JPS6035166B2 - Granulation equipment - Google Patents

Granulation equipment

Info

Publication number
JPS6035166B2
JPS6035166B2 JP633978A JP633978A JPS6035166B2 JP S6035166 B2 JPS6035166 B2 JP S6035166B2 JP 633978 A JP633978 A JP 633978A JP 633978 A JP633978 A JP 633978A JP S6035166 B2 JPS6035166 B2 JP S6035166B2
Authority
JP
Japan
Prior art keywords
cylinder
pipe
bottom plate
granulator
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP633978A
Other languages
Japanese (ja)
Other versions
JPS5499780A (en
Inventor
賢次 外山
儀三郎 塩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP633978A priority Critical patent/JPS6035166B2/en
Publication of JPS5499780A publication Critical patent/JPS5499780A/en
Publication of JPS6035166B2 publication Critical patent/JPS6035166B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】 本発明は気体により循環する小粉粒体に溶融液を噴射し
てより大きい径の粉粒体を得る造粒装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a granulation device that injects a melt onto small powder particles that are circulated by gas to obtain powder particles with a larger diameter.

従来、尿素等の造粒器として第1図の如きものが知られ
ている。
Conventionally, a granulator for urea, etc., as shown in FIG. 1, has been known.

この造粒器は、熔融液の噴射ノズル1′を上騰中心部に
配設した空気の噴出管2′の上端に、逆錐台状の筒体3
′を接合し、噴出管2′から空気を勢いよく噴出させな
がら、核となる小粉粒体を筒体3′の上方に設けられた
供給管5′から筒体3′内に投入してこれを噴出空気に
より循環させ、送液管4′で溶融液を送って噴射ノズル
1′から循環中の小粉粒体に噴射して小粉粒体の外周面
に徐々に付着させ、目的とする径の粉粒体を製造する構
造になっている。この造粒器はその造粒能力を増大させ
たい場合、常識的に考えられることはスケールアップで
ある。
This granulator has a cylindrical body 3 in the shape of an inverted truncated cone at the upper end of an air jet pipe 2' in which a melt jet nozzle 1' is disposed at the center of the rise.
', and while blowing out air vigorously from the ejection pipe 2', the small powder particles serving as the core are introduced into the cylinder 3' from the supply pipe 5' provided above the cylinder 3'. This is circulated by blowing air, the molten liquid is sent through the liquid sending pipe 4', and is injected from the injection nozzle 1' onto the circulating small powder particles to gradually adhere to the outer peripheral surface of the small powder particles to achieve the desired purpose. It has a structure that produces powder and granular material with a diameter of If it is desired to increase the granulation capacity of this granulator, it is common sense to scale it up.

しかしこの造粒方式の造粒器は特殊で、スケールアップ
した場合、噴流層が単独で大きなサイズでは、噴流層の
造粒機構から考えて、所望の粒径を得るのにサイズに比
例した循環速度の増加が期待できず、また、粒子の幾何
学的運動の変化等により装置のスケールアップに比例し
た能力アップが期待できない。その上達続運転の困難性
、噴流層の圧力損失増大による運転コスト増大等様々の
問題点がある。本発明は単純なスケールアップを避け、
複数の造粒器を1個の容器内に設備することにより上記
の問題点を解決したものである。
However, the granulator using this granulation method is special, and when scaled up, when the spouted bed alone is large in size, considering the granulation mechanism of the spouted bed, it is necessary to circulate in proportion to the size to obtain the desired particle size. An increase in speed cannot be expected, and due to changes in the geometrical motion of particles, it is not possible to expect an increase in capacity in proportion to the scale-up of the device. Moreover, there are various problems such as difficulty in continuous operation and increased operating costs due to increased pressure loss in the spouted bed. The invention avoids simple scale-up and
The above problems are solved by installing a plurality of granulators in one container.

以下に本発明を図面を参照して詳細に説明する。第2図
と第3図は本発明の一実施例を示すもので、1は垂直な
周壁2に頂板4と傾斜した底板3がそれぞれ接合された
密閉容器であって頂板4と底板3の下端部には気体(空
気)の排出口5と粉粒体の排出口6がそれぞれ設けられ
ている。
The present invention will be explained in detail below with reference to the drawings. 2 and 3 show an embodiment of the present invention. Reference numeral 1 denotes an airtight container in which a top plate 4 and an inclined bottom plate 3 are respectively joined to a vertical peripheral wall 2, and the lower ends of the top plate 4 and the bottom plate 3 are connected to a vertical peripheral wall 2. A gas (air) outlet 5 and a powder outlet 6 are provided in each section.

