JPS6035113A - Engine cooling apparatus - Google Patents

Engine cooling apparatus

Info

Publication number
JPS6035113A
JPS6035113A JP14407783A JP14407783A JPS6035113A JP S6035113 A JPS6035113 A JP S6035113A JP 14407783 A JP14407783 A JP 14407783A JP 14407783 A JP14407783 A JP 14407783A JP S6035113 A JPS6035113 A JP S6035113A
Authority
JP
Japan
Prior art keywords
cylinder
coolant
refrigerant
engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14407783A
Other languages
Japanese (ja)
Inventor
Kazuo Tatani
多谷 和男
Satoshi Yatomi
矢冨 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP14407783A priority Critical patent/JPS6035113A/en
Publication of JPS6035113A publication Critical patent/JPS6035113A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To cool each cylinder to an optimum temp. by installing a coolant injection means for each cylinder and controlling each injection means according to the operation state, in the apparatus for cooling an engine by utilizing the evaporation heat due to the vaporization of the coolant. CONSTITUTION:In a cylinder-quantity control engine in which supply of mixed gas into the 4th-6th cylinders 54-56 is suspended in a low-load low-speed operation range, one edge of a coolant injection pipe 15 installed into a cylinder head 4 is connected to a coolant supply passage 12 connected to the discharge side of a pump 11 for feeding the pressurized coolant. The injection pipe 15 is equipped with injecton ports 16... opposed to the upper position of the peripheral wall 5a of the combustion chamber of each cylinder 51-56, and a cut-off valve 17 for the supplied coolant is installed at the center part. Therefore, the supply of coolant into the cylinders 54-56 can be cut-off by closing the cut-off valve 17 during partial cylinder operation. The coolant after injection is introduced into a steam turbine 20 and a radiator 21 through a recovery passage 19 and then recovered into a tank 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒の蒸発による気化熱を利用してエンジン
を冷却するエンジンの冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine cooling device that cools an engine using the heat of vaporization caused by evaporation of a refrigerant.

(従 来 技 術) 一般にエンジンの冷却は、シリンダブロック及びシリン
ダヘッドにおける燃焼室の周囲にウォータジャケットを
設け、該ジャケットに冷却水を循−1− 環供給することにより燃焼室で発生した熱を吸収すると
共に、この熱をラジェータを介して大気中に放散するこ
とにより行われる。然るにこのような冷却方式は、多聞
の水を必要とするためエンジンのIN帛化を明害する。
(Prior art) Engine cooling is generally done by providing a water jacket around the combustion chamber in the cylinder block and cylinder head, and circulating cooling water through the jacket to remove the heat generated in the combustion chamber. This is done by absorbing heat and dissipating this heat into the atmosphere through a radiator. However, such a cooling method requires a large amount of water, which makes it difficult to use an internal engine.

また、低温状態にあるエンジンを始動する場合に、燃焼
室周囲が冷却水で包囲された状態にあるため、エンジン
を最適温度に暖機するまでに時間がかかることになる。
Further, when starting an engine in a cold state, the combustion chamber is surrounded by cooling water, so it takes time to warm up the engine to the optimum temperature.

これに対して、例えば特開昭56−1−13312@公
報や特開昭56−115812号公報に開示されている
ように、水の気化熱を利用してエンジンを冷却するよう
にした冷却方式がある。これらは、シリンダ周壁に細溝
等を設け、毛管現象を利用して水を気化させることによ
り少量の冷却水で効果的に冷却し、或いはエンジンにお
番プる各気筒の上部に冷却水噴射弁を設け、燃焼室周壁
に冷却水を噴射して、同様の水の気化熱にJ:り効率よ
く冷却しようとするものである。
On the other hand, as disclosed in, for example, JP-A-56-1-13312@ and JP-A-56-115812, there are cooling systems that use the heat of vaporization of water to cool the engine. There is. These can be effectively cooled with a small amount of cooling water by providing thin grooves on the cylinder peripheral wall and vaporizing water using capillary action, or by injecting cooling water into the upper part of each cylinder that serves the engine. A valve is provided to inject cooling water onto the peripheral wall of the combustion chamber in order to efficiently cool the combustion chamber by absorbing the heat of vaporization of the same water.

しかし、上記各公報に示された方法は、例えば中央に位
置する気筒と両端に位置する気筒とでは= 2 − 放熱条件が相違する等、各気筒の熱負荷が異なるにも拘
らず一律に冷却するため、全ての気筒について燃焼室周
壁調度を最適に制御することができないという動点があ
る。
However, the methods shown in the above publications do not allow uniform cooling even though the heat load of each cylinder is different, for example, the heat dissipation conditions are different between the cylinder located in the center and the cylinders located at both ends. Therefore, there is a dynamic point in which it is not possible to optimally control the combustion chamber circumferential wall adjustment for all cylinders.

