JP2013087759A - Internal combustion engine cooling control device - Google Patents

Internal combustion engine cooling control device Download PDF

Info

Publication number
JP2013087759A
JP2013087759A JP2011232062A JP2011232062A JP2013087759A JP 2013087759 A JP2013087759 A JP 2013087759A JP 2011232062 A JP2011232062 A JP 2011232062A JP 2011232062 A JP2011232062 A JP 2011232062A JP 2013087759 A JP2013087759 A JP 2013087759A
Authority
JP
Japan
Prior art keywords
cooling water
combustion engine
internal combustion
cylinder
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232062A
Other languages
Japanese (ja)
Inventor
Naoto Yumizashi
直人 弓指
Masanori Matsuzaka
正宣 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2011232062A priority Critical patent/JP2013087759A/en
Publication of JP2013087759A publication Critical patent/JP2013087759A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine cooling control device for preventing overall reduction in combustion efficiency and deterioration in fuel economy of the internal combustion engine, by increasing the wall body temperature of both suspendable and continuously operating cylinders up to the temperature that achieves excellent combustion efficiency and fuel economy in a short time, when a resting cylinder is restarted.SOLUTION: This internal combustion engine cooling control device 1 includes: an internal combustion engine having a plurality of cylinders 20, all or some of which are arranged in series; suspendable cylinders 20b, which are some of the cylinders 20 arranged in series and suspendable during operation of the internal combustion engine; a pump 12 for circulating cooling water to the internal combustion engine; a plurality of flow passages 11 for circulating the cooling water to the suspendable cylinders 20b; a plurality of adjusting parts 16 corresponding to the plurality of flow passages 11 so as to adjust a flow of the cooling water, respectively; and an adjustment control part for independently controlling adjustment of the circulating cooling water in the plurality of adjusting parts 16.

Description

本発明は、複数の気筒を有し且つその一部の気筒が作動休止可能に構成されている内燃機関への冷却水の流通及び遮断を制御する内燃機関冷却制御装置に関する。   The present invention relates to an internal combustion engine cooling control apparatus that controls the flow and shut-off of cooling water to an internal combustion engine that has a plurality of cylinders and that some of the cylinders are configured to be inoperative.

一般に、ガソリンや軽油等を燃料とする内燃機関では、運転温度を所定範囲内に維持するために各気筒に冷却水を流通させて気筒を冷却するように構成されている。近年、燃費を向上させるために、車両走行中に一部の気筒の作動を休止させることが行われている。気筒の作動が休止しているときは、吸気弁及び排気弁を閉じ状態に保ち、気筒内で燃焼が起こらないようにしている。   In general, an internal combustion engine using gasoline, light oil, or the like as a fuel is configured to cool the cylinders by flowing cooling water to each cylinder in order to maintain the operating temperature within a predetermined range. In recent years, in order to improve fuel efficiency, some cylinders are deactivated during vehicle travel. When the operation of the cylinder is stopped, the intake valve and the exhaust valve are kept closed so that combustion does not occur in the cylinder.

特許文献1には、気筒休止機能付きの6気筒V型内燃機関が開示されている。通常は6気筒すべてが作動しているが、燃費を重視する低負荷運転時等には一部の気筒の作動を休止させる。作動を休止できる気筒(以下、休止可能気筒とも言う)は休止している間は気筒内で熱を発しないので気筒の壁体温度が低下する。一方、休止せずに連続して作動している気筒(以下、連続作動気筒とも言う)の壁体温度は高いままである。   Patent Document 1 discloses a 6-cylinder V-type internal combustion engine with a cylinder deactivation function. Normally, all six cylinders are operating, but some cylinders are deactivated during low-load operation where fuel efficiency is important. Since cylinders that can be deactivated (hereinafter also referred to as cylinders that can be deactivated) do not generate heat in the cylinders while they are deactivated, the wall temperature of the cylinders decreases. On the other hand, the wall temperature of the cylinder (hereinafter also referred to as a continuously operated cylinder) operating continuously without being stopped remains high.