底板3には気体を噴出する円管又は角管状の3本の噴出
管7が底板3を貫通しこれより少し突出して等間隔で垂
直に固着され、各噴出管7の最上端には逆角錐台状の筒
体8が噴出管7に蓮通してそれぞれ接合されている。な
お、第2図最右端の噴出管7と筒体8の底板3に対する
取付け状態が、他のものと少し違うが、この例のものは
底板3を上方に貫通した部分までを噴出管7とする。前
記容器1内には、横断面形状を筒体8の上緑部の平面形
状と同一に形成され、かつ下部を開□された3個の仕切
筒11が筒体8の上緑部に粉粒体の溢流口12をあげる
とともに、筒体8を前記気体排出口5に連絡して垂設さ
れている。一方、前記容器1の頂板4には核となる小粉
粒体を仕切筒11から筒体8内に供給する供給管9が気
体排出口5に隣接して設けられている。
On the bottom plate 3, three circular or square-shaped ejection pipes 7 that eject gas pass through the bottom plate 3, protrude slightly from the bottom plate 3, and are fixed vertically at equal intervals, and at the top end of each ejection pipe 7 is an inverted pyramid. A pedestal-shaped cylinder 8 is connected to the ejection pipe 7 by passing through it. Note that the way the jet pipe 7 and cylinder body 8 are attached to the bottom plate 3 at the far right in FIG. do. Inside the container 1, there are three partition cylinders 11 whose cross-sectional shape is the same as the planar shape of the upper green part of the cylinder body 8, and whose bottom part is open. The granule overflow port 12 is raised, and the cylindrical body 8 is vertically connected to the gas discharge port 5. On the other hand, a supply pipe 9 is provided on the top plate 4 of the container 1 adjacent to the gas discharge port 5 for supplying small powder particles serving as a nucleus into the cylinder body 8 from the partition cylinder 11 .

また、前記噴出管7の上端中心には噴出管7を水平に貫
通して送液管10が突設されている。この送液管1川ま
外部から筒体8内に溶融液を送るもので、その先端には
溶融液を筒体8内に噴射する噴射ノズル13を備える。
前記噴出管7の下端部には気体の吹込管14が水平に連
結されている。ところで、吹込管14を噴出管7の横に
わざわざ分岐して設けた理由は、筒体8内で必要以上に
成長して溢流ロー2から外部に排出しえなくなった粉粒
体の塊を噴出管7を通して真下に排出させるためである
。噴出管7、筒体8及び噴射ノズル13等は造粒器Aを
構成している。なお、図のものにおいては容器1と筒体
8及び仕切筒11の横断面形状は共に四角形になってい
るが、これに限らず丸やその他の形状であってもよい。
Further, at the center of the upper end of the jet pipe 7, a liquid feeding pipe 10 is provided to protrude horizontally through the jet pipe 7. This liquid sending pipe 1 sends the melt into the cylinder 8 from the outside, and is equipped with an injection nozzle 13 at its tip for injecting the melt into the cylinder 8.
A gas blowing pipe 14 is horizontally connected to the lower end of the blowing pipe 7. By the way, the reason why the blowing pipe 14 is purposely branched off next to the blowing pipe 7 is to prevent lumps of powder and granules that have grown more than necessary inside the cylinder 8 and cannot be discharged from the overflow row 2 to the outside. This is to allow the gas to be discharged directly below through the jet pipe 7. The ejection pipe 7, the cylindrical body 8, the injection nozzle 13, etc. constitute a granulator A. In the figure, the cross-sectional shapes of the container 1, the cylinder 8, and the partition tube 11 are all square, but they are not limited to this, and may be round or other shapes.