このことは、多気筒エンジンにおいて低負荷時等に特定
気筒の稼働を休止して減筒運転するにうにした所謂気筒
数制御エンジンの場合に特に問題となる。つまり、この
J:うなエンジンにおいて減筒運転時に休止気筒が稼働
気筒と同様に冷却されると過冷却となり、再び稼働する
場合に燃焼が良好に再開されず、燃料の不完全燃焼等の
問題が生じる。
This is particularly a problem in the case of a so-called number-of-cylinders control engine, in which the operation of a specific cylinder is stopped and the number of cylinders is reduced when the load is low in a multi-cylinder engine. In other words, in this J: Una engine, if the dormant cylinders are cooled in the same way as the operating cylinders during cylinder reduction operation, it will become supercooled, and when the engine is operated again, combustion will not resume properly, resulting in problems such as incomplete fuel combustion. arise.

(発 明 の 目 的) 本発明はエンジンの冷却に関する上記のような問題に対
処するもので、冷媒の気化熱を利用する冷却方式におい
て、運転状態に応じて各気筒を夫々最適温度に冷却する
。これにより効率よく、しから一部気筒の過冷却や冷却
不足等を生じることなく、エンジンを良好に冷却するこ
とを目的とする。
(Object of the Invention) The present invention deals with the above-mentioned problems regarding engine cooling.In a cooling method that utilizes the heat of vaporization of a refrigerant, each cylinder is cooled to an optimum temperature depending on the operating condition. . The purpose of this is to efficiently cool the engine without causing overcooling or insufficient cooling of some cylinders.

−3− (発 明 の 構 成) 本発明は、上記目的達成のため次のように構成される。-3- (Structure of invention) The present invention is configured as follows to achieve the above object.

即ち、第1図に示すように、冷媒供給制御手段Aは各気
筒の運転状態を検出する運転状態検出手段Bから信弓を
受け、各気筒に夫々設けられた冷媒噴射手段G・・・C
による冷媒の噴射供給を各気筒毎に制御する。
That is, as shown in FIG. 1, the refrigerant supply control means A receives a signal from the operating state detection means B that detects the operating state of each cylinder, and injects the refrigerant injection means G...C provided in each cylinder, respectively.
The refrigerant injection supply is controlled for each cylinder.

上記運転状態検出手段Bは、例えば各気筒の配置や燃焼
状態の相違等によって異なる燃焼室周壁温度を夫々検出
し、或いは気筒数制御1.エンジンの場合には特定気筒
が稼働中か休止中か等を検出する。そして、上記冷媒供
給手段Aは、検出した各気筒の状態に応じて夫々の冷媒
噴射手段C・・・Cの噴@舟又は噴射、停止にの制御を
行う。尚、気筒毎の冷媒噴射制御は1気筒毎に行う場合
と、気筒数制御エンジンの場合にお【ノる減筒運転時に
稼働される気筒と休止される気筒のように、複数気筒づ
つを相分【すしてそのlI用に制御する場合とがある。
The operating state detection means B detects the peripheral wall temperature of the combustion chamber, which differs depending on the arrangement of each cylinder or the difference in combustion state, or controls the number of cylinders 1. In the case of an engine, it is detected whether a specific cylinder is in operation or at rest. The refrigerant supply means A controls the refrigerant injection means C to inject, inject, or stop the respective refrigerant injection means C, depending on the detected state of each cylinder. Note that refrigerant injection control for each cylinder can be performed for each cylinder individually, or in the case of an engine with cylinder number control. There are cases where control is performed for the II.

(実 施 例) −4− 以下、本発明を気筒数制御エンジンに用いた場合の実施
例について説明する。
(Embodiment) -4- Hereinafter, an embodiment in which the present invention is applied to a cylinder number controlled engine will be described.

第2図は本発明の実施例を示すシステム図である。ここ
で、同図右側の図面は同図左側の図面の一部平面図で鎖
線で示すエンジン1は同図左側のエンジン1と同じもの
である。図に示すようにエンジン1はピストン2・・・
2、シリンダブロック3及びシリンダヘッド4ににって
形成される6つの気筒51〜56を有すると共に、該エ
ンジン1を冷却づ−るための冷却装置6ど、該エンジン
1の稼働気筒数を運転状態に応じて増減制御する気筒数
制御iII装買7と、」−記冷却装置6及び気筒数制御
装置7の制御回路8とを有する。
FIG. 2 is a system diagram showing an embodiment of the present invention. Here, the drawing on the right side of the figure is a partial plan view of the drawing on the left side of the figure, and the engine 1 indicated by the chain line is the same as the engine 1 on the left side of the figure. As shown in the figure, an engine 1 has pistons 2...
2. It has six cylinders 51 to 56 formed by the cylinder block 3 and the cylinder head 4, and has a cooling device 6 for cooling the engine 1, etc., and operates the number of operating cylinders of the engine 1. It has a cylinder number control III equipment 7 that performs increase/decrease control according to the state, and a control circuit 8 for the cooling device 6 and the cylinder number control device 7.