特許文献1に開示されているV型内燃機関では、後側バンクの3気筒全体が休止可能気筒になっており、後側バンクの3筒全体を一斉に作動及び休止させる。後側バンクの3気筒全体が休止しているときは、後側バンク内を流通する冷却水も遮断される。後側バンク内を流通する冷却水の流路は1つしかないので、冷却水は、後側バンクの3気筒全体に一斉に流通し、また一斉に遮断される。   In the V-type internal combustion engine disclosed in Patent Document 1, the entire three cylinders of the rear bank are restable cylinders, and the entire three cylinders of the rear bank are simultaneously activated and deactivated. When the entire three cylinders of the rear bank are inactive, the cooling water flowing through the rear bank is also shut off. Since there is only one flow path of the cooling water flowing through the rear bank, the cooling water flows all at once in the three cylinders of the rear bank and is blocked simultaneously.

特開2009−8036号公報JP 2009-8036 A

休止可能気筒を休止させた後に再作動させたときは、休止可能気筒の壁体温度を連続作動気筒の壁体温度と同等まで短時間に上昇させる必要がある。連続作動気筒の壁体温度は燃焼効率がよく燃費が良好な温度に制御されているからである。しかし、後側バンク全体が休止可能気筒なので、再作動後の休止可能気筒の壁体温度を早期に上昇させるためには、連続作動気筒で発生する熱を何らかの方法で休止可能気筒に伝達する必要がある。   When the deactivateable cylinder is reactivated after being deactivated, the wall temperature of the deactivated cylinder needs to be increased in a short time to the same temperature as the wall temperature of the continuously operated cylinder. This is because the wall temperature of the continuously operating cylinder is controlled to a temperature with good combustion efficiency and good fuel efficiency. However, since the entire rear bank is a restable cylinder, in order to quickly raise the wall temperature of the restable cylinder after reactivation, it is necessary to transfer the heat generated in the continuously operated cylinder to the restable cylinder in some way. There is.

そこで、休止可能気筒を再作動させる前に連続作動気筒を流通している高温の冷却水を休止可能気筒に流通させて休止可能気筒を暖めることが特許文献1に開示されている。しかし冷却水は休止可能気筒全体を流通するので、休止可能気筒を流通することにより高温の冷却水の温度が低下する。それが連続作動気筒にも流通して、連続作動気筒の壁体温度を低下させてしまう。その結果、休止可能気筒と連続作動気筒の両方の壁体温度を燃焼効率がよく燃費が良好な温度に到達させるまでには長時間を要し、内燃機関全体の燃焼効率が低下し燃費が悪化するという問題があった。   Therefore, Patent Document 1 discloses that high-temperature cooling water flowing through a continuously-acting cylinder is circulated to the restable cylinder and the restable cylinder is warmed before the restable cylinder is restarted. However, since the cooling water circulates throughout the resting cylinder, the temperature of the high-temperature cooling water is lowered by circulating the resting cylinder. This also circulates in the continuously operating cylinder and lowers the wall temperature of the continuously operating cylinder. As a result, it takes a long time to reach the wall temperature of both the cylinders that can be deactivated and the continuously operated cylinder to a temperature where the combustion efficiency is good and the fuel consumption is good, and the combustion efficiency of the entire internal combustion engine is lowered and the fuel consumption is deteriorated. There was a problem to do.

上記問題に鑑み、本発明は、直列に配置された休止可能気筒を休止後に再作動させる際に、休止可能気筒と連続作動気筒の両方の壁体温度を短時間で燃焼効率がよく燃費が良好な温度に到達させ、内燃機関全体の燃焼効率の低下と燃費の悪化を防ぐ内燃機関冷却制御装置を提供することを課題とする。   In view of the above problems, the present invention has a high combustion efficiency and a good fuel consumption in a short time when the temperature of the wall of both the stoppable cylinder and the continuously operated cylinder is restarted after the stoppable cylinders arranged in series are restarted. It is an object of the present invention to provide an internal combustion engine cooling control device that reaches a certain temperature and prevents a decrease in combustion efficiency and fuel consumption of the entire internal combustion engine.