また図のものは1個の容器1内に3個の造粒器Aが横に
並べて設備されているが、造粒器Aの設備個数は2個以
上ならば何個でもよく、またその配置も任意である。更
にまた、造粒器Aも図のものに限らず、例えば、噴出管
7から気体と一緒に核となる小粉粒体を筒体8内に噴出
させる構造の、本発明者らの開発による新規な造粒器等
を用いることもできる(この構造の造粒器においては図
の吹込管14から核となる小粉粒体が投入され、また気
体は噴出管7の下端から送り込まれる)。また図の溢流
口12は筒体8の全周にわたって連続して設けられてい
るが、仕切筒11を筒体8に接合させてそれらに孔を間
欠的に穿設し、この孔を溢流口として用いることもでき
る。次に本発明に係る造粒装置の作用を第4図のフロー
シートと第2図及び第3図により説明する。まず所望の
粒径の核となる小粉粒体を造粒器Aの供給管9にそれぞ
れ供給して送風機16とブロヮー17を駆動し、下部の
空気の噴出管7より適当な量の空気を導入して造粒器A
内の核となる小粉粒体が上下に流動循環するごとくする
。一方送液管1川こ尿素等の溶融液を圧送してこれを噴
射ノズル13から流動循環中の小粉粒体に噴射する。そ
して筒体8内で流動循環する粉粒体の量をほぼ一定に保
ちつつ溢流口12から粉粒体を溢流させ、排出口6から
これを取り出してクーラー18で冷却し、三段の振動節
19にかける。振動節19は所望の粒蚤範囲のものと、
これより大きいもの、及びこれより小さいもの(2種類
)に粉粒体を分け、所望の粒怪範囲の粉粒体は製品クッ
ションタンク201こ入れて所定量を電磁フイーダ21
からハンマークラッシャー22に送って核となる小粉粒
体に破砕し、また一部を電磁フィーダ23からベルトコ
ンベヤ24、バケットコンベヤ25、循環用クッション
タンク26、電磁フィーダ27、ベルトコンベヤ28及
び供給管9を通して造粒器Aに返送し、製品クッション
タンク20をオーバーフローした粉粒体(これは徴量し
か出ない)を混ぜて製品Pとする。ハンマークラツシヤ
−22で破砕された粉粒体は振動節29にかけられてベ
ルトコンベア24に送られ、この振動筋29で分けられ
た微小な粉粒体と振動節19で分けられた微小な粉粒体
はメルター(図示せず)に送られて再溶解され送液管1
0に圧送される。振動筋19で分けられた2番目の微小
な粉粒体は紐粒用クッションタンク30に入れられた後
、電磁フイーダ31を介してベルトコンベア24に送り
込まれ、前記説明の他の徴粉体一緒に造粒器Aに戻され
る。容器1とクーラー18にはそれぞれサイクロン32
,33が連絡され、空気を浄化して大気に放出するとと
もに機捉した微4・な粉粒体をメルタ−に送る。
In addition, in the diagram, three granulators A are installed side by side in one container 1, but the number of granulators A may be any number as long as it is two or more, and their arrangement. is also optional. Furthermore, the granulator A is not limited to the one shown in the figure, but may also be a granulator developed by the present inventors, for example, which has a structure in which small powder particles serving as a core are ejected from the ejection pipe 7 together with gas into the cylinder 8. It is also possible to use a new granulator or the like (in a granulator with this structure, the core small particles are fed from the blowing pipe 14 in the figure, and the gas is fed from the lower end of the blowing pipe 7). Furthermore, although the overflow port 12 shown in the figure is provided continuously over the entire circumference of the cylinder 8, the partition cylinder 11 is joined to the cylinder 8 and holes are intermittently bored therein, so that the overflow port 12 is provided continuously over the entire circumference of the cylinder 8. It can also be used as a flow outlet. Next, the operation of the granulation apparatus according to the present invention will be explained with reference to the flow sheet of FIG. 4 and FIGS. 2 and 3. First, small powder particles with a desired particle size are supplied to the supply pipes 9 of the granulator A, the blower 16 and the blower 17 are driven, and an appropriate amount of air is pumped out from the lower air jet pipe 7. Introduce granulator A
The small particles that form the core inside are made to flow and circulate up and down. On the other hand, the liquid sending pipe 1 pumps a molten liquid such as urea and injects it from the injection nozzle 13 onto the small powder particles that are being circulated. Then, while keeping the amount of powder and granular material flowing and circulating within the cylinder 8 almost constant, the powder and granular material overflows from the overflow port 12, is taken out from the discharge port 6, and is cooled by the cooler 18, and then Apply to vibration node 19. The vibration node 19 is in the desired grain flea range,
The powder and granules are divided into those larger than this and those smaller than this (two types), and the powder and granules in the desired particle size range are put into the product cushion tank 201 and a predetermined amount is transferred to the electromagnetic feeder 21.
From there, it is sent to a hammer crusher 22 to be crushed into small powder particles that become cores, and a part is sent to an electromagnetic feeder 23 to a belt conveyor 24, a bucket conveyor 25, a circulation cushion tank 26, an electromagnetic feeder 27, a belt conveyor 28, and a supply pipe. 9 and returned to the granulator A, and the powder and granules that overflowed the product cushion tank 20 (only the collected amount comes out) are mixed to form the product P. The powder crushed by the hammer crusher 22 is passed through the vibration node 29 and sent to the belt conveyor 24, and the fine powder separated by the vibration line 29 and the fine powder separated by the vibration node 19 are separated. The powder and granules are sent to a melter (not shown) and remelted, and then passed through the liquid feed pipe 1.
Forced to 0. The second fine powder separated by the vibrating line 19 is placed in a string cushion tank 30, and then sent to the belt conveyor 24 via the electromagnetic feeder 31, together with the other fine powder described above. is returned to granulator A. A cyclone 32 is installed in the container 1 and the cooler 18, respectively.
, 33 are connected to purify the air and release it into the atmosphere, and send the captured fine powder to the melter.