上記冷却装置6は、冷媒供給系統としてタンク9の送出
口10に備えられた冷媒圧送用のポンプ11と、該ポン
プ11の吐出側に接続された冷媒供給通路12と、該通
路12の途中に設けられたバイパス通路13を開閉制御
するバイパス弁14とを有し、且つ上記冷媒供給通路1
2にはエンジン1のシリンダヘッド4内に設けられた冷
媒噴射−5− パイプ15の一端部が接続されている。この噴射パイプ
15には、各気筒51〜56における燃焼室周壁5a・
・・5aの子方位置に夫々噴口16・・・16が設けら
れていると共に、該パイプ15の中央部分には冷媒供給
遮断弁17が設けられ、図に示す右側に位置する3つの
気筒54〜56への冷媒供給を遮断できるようになって
いる。また、冷媒の回収系統として、シリンダブロック
3の側壁から該シリンダブロック3及びシリンダヘッド
4内における上記各気筒51〜56の周囲の空間18に
通じる冷媒回収通路19が導き出され、蒸気タービン2
0及びラジェータ21を介して上記タンク9に至ってい
る。尚、蒸気タービン20はラジェータ21に冷fIJ
!Iを送るファン22を駆動するようになっている。
The cooling device 6 includes a pump 11 for pumping refrigerant provided at the outlet 10 of the tank 9 as a refrigerant supply system, a refrigerant supply passage 12 connected to the discharge side of the pump 11, and a refrigerant supply passage 12 connected to the discharge side of the pump 11. The refrigerant supply passage 1 has a bypass valve 14 that controls opening and closing of the bypass passage 13 provided therein.
2 is connected to one end of a refrigerant injection pipe 15 provided in the cylinder head 4 of the engine 1. This injection pipe 15 includes combustion chamber peripheral walls 5a and 5a in each cylinder 51 to 56.
... 16 are provided at the lower positions of the pipes 5a, and a refrigerant supply cutoff valve 17 is provided in the center of the pipe 15, and the three cylinders 54 located on the right side of the figure It is possible to cut off the refrigerant supply to ~56. Further, as a refrigerant recovery system, a refrigerant recovery passage 19 is led out from the side wall of the cylinder block 3 to the space 18 around each of the cylinders 51 to 56 in the cylinder block 3 and the cylinder head 4, and is connected to the steam turbine 2.
0 and the radiator 21 to the tank 9. Note that the steam turbine 20 has a radiator 21 with a cold fIJ.
! A fan 22 that sends I is driven.

一方、上記気筒数制御装置7は、エンジン1の一側部に
設けられて、上流側から燃r1噴射弁23及びスロット
ル弁24が備えられた吸気管25のスロットル弁下流側
を仕切壁26によって2つの通路271,272に分岐
し、且つ一方の分岐通−6− 路272にシャッタバルブ28を備えた構成とされてい
る。イして、該シャッタバルブ28をI′ltl閉駆v
1するアクチュエータ29と、吸気管25内にお(プる
スロットル弁下流側の吸気負圧を検出する吸気負圧セン
サ30ど、エンジン1の回転数を検出する回転数センサ
31とが備えられている。ここで、上記シャッタバルブ
28が備えられた分岐通路272は史に3つの通路に分
岐され、上記冷却装置6における冷媒噴射パイプ15の
遮断弁17より下流側に位置する3つの気筒54〜56
の燃焼室に夫々通じている。また、他方の分岐通路27
1も更に3つの通路に分岐されて夫々気筒51〜53の
燃焼室に通じている。そして、上記制御回路8は、上記
吸気負圧センサ30からの信号S1と、回転数センサ3
1からの信号S2ど、吸気通路にシャッタバルブ28が
備えられた気筒54〜56のうちの1つの燃焼室周壁5
aに取付【プられて該周壁5aの温度を検出する温度セ
ンサ32からの信A S 3とを受け、これらの信号8
1〜S3に基づいて上記気筒数制御装置7におけるアー
 7 − クチコ]−−タ29と、冷却装H6における冷媒供給遮
断弁17に制御信号S 4 、 S 5を夫々送出する
On the other hand, the cylinder number control device 7 is provided on one side of the engine 1, and connects the downstream side of the throttle valve of the intake pipe 25, which is provided with the fuel r1 injection valve 23 and the throttle valve 24 from the upstream side, by a partition wall 26. The passage is branched into two passages 271 and 272, and one branch passage 272 is provided with a shutter valve 28. and close the shutter valve 28.
An actuator 29 for detecting the rotation speed of the engine 1, an intake negative pressure sensor 30 for detecting the intake negative pressure on the downstream side of the throttle valve, and a rotation speed sensor 31 for detecting the rotation speed of the engine 1 are provided in the intake pipe 25. Here, the branch passage 272 provided with the shutter valve 28 is historically branched into three passages, and the branch passage 272 is divided into three passages, which are connected to three cylinders 54 to 54 located downstream of the cutoff valve 17 of the refrigerant injection pipe 15 in the cooling device 6. 56
The combustion chambers are connected to each other. In addition, the other branch passage 27
1 is further branched into three passages, each communicating with the combustion chambers of cylinders 51-53. The control circuit 8 receives the signal S1 from the intake negative pressure sensor 30 and the rotation speed sensor 3.
1, the peripheral wall 5 of the combustion chamber of one of the cylinders 54 to 56 whose intake passage is equipped with a shutter valve 28.
A receives the signals from the temperature sensor 32 which is attached to the peripheral wall 5a and detects the temperature of the peripheral wall 5a, and receives these signals 8.
Based on signals S1 to S3, control signals S4 and S5 are sent to the air conditioner 29 in the cylinder number control device 7 and the refrigerant supply cutoff valve 17 in the cooling system H6, respectively.