上記課題を解決するための本発明に係る内燃機関冷却制御装置の特徴構成は、複数の気筒を有しており且つその全部又は一部の気筒が直列に配置されている内燃機関と、前記直列に配置されている気筒の一部であって、前記内燃機関の作動中に燃焼を休止することができる休止可能気筒と、前記内燃機関に冷却水を循環させるポンプと、前記休止可能気筒に前記冷却水を流通させる複数の流路と前記冷却水の流通を調節するよう前記複数の流路のそれぞれに対応している複数の調節部と、前記複数の調節部における前記冷却水の流通の調整を夫々独立して制御する調節制御部と、を備えている点にある。   An internal combustion engine cooling control apparatus according to the present invention for solving the above-described problems includes an internal combustion engine having a plurality of cylinders and all or some of the cylinders arranged in series; A cylinder capable of stopping combustion during operation of the internal combustion engine, a pump for circulating cooling water to the internal combustion engine, and the cylinder capable of stopping A plurality of flow paths for circulating the cooling water, a plurality of adjustment sections corresponding to each of the plurality of flow paths to adjust the flow of the cooling water, and adjustment of the flow of the cooling water in the plurality of adjustment sections And an adjustment control unit that controls each of them independently.

このような特徴構成とすれば、直列に配置されている気筒のうち、一部の気筒だけが休止可能気筒なので、休止可能気筒が休止中であっても、連続作動気筒から生じる熱が休止可能気筒へ伝播し休止可能気筒の壁体温度の低下が抑制される。また休止可能気筒が休止後に再作動しても、連続作動気筒から生じる熱が休止可能気筒に伝播し休止可能気筒の壁体温度を短時間で上昇させる。さらには、調節制御部よって、複数の調節部における冷却水の流通の調整を独立して制御できるので、休止可能気筒を流通する冷却水の温度を低下させすぎず、連続作動気筒の壁体温度低下も抑制できる。その結果、休止可能気筒と連続作動気筒の両方の壁体温度を短時間で燃焼効率がよく燃費が良好な温度に到達させることができ、内燃機関全体の燃焼効率の低下と燃費の悪化を防ぐことができる。   With such a characteristic configuration, only a part of the cylinders arranged in series can be deactivated, so that heat generated from the continuously operated cylinder can be deactivated even when the deactivated cylinder is deactivated. A decrease in the wall temperature of the cylinder that can propagate to the cylinder and can be stopped is suppressed. Further, even when the resting cylinder is restarted after the resting, the heat generated from the continuously working cylinder is propagated to the resting cylinder and the wall temperature of the resting cylinder is increased in a short time. Furthermore, since the adjustment control unit can independently control the adjustment of the flow of the cooling water in the plurality of adjustment units, the temperature of the wall of the continuously operating cylinder does not decrease excessively without reducing the temperature of the cooling water flowing through the restable cylinder. The decrease can also be suppressed. As a result, the wall temperature of both the cylinders that can be deactivated and the continuously operated cylinder can reach a temperature with good combustion efficiency and good fuel efficiency in a short time, thereby preventing a decrease in the combustion efficiency and deterioration of the fuel consumption of the entire internal combustion engine. be able to.

また、本発明に係る内燃機関冷却制御装置においては、前記複数の流路は前記休止可能気筒のそれぞれの気筒に対応して設けられていると好適である。このような構成にすれば、より精緻に冷却水の流通の調整を制御できるので、休止可能気筒と連続作動気筒の両方の壁体温度を短時間で燃焼効率がよく燃費が良好な温度に到達させることができ、内燃機関全体の燃焼効率の低下と燃費の悪化を防ぐことができる。   In the internal combustion engine cooling control apparatus according to the present invention, it is preferable that the plurality of flow paths are provided corresponding to the cylinders of the restable cylinder. With such a configuration, it is possible to control the flow of cooling water more precisely, so that the wall temperature of both the cylinders that can be stopped and the continuously operated cylinder reach a temperature where combustion efficiency is good and fuel consumption is good in a short time. Therefore, it is possible to prevent the combustion efficiency of the entire internal combustion engine from being lowered and the fuel consumption from being deteriorated.