筒体8内で生じた粉粒体の大きな塊は噴出管7を落下し
てベルトコンベア34で外部に取り出される。しかして
図中35は吹込管14から吹込まれる空気の温度を加熱
(あるいは冷却)するエアーヒータ(エアークーラー)
、36,37は送風機、38はバケットコンベヤである
A large lump of powder or granular material generated within the cylinder 8 falls down the ejection pipe 7 and is taken out by a belt conveyor 34. 35 in the figure is an air heater (air cooler) that heats (or cools) the temperature of the air blown from the blowing pipe 14.
, 36 and 37 are blowers, and 38 is a bucket conveyor.

以上説明したように本発明の造粒装置は、1個の容器1
内に複数の造粒器Aを設備する構成であるので、造粒器
そのものをスケ−ルアップする場合と違って、最良の造
粒効率を維持したまま大型化をはたし、造粒能力をどの
ようにも増大させることができる。
As explained above, the granulation device of the present invention has one container 1.
Since the configuration has multiple granulators A installed within the same unit, unlike the case of scaling up the granulator itself, it is possible to increase the size while maintaining the best granulation efficiency and increase the granulation capacity. It can be increased in any way.

その上、各造粒器の溢流口と適宜に変えて設備したり、
或いは、各造粒器の仕切筒に備えられた気体排出口の開
閉度合を変えたりすることができるので、単独造粒器に
おいてはできなかった多様な造粒操作を簡単になおすこ
とが可能である。そしてさらに造粒器の圧力損失による
運転コストの低減をはかることができる。また複数の造
粒器はいずれも単独運転が可能であるため、一部の造粒
器が故障したような場合であっても、他の造粒器をその
まま運転して造粒作業を継続することができる。その上
各造粒器からの粉粒体を1個所にまとめて排出するので
、造粒器を除く循環ライン機器が一つで良く、建設費の
低減がはかられ、また運転がしやすいとともに、装置の
小型化と製作が容易で製作費が安価である。
In addition, the overflow port of each granulator can be changed as appropriate,
Alternatively, it is possible to change the degree of opening and closing of the gas outlet provided in the partition tube of each granulator, making it possible to easily modify various granulation operations that could not be performed with a single granulator. be. Furthermore, it is possible to reduce operating costs due to pressure loss in the granulator. In addition, multiple granulators can all be operated independently, so even if some granulators break down, the other granulators can continue operating as is. be able to. Furthermore, since the powder and granules from each granulator are discharged in one place, only one circulation line equipment is required except for the granulator, which reduces construction costs and makes operation easier. , the device is easy to miniaturize and manufacture, and the manufacturing cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の造粒器の要部を示す概略断面図、第2図
は本発明に係る造粒装置の概略断面図、第3図は第2図
の(m−脚)線に沿う断面図、第4図は本造粒装置の使
用例を示すフローシートである。 1・・・・・・容器、5・・・・・・排出口、6・・・
・・・排出口、7・・・・・・噴出管、8・・・・・・
筒体、9・・・・・・供給管、13・・・・・・噴射ノ
ズル、A・・・・・・造粒器。 第1図第2図 第3図 第4図
Fig. 1 is a schematic cross-sectional view showing the main parts of a conventional granulator, Fig. 2 is a schematic cross-sectional view of a granulator according to the present invention, and Fig. 3 is taken along the (m-leg) line in Fig. 2. The cross-sectional view and FIG. 4 are flow sheets showing an example of use of the present granulation apparatus. 1... Container, 5... Outlet, 6...
...Exhaust port, 7...Ejection pipe, 8...
Cylindrical body, 9... Supply pipe, 13... Injection nozzle, A... Granulator. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 頂板4を有する垂直な周壁2に傾斜した底板3を取
り付けて容器1を構成し、上記容器1の底板3には、核
となる小粉粒体を気体とともに上方に噴出する複数の噴
出管7を底板3を貫通してほぼ垂直に固着し、上記各噴
出管7の上端には、錐台状の筒体8を上開きの状態で噴
出管7に連通させてそれぞれ設けるとともに、上記各噴
出管7の上端中心には、噴出管7から上方に噴出されて
上下に流動循環する小粉粒体に送液管10より送られて
きた溶融液を噴射する噴射ノズル13をそれぞれ配設し
、上記各筒体8の上方には、下部を開口させた仕切筒1
1を筒体8との間に溢流口12を形成してそれぞれ垂設
する一方、上記各仕切筒11の上部には気体の排出口5
を設け、上記各筒体8には筒体8内に核となる小粉粒体
を供給する供給管9をそれぞれ付設し、また上記底板3
の下端部には粉粒体の排出口6を設けたことを特徴とす
る造粒装置。