次に上記制御回路8の構成を説明する。第3図に示すよ
うに該制御回路8は、−上記吸気負圧センサ30からの
信号81が入力される第1比較器33と、回転数センサ
31からの信号S2が入力される第2比較器34と、両
比較器33.371の出力信号86.Syが入力される
AND回路35と、該AND回路35の出力信号S8が
入力される第1ドライバー36と、更に温度センサ32
からの信号S3が入力される第3比較器37と、該比較
器37の出力信号S9と上記AND回路35の出力信号
S8とが入力されるOR回路38と、該OR回路38の
出力信号S10が入力される第2ドライバー39とから
構成され、」:記第1.第2ドライバー36.39から
上記アクチュエータ29及び冷媒供給遮断弁17に夫々
制御信QSn、S5が出力される。
Next, the configuration of the control circuit 8 will be explained. As shown in FIG. 3, the control circuit 8 includes: - a first comparator 33 into which a signal 81 from the intake negative pressure sensor 30 is input; and a second comparator 33 into which a signal S2 from the rotation speed sensor 31 is input. 34 and the output signal 86. of both comparators 33.371. An AND circuit 35 to which Sy is input, a first driver 36 to which output signal S8 of the AND circuit 35 is input, and a temperature sensor 32.
a third comparator 37 to which the signal S3 from the comparator 37 is input; an OR circuit 38 to which the output signal S9 of the comparator 37 and the output signal S8 of the AND circuit 35 are input; and an output signal S10 of the OR circuit 38. and a second driver 39 into which is input the first driver. Control signals QSn and S5 are output from the second drivers 36 and 39 to the actuator 29 and the refrigerant supply cutoff valve 17, respectively.

ここで、上記各比較器33.’34.37に入力−8− される各レンサ30.31.32からの信号St。Here, each of the comparators 33. Input on '34.37 -8- The signal St from each sensor 30.31.32.

82.33は夫々電圧レベルに変換されており、図に示
す予め設定された所定の吸気負圧、回転数及び温度に相
当する基準電圧値ej、e2.e3と比較されて、各入
力信号レベルが各設定基準値にり小さい時に各比較器3
3.34.37の出力信号86.Sy、Sqが゛トドル
ベルになる。また第1.第2ドライバー36.39は夫
々の入力信号S8.S1oが’ l−1”レベルの時に
信号S4゜S5を出力1ノ、アクチュエータ29をシャ
ッタバルブ28が閉じるように動作さ「、また冷媒供給
″a断弁17を閉止させる。
82.33 have been converted into voltage levels, respectively, and are reference voltage values ej, e2 . e3, and when each input signal level is smaller than each set reference value, each comparator 3
3.34.37 output signal 86. Sy and Sq become Todorbel. Also number 1. The second drivers 36, 39 receive respective input signals S8. When S1o is at the '1-1' level, the signals S4 and S5 are output to 1, the actuator 29 is operated so that the shutter valve 28 is closed, and the refrigerant supply valve 17 is also closed.

次に上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

先ず、エンジン1の運転領域が高負荷又は高速領域にあ
る場合は、吸気通路におけるスロットル弁24の下流の
吸気負圧値を示す吸気負圧センサ30からの信号S1が
基準値e1に相当する吸気負圧値より大きく(大気圧側
)、或いはエンジンの回転数を示す回転数センサ31か
らの信号S2が基準値e2に相当する回転数より高い。
First, when the operating range of the engine 1 is in a high load or high speed range, the signal S1 from the intake negative pressure sensor 30 indicating the intake negative pressure value downstream of the throttle valve 24 in the intake passage indicates the intake air corresponding to the reference value e1. It is larger than the negative pressure value (atmospheric pressure side), or the signal S2 from the rotation speed sensor 31 indicating the engine rotation speed is higher than the rotation speed corresponding to the reference value e2.