また、本発明に係る内燃機関冷却制御装置においては、前記直列に配置されている気筒の両端に配置された気筒以外の気筒であると好適である。このような構成にすれば、休止可能気筒が内燃機関周囲の空気と接する面積が減少するので、休止可能気筒が休止しているときの壁体温度の低下を防止できる。   Moreover, in the internal combustion engine cooling control apparatus according to the present invention, it is preferable that the cylinder is a cylinder other than the cylinders arranged at both ends of the cylinders arranged in series. With such a configuration, the area where the restable cylinder is in contact with the air around the internal combustion engine is reduced, so that a decrease in wall temperature when the restable cylinder is at rest can be prevented.

また、本発明に係る内燃機関冷却制御装置においては、前記調節制御部は、前記休止可能気筒が休止する前の内燃機関の作動状態に基づいて前記調節部に前記冷却水の流通を遮断させる制御を行うと好適である。例えば、内燃機関が高出力を連続して発生した直後に休止可能気筒の休止と冷却水の遮断を同時に行うと、休止可能気筒が高温のままなので、冷却水の局所沸騰を招くおそれがある。このような構成にすれば、高温の状態のまま休止可能気筒を休止させても冷却水を引き続き流通させることができるので、冷却水の局所沸騰を防ぐことができる。   Further, in the internal combustion engine cooling control apparatus according to the present invention, the adjustment control unit controls the adjustment unit to block the flow of the cooling water based on an operating state of the internal combustion engine before the restable cylinder is stopped. Is preferable. For example, if the pauseable cylinder is shut off and the cooling water is shut off immediately after the internal combustion engine continuously generates high output, the pauseable cylinder remains at a high temperature, which may cause local boiling of the cooling water. With such a configuration, the cooling water can be continuously circulated even if the cylinder capable of resting in a high temperature state is stopped, so that local boiling of the cooling water can be prevented.

本発明の実施形態である内燃機関冷却制御装置を適用した内燃機関の1つの気筒の模式図Schematic diagram of one cylinder of an internal combustion engine to which an internal combustion engine cooling control device according to an embodiment of the present invention is applied. 本実施形態の内燃機関冷却制御装置の構成を表す模式図The schematic diagram showing the structure of the internal combustion engine cooling control apparatus of this embodiment 本実施形態の内燃機関冷却制御装置の制御系を示す機能ブロック図Functional block diagram showing a control system of the internal combustion engine cooling control device of the present embodiment 休止可能気筒が休止したときに冷却水の流通を停止させるまでの流れを示すフローチャートFlowchart showing the flow until the circulation of the cooling water is stopped when the restable cylinder is stopped. 休止可能気筒が再作動したときに冷却水の流通を再開させるまでの流れを示すフローチャートFlow chart showing the flow until the circulation of the cooling water is resumed when the cylinder capable of resting is restarted. 他の実施形態の内燃機関冷却制御装置の構成を表す模式図The schematic diagram showing the structure of the internal combustion engine cooling control apparatus of other embodiment. 他の実施形態の内燃機関冷却制御装置の構成を表す模式図The schematic diagram showing the structure of the internal combustion engine cooling control apparatus of other embodiment. 他の実施形態の内燃機関冷却制御装置の構成を表す模式図The schematic diagram showing the structure of the internal combustion engine cooling control apparatus of other embodiment. 他の実施形態の内燃機関冷却制御装置の構成を表す模式図The schematic diagram showing the structure of the internal combustion engine cooling control apparatus of other embodiment.