1 A container 1 is constructed by attaching an inclined bottom plate 3 to a vertical peripheral wall 2 having a top plate 4, and the bottom plate 3 of the container 1 is provided with a plurality of ejection pipes that eject a small powder substance serving as a core upward together with gas. 7 is fixed almost vertically through the bottom plate 3, and a frustum-shaped cylinder 8 is provided at the upper end of each of the above-mentioned ejection pipes 7 so as to communicate with the ejection pipe 7 in an upwardly open state. At the center of the upper end of the jet pipe 7, jet nozzles 13 are arranged, respectively, for jetting the molten liquid sent from the liquid sending pipe 10 onto the small powder particles that are jetted upward from the jet pipe 7 and are fluidized and circulated up and down. , above each cylinder 8 is a partition cylinder 1 whose lower part is open.
1 and the cylinder 8 with an overflow port 12 formed therebetween, while a gas discharge port 5 is provided at the top of each partition cylinder 11.
Each of the cylindrical bodies 8 is provided with a supply pipe 9 for supplying small powder particles serving as a nucleus into the cylindrical body 8, and the bottom plate 3 is
A granulation device characterized in that a powder discharge port 6 is provided at the lower end of the granulation device.
JP633978A 1978-01-24 1978-01-24 Granulation equipment Expired JPS6035166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP633978A JPS6035166B2 (en) 1978-01-24 1978-01-24 Granulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP633978A JPS6035166B2 (en) 1978-01-24 1978-01-24 Granulation equipment

Publications (2)

Publication Number Publication Date
JPS5499780A JPS5499780A (en) 1979-08-06
JPS6035166B2 true JPS6035166B2 (en) 1985-08-13

Family

ID=11635599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP633978A Expired JPS6035166B2 (en) 1978-01-24 1978-01-24 Granulation equipment

Country Status (1)

Country Link
JP (1) JPS6035166B2 (en)

Also Published As

Publication number Publication date
JPS5499780A (en) 1979-08-06

Similar Documents

Publication Publication Date Title
US4591324A (en) Granulating apparatus
AU668028B2 (en) Apparatus and method for wetting powder
US4071304A (en) Separation of products in granular form
US5213820A (en) Process and device for fluidized bed spray granulation
US8834142B2 (en) Fluidized bed granulator
KR850007367A (en) Method for producing granules and apparatus thereof
FI72056C (en) Process for preparing granules made of a core and a casing.
JPH0124532B2 (en)
JPH0463729B2 (en)
JPS6012895B2 (en) Granulation equipment
CN201120271Y (en) Continuous gunite granulation clothing sheet apparatus of multi-unit fluidized bed
JP2001133150A (en) Drier with spiraled air flow
CN109140905B (en) Drying device and drying method for vibrating fluidized bed
JPS6035166B2 (en) Granulation equipment
CN111174533A (en) Stepped vibration fluidized bed dryer
JP3565668B2 (en) Apparatus and method for continuous granulation of granules
JPH0829057A (en) Tank moving fluidized drying device
JP4418980B2 (en) Powder and particle generator
CN103673515A (en) Three-section vibrated fluidized bed
CN203072814U (en) Rapid product cooling device for tea processing
JP2001046853A (en) Granulation apparatus
CN210139525U (en) Production line for wet-method refining of powdered rubber
CN201161183Y (en) Granulator
JPH01284329A (en) Method and device for granulating, coating, and drying fine grain
JPS5933414B2 (en) Granulator