従って、−〇 − これらの信号81.82が入力される制御回路8におけ
る第1.第2比較器33.3/Iの出力信号86、Sy
は少なくとも一方が゛L″レベルになる。そのため、両
信@ S 6 、 S yが入力されるAND回路35
の出力信号S8も゛L゛ルベルになる。つまり、第4図
に領域×で示すような高速時または高負荷時には該AN
I’)回路35の出力信号S8はl L 97レベルに
なる。従って、この場合は第1ドライバー36からは制
御信号84が出力されないから、該信号S4を受けた時
にシャッタバルブ28を閉方向に駆動するアクチュエー
タ29が作動けず、該シャッタバルブ28が開放状態と
される。これにより、空気及び燃料が全気筒51〜56
に供給され、エンジン1が全筒運転状態となる。このと
き、温度センサ32が備えられた気筒56も稼働するの
で、該センサ32からの信号S3が示す該気筒56の燃
焼室周壁温度が第3比較器37の基準値03に相当する
温度より高くなり、該比較器37の出力信号89は゛L
″レベルとなる。そのため、この第3比較器37の出力
信−10− 号S9と上記AND回路35の出力信号S8とが入力さ
れるO R回路38の出力信号S10も゛[″レベルと
なり、第2ドライバー39から制御信号S5が出力され
ない。従って冷却装置6における冷媒噴射パイプ15に
設けられた冷媒供給遮断弁17が開放状態となる。
Therefore, −〇 − the first . Output signal 86 of the second comparator 33.3/I, Sy
At least one of them is at the "L" level. Therefore, the AND circuit 35 to which both signals @ S 6 and S y are input
The output signal S8 also becomes the "L" level. In other words, at high speeds or high loads as shown by area x in Figure 4, the AN
I') The output signal S8 of the circuit 35 becomes l L 97 level. Therefore, in this case, since the control signal 84 is not output from the first driver 36, the actuator 29 that drives the shutter valve 28 in the closing direction cannot operate when the signal S4 is received, and the shutter valve 28 is kept in the open state. Ru. This allows air and fuel to flow through all cylinders 51 to 56.
is supplied to the engine 1, and the engine 1 enters an all-cylinder operation state. At this time, since the cylinder 56 equipped with the temperature sensor 32 also operates, the temperature of the peripheral wall of the combustion chamber of the cylinder 56 indicated by the signal S3 from the sensor 32 is higher than the temperature corresponding to the reference value 03 of the third comparator 37. Therefore, the output signal 89 of the comparator 37 is
Therefore, the output signal S10 of the OR circuit 38 to which the output signal S9 of the third comparator 37 and the output signal S8 of the AND circuit 35 are input also becomes the level "[". The second driver 39 does not output the control signal S5. Therefore, the refrigerant supply cutoff valve 17 provided in the refrigerant injection pipe 15 in the cooling device 6 is in an open state.

ところで、冷1816のタンク9に蓄えられた液体状の
冷媒はポンプ11により冷媒供給通路12を径で、エン
ジン1内の冷媒噴射パイプ15に送られる。このとぎ、
別途制御されるバイパス弁14により供給量が冷却に必
要な適量に調呈される。このようにして噴射パイプ15
に送られた冷媒は上記のように冷媒供給遮断弁17が開
放状態にあるので各気筒51〜56の上部に夫々設けら
れた全ての噴口16・・・16から各燃焼室周壁5a・
・・5aに向けて噴射される。そして、噴射された冷媒
は高温に熱せられている燃焼室周壁5a・・・5aの熱
を奪うことにより全気筒51〜56を冷Wすると共に、
自らは高温高圧の蒸気に気化される。
By the way, the liquid refrigerant stored in the tank 9 of the cold 1816 is sent to the refrigerant injection pipe 15 in the engine 1 through the refrigerant supply passage 12 by the pump 11. This moment,
A separately controlled bypass valve 14 adjusts the supply amount to the appropriate amount required for cooling. In this way, the injection pipe 15
Since the refrigerant supply cutoff valve 17 is in the open state as described above, the refrigerant sent to the cylinders 51 to 56 flows through all the nozzles 16...16 provided at the upper part of each cylinder 51 to 56, respectively, to the surrounding walls 5a and 56 of the combustion chambers.
...It is injected towards 5a. Then, the injected refrigerant cools all the cylinders 51 to 56 by removing heat from the combustion chamber surrounding walls 5a...5a which are heated to high temperatures, and
It vaporizes itself into high-temperature, high-pressure steam.

然る後、この蒸気はシリンダブロック3及びシリ−11
− シダヘッド1内における各気筒51〜56の周囲の空間
1Bから冷媒回収通路19を通って、ラジェータ21に
至り、該ラジェータ21で冷却、凝縮されたトで上記タ
ンク9に戻される。ここで、上記冷媒回収通路19には
蒸気タービン20が設置されて、高温高圧の蒸気となっ
た冷媒がこれを駆動することにより、該冷媒はエネルギ
ーを消費して上記ラジェータ21での凝縮性がにりなり
、また該タービン20ににってラジェータ21に冷却風
を送るファン22が駆動されるので、冷媒は一層確実に
凝縮されることになる。
After that, this steam flows into the cylinder block 3 and the cylinder 11.
- From the space 1B around each cylinder 51 to 56 in the fern head 1, the refrigerant passes through the refrigerant recovery passage 19 to the radiator 21, where it is cooled and condensed and returned to the tank 9. Here, a steam turbine 20 is installed in the refrigerant recovery passage 19, and the refrigerant that has turned into high-temperature and high-pressure steam drives this, thereby consuming energy and reducing the condensability of the refrigerant in the radiator 21. In addition, since the fan 22 that sends cooling air to the radiator 21 through the turbine 20 is driven, the refrigerant is more reliably condensed.