[第1実施形態]
以下、本発明の実施の形態を図面に基づいて説明する。図1は、多気筒内燃機関を構成する1つの休止可能気筒20bを示す模式図である。この休止可能気筒20bには、本発明による内燃機関冷却制御装置1が適用されている。以下連続作動気筒20aと休止可能気筒20bを区別しないときは気筒20と称する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing one restable cylinder 20b constituting a multi-cylinder internal combustion engine. An internal combustion engine cooling control device 1 according to the present invention is applied to the restable cylinder 20b. Hereinafter, when the continuous operation cylinder 20a and the restless cylinder 20b are not distinguished, they are referred to as a cylinder 20.

車両に搭載された多気筒内燃機関は、シリンダブロック31及びシリンダヘッド32等からなる内燃機関ハウジングを備えている。休止可能気筒20bにはピストン29が設けられ、各ピストン29はクランクシャフト30に連動している。シリンダブロック31及びシリンダヘッド32の壁体内部には、各燃焼室に吸気弁23を介して空気を取り込むために吸気通路21と各燃焼室から排気弁24を介して排気ガスを排出するために排気通路22が形成されている。   A multi-cylinder internal combustion engine mounted on a vehicle includes an internal combustion engine housing including a cylinder block 31, a cylinder head 32, and the like. The resting cylinder 20 b is provided with a piston 29, and each piston 29 is linked to the crankshaft 30. In order to exhaust the exhaust gas from the intake passage 21 and each combustion chamber through the exhaust valve 24 in order to take air into each combustion chamber through the intake valve 23 inside the wall of the cylinder block 31 and the cylinder head 32. An exhaust passage 22 is formed.

吸気通路21には、所定量の燃料を吸気通路21に噴射する燃料噴射弁27が配置されている。さらに、吸気通路21には、燃焼室に取り込まれる空気を清浄化するエアクリーナ25及び吸気通路21を流れる空気量を調節するためのスロットルバルブ26が設けられている。エアクリーナ25の領域には、吸気温(すなわち外気温)を検出する吸気温センサ42が設けられている。またエアクリーナ25とスロットルバルブ26との間には燃焼室に取り込まれる空気の量を計測するエアフローセンサ41が設けられている。   A fuel injection valve 27 that injects a predetermined amount of fuel into the intake passage 21 is disposed in the intake passage 21. Further, the intake passage 21 is provided with an air cleaner 25 for purifying the air taken into the combustion chamber and a throttle valve 26 for adjusting the amount of air flowing through the intake passage 21. In the area of the air cleaner 25, an intake air temperature sensor 42 for detecting the intake air temperature (that is, the outside air temperature) is provided. An air flow sensor 41 for measuring the amount of air taken into the combustion chamber is provided between the air cleaner 25 and the throttle valve 26.

各燃焼室では、点火プラグ28が作動することにより、燃料と空気との可燃混合気が燃焼する。この燃焼で発生する圧力によりピストン29が上下動してクランクシャフト30が回転する。このクランクシャフト30の回転トルクによって車両駆動系と補機類(エアコンのコンプレッサ、オルタネータ、トルクコンバータ、パワーステアリングの油圧ポンプ等)が作動する。クランクシャフト30の近傍には、クランクシャフト30の回転角を検出するためのクランク角センサ43が取り付けられている。   In each combustion chamber, the ignition plug 28 operates to burn a combustible mixture of fuel and air. Due to the pressure generated by this combustion, the piston 29 moves up and down and the crankshaft 30 rotates. The rotational torque of the crankshaft 30 activates the vehicle drive system and auxiliary equipment (air conditioner compressor, alternator, torque converter, power steering hydraulic pump, etc.). A crank angle sensor 43 for detecting the rotation angle of the crankshaft 30 is attached in the vicinity of the crankshaft 30.

