材と前記管状部材を一体化する工程であることを特徴
とする請求項5記載の光ファイバ母材の製造方法。6. In the second step, the tubular member is formed on the surface of the through hole, then the stress applying member is inserted into the hollow portion of the tubular member, and then the stress applying member. 6. The method for producing an optical fiber preform according to claim 5, which is a step of integrating the tubular member with the tubular member.
表面上に前記管状部材を形成し、次いで、前記応力付与
部材及び前記管状部材からなる柱状体を前記孔開き母材
の貫通孔に挿入し、この後、前記柱状体と前記孔開き母
材を一体化する工程であることを特徴とする請求項5記
載の光ファイバ母材の製造方法。7. In the second step, the tubular member is formed on a surface of the stress applying member, and then a columnar body including the stress applying member and the tubular member is formed into a through hole of the perforated base material. 6. The method for manufacturing an optical fiber preform according to claim 5, wherein the step of inserting the columnar body and the perforated preform into a single body is integrated.
貫通孔に挿入するとともに、前記管状部材の中空部に前
記応力付与部材を挿入し、この後、前記孔開き母材、応
力付与部材及び管状部材を一体化する工程であることを
特徴とする請求項5記載の光ファイバ母材の製造方法。8. In the second step, the tubular member is inserted into the through hole, the stress applying member is inserted into a hollow portion of the tubular member, and thereafter, the perforated base material and the stress applying member are applied. The method for producing an optical fiber preform according to claim 5, which is a step of integrating the member and the tubular member.
のクラッドであってその管壁に軸方向に沿った貫通孔が
中心軸と所定の間隔をあけて設けられその貫通孔の表層
部において第1の熱膨張係数及び第1の軟化温度を有す
るものを備える孔開き母材と、前記第1の熱膨張係数と
異なる第2の熱膨張係数及び前記第1の軟化温度と異な
る第2の軟化温度をその表層部において有する中央部を
備えた柱状の応力付与部材であって前記第1及び第2の
軟化温度の間で設定された径方向軟化温度分布を有する
管状部材をその表層部に備えたものとを用意する第1の
工程と、 前記応力付与部材を前記孔開き母材の貫通孔に挿入する
第2の工程と、 前記応力付与部材と前記孔開き母材を一体化する第3の
工程と、 を備える光ファイバ母材の製造方法。9. A columnar core and a tubular clad surrounding the core, wherein through holes along the axial direction are provided in the tube wall at a predetermined distance from the central axis, and in the surface layer portion of the through holes. A perforated matrix comprising a material having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and a second material different from the first temperature of softening. A columnar stress-applying member having a central portion having a softening temperature in its surface layer portion, wherein a tubular member having a radial softening temperature distribution set between the first and second softening temperatures is provided in the surface layer portion. A second step of inserting the stress applying member into a through hole of the perforated base material; a second step of integrating the stress applied member and the perforated base material; 3. A method of manufacturing an optical fiber preform, comprising:
温度分布を有することを特徴とする請求項5又は9記載
の光ファイバ母材の製造方法。10. The method for manufacturing an optical fiber preform according to claim 5, wherein the tubular member has a substantially constant radial softening temperature distribution.
側に向かって前記第1の軟化温度から前記第2の軟化温
度まで連続的に変化する径方向軟化温度分布を有するこ
とを特徴とする請求項5又は9記載の光ファイバ母材の
製造方法。11. The tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side. The method for manufacturing an optical fiber preform according to claim 5 or 9.
状のクラッドであってその管壁に軸方向に沿った貫通孔
が中心軸と所定の間隔をあけて設けられその貫通孔の表
層部において第1の熱膨張係数及び第1の軟化温度を有
するものを備える孔開き母材と、前記貫通孔に挿入され
るべき柱状の応力付与部材であって前記第1の熱膨張係
数と異なる第2の熱膨張係数及び前記第1の軟化温度と
異なる第2の軟化温度をその表層部において有するもの
とを用意する第1の工程と、 前記応力付与部材を包囲すべき管状部材であって前記第
1及び第2の軟化温度の間で設定された径方向軟化温度
分布を有するものを、前記貫通孔の表面上、前記応力付
与部材の表面と前記貫通孔の表面との中間、あるいは前
記応力付与部材の表面上のうち一以上の位置に設ける第
2の工程と、 前記孔開き母材、応力付与部材及び管状部材からなる複
合体を加熱して、前記孔開き母材、応力付与部材及び管
状部材を一体化しながら前記複合体を線引する第3の工
程とを備える光ファイバの製造方法。12. A columnar core and a tubular clad that surrounds the core, wherein a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and in the surface layer portion of the through hole. A perforated base material having a first thermal expansion coefficient and a first softening temperature, and a columnar stress applying member to be inserted into the through hole, which is different from the first thermal expansion coefficient. A thermal expansion coefficient and a second softening temperature different from the first softening temperature in a surface layer portion thereof, and a tubular member which should surround the stress applying member, One having a radial softening temperature distribution set between the first and second softening temperatures is provided on the surface of the through hole, between the surface of the stress applying member and the surface of the through hole, or the stress applying. One or more positions on the surface of the member The second step of providing and heating the composite body composed of the perforated base material, the stress applying member and the tubular member to draw the composite body while integrating the perforated base material, the stress applying member and the tubular member. And a third step of manufacturing an optical fiber.