然して、エンジン1の運転領域が第4図に示す低負荷低
速領域yにある場合は、上記吸気負圧センサ30からの
信号S1及び回転数センサ31からの信Fr 82は、
制御回路8における第1.第2比較器33.34の設定
基準値e1.e2以下となるため、前記の全問運転時と
は逆にAND回路35の出力信号S8が第5図(a )
に示7i J:うにII Huレベルとなる。これに伴
って第5図(b)に示Jように第1ドライバー36から
制御信q S−12− 4が出力され、アクチュエータ29を介してシャッタバ
ルブ28が閉じられる。これにより、第4〜第6気筒5
4〜56への混合気の供給が停止され、エンジン1は減
筒運転状態となる。
However, when the operating range of the engine 1 is in the low load/low speed range y shown in FIG. 4, the signal S1 from the intake negative pressure sensor 30 and the signal Fr 82 from the rotation speed sensor 31 are
1st in the control circuit 8. Setting reference value e1 of the second comparator 33.34. Since it becomes less than e2, the output signal S8 of the AND circuit 35 becomes as shown in FIG.
7i J: Sea urchin II Hu level. Accordingly, the first driver 36 outputs a control signal qS-12-4 as shown in FIG. 5(b), and the shutter valve 28 is closed via the actuator 29. As a result, the 4th to 6th cylinders 5
The supply of the air-fuel mixture to the cylinders 4 to 56 is stopped, and the engine 1 enters a reduced-cylinder operation state.

このとぎ、」1記AND回路35の出力信号S8はOR
回VfI38の一方の入力ゲートに入力されているので
、該OR回路38の出力信J’131oはもう一つの入
力ゲートに入力されている第3比較器37の出力レベル
に関係なり゛1−ド°レベルとなる。
At this point, the output signal S8 of the AND circuit 35 is OR
Since the output signal J'131o of the OR circuit 38 is input to one input gate of the circuit VfI38, the output signal J'131o of the OR circuit 38 is related to the output level of the third comparator 37, which is input to the other input gate. ° level.

そのため、第5図(C)に示すように第2ドライバー3
9から制御信号S5が出力され、上記冷媒噴射パイプ1
5に設けられた冷媒供給遮断弁17が閉じられる。これ
により、ポンプ11により冷媒供給通路12を経て噴射
パイプ15に送られた冷媒は上記遮断弁17が閉じられ
ているため、減筒運転のために稼働を休止した気筒54
〜56には供給されないことになり、体止気筒54〜5
6への不必要な冷媒の供給及びこれに伴う該気筒54〜
56の適冷1Jlが防止される。ここで、この冷媒供給
の遮断動作は、第5図に示すように減筒運−13− 転開始と同時に行われる。ぞして、減筒運転時に体11
二される気筒54〜56の燃焼室周壁温度は第5図(d
 )に示すように次第に低下していく。
Therefore, as shown in FIG. 5(C), the second driver 3
9 outputs a control signal S5, and the refrigerant injection pipe 1
The refrigerant supply cutoff valve 17 provided at 5 is closed. As a result, the refrigerant sent by the pump 11 to the injection pipe 15 via the refrigerant supply passage 12 is transferred to the cylinder 5, which has stopped operating due to cylinder reduction operation, since the cutoff valve 17 is closed.
~56 will not be supplied, and the body stop cylinders 54~5 will not be supplied.
Supply of unnecessary refrigerant to the cylinders 54 to 6 and the associated cylinders 54 to 6.
56 proper cooling of 1 Jl is prevented. Here, this operation of cutting off the refrigerant supply is performed at the same time as the start of cylinder reduction operation-13- as shown in FIG. Therefore, during cylinder reduction operation, body 11
The temperature of the combustion chamber surrounding wall of cylinders 54 to 56 is shown in Figure 5(d).
), it gradually decreases.

更に、減筒運転状態から全筒運転状態に復帰する場合に
ついτ説明する。
Furthermore, the case of returning from the reduced-cylinder operating state to the full-cylinder operating state will be explained.

エンジン1の運転領域が再び第4図の領域×で示す高速
または高負荷運転領域になると、上記制御回路8にお(
ジる△ND回路35の出力信号S8は第5図(a )に
示すように再び゛L°ルベルとなることにより、該信号
88を受ける第1ドライバー36からの制御信号S4の
出力が停止され、シャッタバルブ28が開放される。こ
れにJ:す、エンジン1は全ての気筒51〜56に混合
気が供給され、全筒運転状態に復帰する。
When the operating range of the engine 1 returns to the high-speed or high-load operating range indicated by region x in FIG. 4, the control circuit 8 (
As shown in FIG. 5(a), the output signal S8 of the dielectric ΔND circuit 35 becomes the "L" level again, and the output of the control signal S4 from the first driver 36 receiving the signal 88 is stopped. , the shutter valve 28 is opened. At this time, the engine 1 is supplied with air-fuel mixture to all cylinders 51 to 56, and returns to the all-cylinder operating state.