各燃焼室で生じた燃焼後の排気ガスは、排気通路22を通じて外部へ排出される。燃焼室で発生した燃焼エネルギの一部は熱として壁体に残留する。壁体に残留する残留熱による壁体高熱化を防止するために、本実施形態に係る内燃機関冷却制御装置1では、冷却水循環用流路(以下単に流路とも称する)11が設けられており、その内部には冷却水が流通されている。流路11の一部は壁体にも形成されている。なお、壁体に形成されている流路11をウォータジャケットとも称する。   Exhaust gas after combustion generated in each combustion chamber is discharged to the outside through the exhaust passage 22. Part of the combustion energy generated in the combustion chamber remains on the wall as heat. In order to prevent the wall body from becoming hot due to the residual heat remaining in the wall body, the internal combustion engine cooling control device 1 according to the present embodiment is provided with a cooling water circulation passage (hereinafter also simply referred to as a passage) 11. In the interior, cooling water is circulated. A part of the channel 11 is also formed on the wall. In addition, the flow path 11 formed in the wall is also referred to as a water jacket.

図2は本実施形態の直列6気筒の内燃機関を含む内燃機関冷却制御装置1の構成を表す模式図である。本発明に係るポンプの一例である電動ポンプ12は、流路11上の流量制御弁14と気筒20との間に配置されている。この電動ポンプ12は不図示の電気モータを駆動源しており、クランクシャフト30の回転とは無関係に駆動可能である。電動ポンプ12は、ラジエータ13に接続されている流路11を流れる冷却水を吸引してウォータジャケットの流入口に供給する。冷却水は、ウォータジャケット内部を流通する際に壁体から熱を吸収してその水温を上昇させることにより、壁体温度を低下させる。水温が上昇した冷却水はラジエータ13を流通する際に熱を放出してその水温を下げる。   FIG. 2 is a schematic diagram showing the configuration of the internal combustion engine cooling control device 1 including the in-line 6-cylinder internal combustion engine of the present embodiment. The electric pump 12 which is an example of the pump according to the present invention is disposed between the flow control valve 14 on the flow path 11 and the cylinder 20. The electric pump 12 is driven by an electric motor (not shown) and can be driven regardless of the rotation of the crankshaft 30. The electric pump 12 sucks the cooling water flowing through the flow path 11 connected to the radiator 13 and supplies it to the inlet of the water jacket. The cooling water reduces the wall temperature by absorbing heat from the wall body and increasing the water temperature when circulating inside the water jacket. The cooling water whose water temperature has risen releases heat when flowing through the radiator 13 and lowers the water temperature.

流路11には、ラジエータ13を経由せずにウォータジャケットの流出口と電動ポンプ12の吸引側とを直接接続するバイパス流路が設けられている。このバイパス流路途中にヒータコア15が設けられている。ラジエータ13からの流路11とバイパス流路とが交わる箇所には、流量制御弁14が設けられている。この流量制御弁14により、壁体を冷却するための冷却水温度を制御することができる。この流量制御弁14により、ラジエータ13からの冷却水の流量とバイパス流路からの冷却水の流量を制御することができる。   The flow path 11 is provided with a bypass flow path that directly connects the outlet of the water jacket and the suction side of the electric pump 12 without going through the radiator 13. A heater core 15 is provided in the middle of the bypass flow path. A flow rate control valve 14 is provided at a location where the flow path 11 from the radiator 13 and the bypass flow path intersect. The flow rate control valve 14 can control the cooling water temperature for cooling the wall body. The flow rate control valve 14 can control the flow rate of the cooling water from the radiator 13 and the flow rate of the cooling water from the bypass passage.

流路11には、ウォータジャケットの流出口を通過した後の冷却水の温度を検出する第1冷却水温度センサ44と、ラジエータ13を通過した後の冷却水の温度を検出するための第2冷却水温度センサ45が設けられている。流量制御弁14と第2冷却水温度センサ45を一体化してサーモスタットとして構成してもよい。   The flow path 11 includes a first cooling water temperature sensor 44 that detects the temperature of the cooling water after passing through the outlet of the water jacket, and a second temperature for detecting the temperature of the cooling water after passing through the radiator 13. A cooling water temperature sensor 45 is provided. The flow control valve 14 and the second cooling water temperature sensor 45 may be integrated to form a thermostat.