貫通孔の表面上に前記管状部材を形成し、次いで、前記
応力付与部材をこの管状部材の中空部に挿入する工程で
あることを特徴とする請求項12記載の光ファイバの製
造方法。13. The second step is a step of forming the tubular member on the surface of the through hole of the perforated base material, and then inserting the stress applying member into the hollow portion of the tubular member. 13. The method for manufacturing an optical fiber according to claim 12, wherein:
の表面上に前記管状部材を形成し、次いで、前記応力付
与部材及び前記管状部材からなる柱状体を前記孔開き母
材の貫通孔に挿入する工程であることを特徴とする請求
項12記載の光ファイバの製造方法。14. In the second step, the tubular member is formed on the surface of the stress applying member, and then a columnar body including the stress applying member and the tubular member is formed into a through hole of the perforated base material. 13. The method for manufacturing an optical fiber according to claim 12, which is a step of inserting into the optical fiber.
記貫通孔に挿入するとともに、この管状部材の中空部に
前記応力付与部材を挿入する工程であることを特徴とす
る請求項12記載の光ファイバの製造方法。15. The method according to claim 12, wherein the second step is a step of inserting the tubular member into the through hole and inserting the stress applying member into a hollow portion of the tubular member. Optical fiber manufacturing method.
状のクラッドであってその管壁に軸方向に沿った貫通孔
が中心軸と所定の間隔をあけて設けられその貫通孔の表
層部において第1の熱膨張係数及び第1の軟化温度を有
するものを備える孔開き母材と、前記第1の熱膨張係数
と異なる第2の熱膨張係数及び前記第1の軟化温度と異
なる第2の軟化温度をその表層部において有する中央部
を備えた柱状の応力付与部材であって前記第1及び第2
の軟化温度の間で設定された径方向軟化温度分布を有す
る管状部材をその表層部に備えたものとを用意する第1
の工程と、 前記応力付与部材を前記孔開き母材の貫通孔に挿入する
第2の工程と、 前記孔開き母材及び応力付与部材からなる複合体を加熱
して、前記孔開き母材及び応力付与部材を一体化しなが
ら前記複合体を線引する第3の工程と、 を備える光ファイバの製造方法。16. A columnar core and a tubular clad that surrounds the core, wherein a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and at the surface layer portion of the through hole. A perforated matrix comprising a material having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and a second material different from the first temperature of softening. A columnar stress-applying member having a central portion having a softening temperature in its surface layer portion, wherein the first and second
A tubular member having a radial softening temperature distribution set between the softening temperatures of
And a second step of inserting the stress-applying member into the through-hole of the perforated base material, and heating a composite of the perforated base material and the stress-applying member to form the perforated base material and A third step of drawing the composite while integrating the stress applying member, and a method for manufacturing an optical fiber.
温度分布を有することを特徴とする請求項12又は16
記載の光ファイバの製造方法。17. The tubular member has a substantially constant radial softening temperature distribution, according to claim 12 or 16.
The manufacturing method of the optical fiber described in the above.
側に向かって前記第1の軟化温度から前記第2の軟化温
度まで連続的に変化する径方向軟化温度分布を有するこ
とを特徴とする請求項12又は16記載の光ファイバの
製造方法。18. The tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side. The method for manufacturing an optical fiber according to claim 12.
に軸方向に沿った貫通孔が中心軸と所定の間隔をあけて
設けられ、その貫通孔の表層部において第1の熱膨張係
数及び第1の軟化温度を有するものと、 前記貫通孔に挿入され、前記第1の熱膨張係数と異なる
第2の熱膨張係数及び前記第1の軟化温度と異なる第2
の軟化温度をその表層部において有する柱状の応力付与
部材と、 前記貫通孔に挿入され、前記応力付与部材を包囲する管
状部材であって、前記第1及び第2の軟化温度の間で設
定された径方向軟化温度分布を有するものと、 を備える光ファイバ。19. A columnar core and a tubular clad that surrounds the core, wherein a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and the through hole A surface layer having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and the first softening temperature, which is inserted into the through hole, and Different second
A columnar stress-applying member having a softening temperature of its surface layer portion, and a tubular member that is inserted into the through hole and surrounds the stress-applying member, and is set between the first and second softening temperatures. An optical fiber having a radial softening temperature distribution.
温度分布を有することを特徴とする請求項19記載の光
ファイバ。20. The optical fiber according to claim 19, wherein the tubular member has a substantially constant radial softening temperature distribution.