ところで、前記のように減筒運転時に休止している気筒
54〜56の燃焼室周壁温度は休止と同時に徐々に下が
り、基準値e3に相当する温度よりも下がることになる
。このような温度状態にある気筒に対して稼働再会と同
時に冷媒を供給すると、該気筒にとって最も適した周壁
温度になるま−14− でに長時間を要し、その間燃料の不完全燃焼等の問題を
生じる。しかし、制御回路E3は、この場合に次のJ:
うに動作づ゛る。即ち、第3図に示すJ、うに、第3比
較器37の出力信号S9は、減筒運転時にイホ止された
気筒54〜56の燃焼室周壁温度を示す温度センサ32
からの信号S3が基準値e3に相当する温度を超えるま
で’ l−1”レベルに保たれるので、この信QS9が
入力されるOR回路38の出力信号S10も゛]−ビレ
ベルに保持される。
By the way, as mentioned above, the temperature of the peripheral wall of the combustion chamber of the cylinders 54 to 56 which are inactive during cylinder reduction operation gradually decreases at the same time as the cylinders are inactive, and becomes lower than the temperature corresponding to the reference value e3. If refrigerant is supplied to a cylinder in such a temperature state at the same time as it is restarted, it will take a long time for the peripheral wall temperature to reach the most suitable temperature for the cylinder, and during this time, incomplete combustion of fuel, etc. cause problems. However, the control circuit E3 in this case performs the following J:
It's working fine. That is, the output signal S9 of the third comparator 37 shown in FIG.
Since the signal S3 from QS is kept at the 'l-1' level until it exceeds the temperature corresponding to the reference value e3, the output signal S10 of the OR circuit 38 to which this signal QS9 is input is also held at the ']-bi level. .

故に第2ドライバー39から制御信号S5が引き続き出
力され、冷媒供給遮断弁17が閉じられたままどなる。
Therefore, the control signal S5 continues to be output from the second driver 39, and the refrigerant supply cutoff valve 17 remains closed.

つまり、全問運転状態に復帰してもそれまで休止してい
た気筒54〜56には直ちに冷媒が供給されないので、
該気筒54〜56の燃焼室周壁温度が速かに」−昇され
ると共に、過冷却による不完全燃焼等が防止される。そ
して、第5図(d >に示すように、上記温度センサ3
2からの信号S3が基準値e3に相当する温度を超えた
時点で上記OR回路38の出力信@ S toが゛L″
レベルとなり、第5図(C)に示すように第2ドー 1
5 − ライバー39からの制御信号S5の出力が停止されて冷
媒供給遮断弁17が開かれる。これより、全筒運転に復
帰したことにより稼働を再開した気筒54〜56にも再
び冷媒が供給される。
In other words, even if all the operating conditions are restored, refrigerant is not immediately supplied to the cylinders 54 to 56 that were inactive until then.
The temperature of the peripheral walls of the combustion chambers of the cylinders 54 to 56 is quickly raised, and incomplete combustion due to overcooling is prevented. Then, as shown in FIG. 5(d), the temperature sensor 3
When the signal S3 from 2 exceeds the temperature corresponding to the reference value e3, the output signal @ S to of the OR circuit 38 becomes "L"
level, and as shown in Figure 5 (C), the second do 1
5 - The output of the control signal S5 from the liver 39 is stopped and the refrigerant supply cutoff valve 17 is opened. From this, refrigerant is again supplied to the cylinders 54 to 56, which have resumed operation due to the return to all-cylinder operation.

尚、本実施例は気筒数制御エンジンについての冷却方式
を示しているが、一般のエンジンにおいて、各気筒毎に
温度センサを設けると共に、各気筒毎に冷媒の噴射量又
は噴射、停止の制御を行う噴射制御弁を設けることによ
り、各気筒毎にその温度に応じた冷却制御を行うことも
できる。
Although this embodiment shows a cooling method for an engine with a controlled number of cylinders, in a general engine, a temperature sensor is provided for each cylinder, and the injection amount, injection, and stop of refrigerant are controlled for each cylinder. By providing an injection control valve to perform this, it is also possible to perform cooling control according to the temperature of each cylinder.

また、本実施例におけるタービン20は冷却用ファン2
2を駆動するだ(プでなく、その他の補機類の駆動に用
いることもできる。
Further, the turbine 20 in this embodiment has a cooling fan 2
It can also be used to drive other auxiliary equipment.

更に、冷媒として水を用いるだけでなく燃料を用いるこ
とができる。この場合、燃料系と冷却系を共用覆ること
ができると共に、気化した燃料は空気と混合し易いので
燃焼性が良くなる。
Furthermore, not only water but also fuel can be used as a refrigerant. In this case, the fuel system and the cooling system can be shared and covered, and the vaporized fuel easily mixes with air, resulting in improved combustibility.