流路11は、気筒20のウォータジャケットの流入口の上流側で分岐して分岐流路11a、11bを形成している。分岐流路11aを流通する冷却水は連続作動気筒20aのそれぞれのウォータジャケット内部を流通する。分岐流路11bを流通する冷却水は休止可能気筒20bのそれぞれのウォータジャケット内部を流通する。分岐流路11aと11bは、ウォータジャケットの下流側で再び合流して流路11を形成する。   The flow path 11 branches on the upstream side of the inlet of the water jacket of the cylinder 20 to form branch flow paths 11a and 11b. The cooling water flowing through the branch channel 11a flows through each water jacket of the continuously operating cylinder 20a. The cooling water flowing through the branch flow path 11b flows through each water jacket of the restable cylinder 20b. The branch channels 11a and 11b join again on the downstream side of the water jacket to form the channel 11.

休止可能気筒20bのウォータジャケットの上流側にある分岐流路11bには、冷却水のウォータジャケットへの流通及び遮断が電気的に又は機械的に切換可能な冷却水開閉弁16が設けられている。冷却水開閉弁16は、本発明に係る調節部の一例である。休止可能気筒20bが作動を休止しているときには、冷却水開閉弁16を閉じ、休止可能気筒20bに冷却水が流通するのを遮断することができる。   The branch flow path 11b on the upstream side of the water jacket of the restable cylinder 20b is provided with a cooling water on-off valve 16 that can electrically or mechanically switch the flow and shut-off of the cooling water to and from the water jacket. . The cooling water on-off valve 16 is an example of an adjusting unit according to the present invention. When the inactive cylinder 20b is inactive, the cooling water on-off valve 16 can be closed to block the cooling water from flowing through the inactive cylinder 20b.

本実施形態では、冷却水開閉弁16は休止可能気筒20bのウォータジャケットの上流側に設けたが、これはウォータジャケットに流入する前の低温の冷却水を開閉する方が、冷却水開閉弁16の耐熱性の観点でより好ましいからである。ただし、休止可能気筒20bのウォータジャケットの下流側に冷却水開閉弁16を設けてもよい。   In this embodiment, the cooling water on / off valve 16 is provided on the upstream side of the water jacket of the restable cylinder 20b. However, this is because the cooling water on / off valve 16 opens and closes the low-temperature cooling water before flowing into the water jacket. This is because it is more preferable from the viewpoint of heat resistance. However, the cooling water on-off valve 16 may be provided on the downstream side of the water jacket of the cylinder 20b that can be deactivated.

図3は、この内燃機関冷却制御装置1で採用されている制御系の中核要素としての制御ユニット2の機能ブロック図である。この制御ユニット2はECUと称されるもので、マイクロコンピュータを主体として構成され、内蔵されたROMに記憶されたプログラムを実行することで、内燃機関制御に関する種々の機能を作り出す。上述したエアフローセンサ41、吸気温センサ42、クランク角センサ43、第1冷却水温度センサ44、第2冷却水温度センサ45、その他スロットルバルブ26の開度を検出するスロットル開度センサ46、車両の走行速度を検出する車速センサ47などの各種センサの検出信号が制御ユニット2に入力される。また制御ユニット2は制御信号を出力し、電動ポンプ12、流量制御弁14、冷却水開閉弁16、連続作動気筒20a、休止可能気筒20b、燃料噴射弁27、点火プラグ28などの動作を制御する。   FIG. 3 is a functional block diagram of the control unit 2 as a core element of the control system employed in the internal combustion engine cooling control apparatus 1. The control unit 2 is referred to as an ECU, and is composed mainly of a microcomputer. The control unit 2 executes various programs related to internal combustion engine control by executing a program stored in a built-in ROM. The air flow sensor 41, the intake air temperature sensor 42, the crank angle sensor 43, the first cooling water temperature sensor 44, the second cooling water temperature sensor 45, the throttle opening sensor 46 for detecting the opening of the throttle valve 26, the vehicle Detection signals from various sensors such as a vehicle speed sensor 47 for detecting the traveling speed are input to the control unit 2. Further, the control unit 2 outputs a control signal to control operations of the electric pump 12, the flow rate control valve 14, the cooling water on-off valve 16, the continuously operated cylinder 20a, the stoppable cylinder 20b, the fuel injection valve 27, the spark plug 28, and the like. .