側に向かって前記第1の軟化温度から前記第2の軟化温
度まで連続的に変化する径方向軟化温度分布を有するこ
とを特徴とする請求項19記載の光ファイバ。21. The tubular member has a radial softening temperature distribution that continuously changes from the first softening temperature to the second softening temperature from the surface side toward the center side. The optical fiber according to claim 19.
屈折率が、前記クラッドの屈折率以下であることを特徴
とする請求項19記載の光ファイバ。22. The optical fiber according to claim 19, wherein the stress-applying member and the tubular member have a refractive index equal to or lower than the refractive index of the clad.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18594695A JP3823341B2 (en) | 1995-07-21 | 1995-07-21 | Optical fiber preform, optical fiber and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18594695A JP3823341B2 (en) | 1995-07-21 | 1995-07-21 | Optical fiber preform, optical fiber and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0930823A true JPH0930823A (en) | 1997-02-04 |
JP3823341B2 JP3823341B2 (en) | 2006-09-20 |
Family
ID=16179652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18594695A Expired - Lifetime JP3823341B2 (en) | 1995-07-21 | 1995-07-21 | Optical fiber preform, optical fiber and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3823341B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533290A (en) * | 1998-12-21 | 2002-10-08 | コーニング・インコーポレーテッド | Optical crystal fiber |
JP2017526959A (en) * | 2015-01-07 | 2017-09-14 | 烽火通信科技股▲分▼有限公司 | A kind of small-diameter polarization maintaining optical fiber |
EP3115344A4 (en) * | 2014-03-06 | 2017-11-01 | Furukawa Electric Co. Ltd. | Production method for optical fiber parent material, and production method for optical fiber |
EP3486699A4 (en) * | 2016-09-19 | 2019-08-14 | Yangtze Optical Fibre and Cable Joint Stock Limited Company | Crack-resistant panda polarization-maintaining optical fiber |
WO2020248549A1 (en) * | 2019-06-12 | 2020-12-17 | 烽火通信科技股份有限公司 | Panda polarization maintaining optical fiber |
-
1995
- 1995-07-21 JP JP18594695A patent/JP3823341B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002533290A (en) * | 1998-12-21 | 2002-10-08 | コーニング・インコーポレーテッド | Optical crystal fiber |
EP3115344A4 (en) * | 2014-03-06 | 2017-11-01 | Furukawa Electric Co. Ltd. | Production method for optical fiber parent material, and production method for optical fiber |
JP2017526959A (en) * | 2015-01-07 | 2017-09-14 | 烽火通信科技股▲分▼有限公司 | A kind of small-diameter polarization maintaining optical fiber |
EP3141937A4 (en) * | 2015-01-07 | 2018-08-01 | Fiberhome Telecommunication Technologies Co., Ltd | Small-diameter polarization maintaining optical fibre |
EP3486699A4 (en) * | 2016-09-19 | 2019-08-14 | Yangtze Optical Fibre and Cable Joint Stock Limited Company | Crack-resistant panda polarization-maintaining optical fiber |
WO2020248549A1 (en) * | 2019-06-12 | 2020-12-17 | 烽火通信科技股份有限公司 | Panda polarization maintaining optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JP3823341B2 (en) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4561871A (en) | Method of making polarization preserving optical fiber | |
KR900003449B1 (en) | Dispersion-shift fiber and its production | |
EP0738691B1 (en) | Method of forming an elongated glass article | |
US6917740B2 (en) | Optical fiber having reduced viscosity mismatch | |
CA1090134A (en) | Fabrication of optical fibers with improved cross sectional circularity | |
US4415230A (en) | Polarization retaining single-mode optical waveguide | |
EP0061901B1 (en) | Optical waveguide fiber, and methods of forming an optical waveguide fiber, and an optical waveguide preform | |
CN1243811A (en) | Manufacture of pre-fabricated bars for layered fiber core optical guide | |
JPH0753591B2 (en) | Method for manufacturing base material for optical fiber | |
US4749396A (en) | Method of forming an optical fiber preform | |
WO1999040037A1 (en) | Method of manufacturing optical fiber base material | |
CN105866880A (en) | Preparation method of polarization-maintaining optical fibers | |
JPH0930823A (en) | Optical fiber preform, optical fiber and its production | |
JPH01153551A (en) | Production of optical fiber having definite polarization | |
US20040123630A1 (en) | Preform fabrication process | |
JPH0930824A (en) | Polarization maintaining optical fiber and its production | |
JP4974456B2 (en) | Optical fiber preform manufacturing method, optical fiber preform and related optical fiber | |
JP3819614B2 (en) | Method for producing quartz glass preform for optical fiber | |
JPH0327491B2 (en) | ||
JPH0742131B2 (en) | Method for manufacturing glass base material for optical fiber | |
WO2002008133A2 (en) | Process of manufacturing glass optical fibre preforms | |
JPS6168336A (en) | Production of parent material for single polarization optical fiber | |
JPH0723228B2 (en) | Method of manufacturing constant polarization optical fiber | |
JPH0460930B2 (en) | ||
JPH0475174B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060619 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 4 |