(発 明 の 効 果) 以−トのように本発明によれば、冷媒の気化熱を利用し
てエンジンを冷却する冷却装置において、−16− 各気筒ごとに冷媒噴射手段を設けて運転状態により各気
筒ごとの冷媒の噴射供給を制御する構成としたので、各
気筒が夫々の状態に応じて効率良く且つ最適に冷却され
ることになる。特に本発明を気筒数制御エンジンに用い
た場合は、休止気筒の過冷却が防止されて、該気筒が再
び稼働した場合に燃料の不完全燃焼等を生じることなく
良好に燃焼が開始されることになる。
(Effects of the Invention) As described above, according to the present invention, in a cooling device that cools an engine using the heat of vaporization of a refrigerant, a refrigerant injection means is provided for each cylinder to control the operating state. Since the configuration is such that the injection and supply of refrigerant is controlled for each cylinder, each cylinder is efficiently and optimally cooled according to its respective state. In particular, when the present invention is applied to an engine with a controlled number of cylinders, overcooling of a dormant cylinder is prevented, and when the cylinder is restarted, combustion is started smoothly without incomplete combustion of fuel. become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2図は本発明の実施例
を示すシステム図、第3図は該実施例における制御回路
の構成を示す回路図、第4図は該実施例の気筒数制御領
域の説明図、第5図は該実施例の作用を示すタイムチャ
ート図である。 A・・・冷媒供給手段、B・・・運転状態検出手段、C
・・・冷媒噴射手段、6・・・冷却装置、8・・・制御
回路、15・・・冷媒噴射パイプ、16・・・噴口、1
7・・・冷媒供給遮断弁、32・・・温度センサー 1
7 − 第1図
Fig. 1 is an overall configuration diagram of the present invention, Fig. 2 is a system diagram showing an embodiment of the invention, Fig. 3 is a circuit diagram showing the configuration of a control circuit in the embodiment, and Fig. 4 is a system diagram showing an embodiment of the invention. FIG. 5, which is an explanatory diagram of the cylinder number control region, is a time chart diagram showing the operation of this embodiment. A... Refrigerant supply means, B... Operating state detection means, C
... Refrigerant injection means, 6 ... Cooling device, 8 ... Control circuit, 15 ... Refrigerant injection pipe, 16 ... Spout, 1
7... Refrigerant supply cutoff valve, 32... Temperature sensor 1
7 - Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1) 燃焼室周壁に噴射供給した冷媒の蒸発によりエ
ンジンを冷却する冷却装置であって、各気筒に夫々備え
られた冷媒噴射手段と、各気筒の運転状態を検出する運
転状態検出手段と、該運転状態検出手段からの出力を受
けて上記冷媒噴射手段による冷媒の噴射供給を気筒毎に
制御する冷媒供給制御手段とを有するエンジンの冷却装
置。
(1) A cooling device that cools an engine by evaporation of refrigerant injected and supplied to a peripheral wall of a combustion chamber, comprising a refrigerant injection means provided in each cylinder, an operating state detection means for detecting an operating state of each cylinder, A cooling device for an engine, comprising a refrigerant supply control means for controlling injection and supply of refrigerant by the refrigerant injection means for each cylinder in response to an output from the operating state detection means.
JP14407783A 1983-08-05 1983-08-05 Engine cooling apparatus Pending JPS6035113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14407783A JPS6035113A (en) 1983-08-05 1983-08-05 Engine cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14407783A JPS6035113A (en) 1983-08-05 1983-08-05 Engine cooling apparatus

Publications (1)

Publication Number Publication Date
JPS6035113A true JPS6035113A (en) 1985-02-22

Family

ID=15353733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14407783A Pending JPS6035113A (en) 1983-08-05 1983-08-05 Engine cooling apparatus

Country Status (1)

Country Link
JP (1) JPS6035113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087759A (en) * 2011-10-21 2013-05-13 Aisin Seiki Co Ltd Internal combustion engine cooling control device
JP2013087758A (en) * 2011-10-21 2013-05-13 Aisin Seiki Co Ltd Internal combustion engine cooling control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087759A (en) * 2011-10-21 2013-05-13 Aisin Seiki Co Ltd Internal combustion engine cooling control device
JP2013087758A (en) * 2011-10-21 2013-05-13 Aisin Seiki Co Ltd Internal combustion engine cooling control device

Similar Documents

Publication Publication Date Title
EP2957744B1 (en) Temperature control apparatus for intercooler
JPH09324712A (en) Electronically controlled fuel supplier for outboard motor
JP2009068363A (en) Spark ignition internal combustion engine
JPH1182182A (en) Exhaust gas recirculation system
JP4115237B2 (en) diesel engine
JPH10238418A (en) Egr device with egr cooler
JP2010151067A (en) Cooling device for engine
JPS6035113A (en) Engine cooling apparatus
JPH10252578A (en) Egr device with egr cooler
JP2005351173A (en) Thermal storage system
JP2005256641A (en) Cooling control device for internal combustion engine
JP2011007139A (en) Engine cooling device
JP2000345842A (en) Cooling water control device for internal combustion engine
JPH07139455A (en) Auxiliary fuel supply device
JPS5974345A (en) Cylinder-number controlling apparatus for engine
JP3160412B2 (en) Engine fuel supply
JP2017194024A (en) Water supply device for engine
JP2534138Y2 (en) Fuel supply device for internal combustion engine
KR20180050048A (en) Engine cooling system for vehicle and method controlling of the same
JP6687902B2 (en) Direct injection engine cooling system
JP4214890B2 (en) Engine cooling system
JPH11257165A (en) Cooling system for exhaust gas recirculation system of internal combustion engine
JPS6057005A (en) Heat exchanger in hydraulic apparatus
JPS62170719A (en) Cooling device for engine
JP2004044551A (en) Warming-up assisting system for diesel engine