この制御ユニット2において作り出される機能のうち特に本発明に関係するものとして、気筒作動制御部51、壁体温度推定部52、冷却水開閉弁制御部53が挙げられる。気筒作動制御部51は、内燃機関が作動しているときに、クランク角センサ43、スロットル開度センサ46、車速センサ47等の検出信号に基づいて、休止可能気筒20bを休止させたり再作動させたりするよう制御する。例えば、渋滞中に低速度で発進、停止を繰り返しているときのように内燃機関に対する負荷トルクが小さいときや、一定速度での走行を一定時間以上継続しているときのように負荷トルクの変動が小さいときには、休止可能気筒20bを休止させるように制御する。なお、4つの休止可能気筒20bは、それぞれ独立して休止及び再作動させることができる。   Among the functions created in the control unit 2, the cylinder operation control unit 51, the wall body temperature estimation unit 52, and the cooling water on / off valve control unit 53 are particularly relevant to the present invention. When the internal combustion engine is operating, the cylinder operation control unit 51 stops or restarts the restable cylinder 20b based on detection signals from the crank angle sensor 43, the throttle opening sensor 46, the vehicle speed sensor 47, and the like. To control. For example, when the load torque to the internal combustion engine is small, such as when starting and stopping at low speeds in a traffic jam, or when running at a constant speed continues for a certain period of time or more When is small, control is performed so that the restable cylinder 20b is rested. The four restable cylinders 20b can be independently deactivated and reactivated.

壁体温度推定部52は、休止可能気筒20bが休止しているときに、エアフローセンサ41、吸気温センサ42、クランク角センサ43、スロットル開度センサ46、車速センサ47等の検出信号に基づいて壁体温度を推定する。全ての気筒が作動しているときは、第1冷却水温度センサ44、第2冷却水温度センサ45からの検出信号に基づいて壁体温度を推定する。しかし、休止可能気筒20bが休止して冷却水が休止可能気筒20bのウォータジャケット内部を流通していないときには、第1冷却水温度センサ44、第2冷却水温度センサ45からの検出信号では休止可能気筒20bの壁体温度が推定できない。そこで、上述したセンサからの検出信号に基づいて壁体温度推定部52で壁体温度を推定する。   The wall body temperature estimation unit 52 is based on detection signals from the airflow sensor 41, the intake air temperature sensor 42, the crank angle sensor 43, the throttle opening sensor 46, the vehicle speed sensor 47, and the like when the restable cylinder 20b is at rest. Estimate wall temperature. When all the cylinders are operating, the wall temperature is estimated based on detection signals from the first cooling water temperature sensor 44 and the second cooling water temperature sensor 45. However, when the inactive cylinder 20b is inactive and the cooling water is not flowing through the water jacket of the inactive cylinder 20b, it can be stopped by the detection signals from the first cooling water temperature sensor 44 and the second cooling water temperature sensor 45. The wall temperature of the cylinder 20b cannot be estimated. Therefore, the wall body temperature estimation unit 52 estimates the wall body temperature based on the detection signal from the sensor described above.

本発明に係る調節制御部の一例である冷却水開閉弁制御部53は、気筒作動制御部51から出力された休止可能気筒20bの作動に関する情報、壁体温度推定部52から出力された推定壁体温度に関する情報、その他内燃機関の出力についての情報等に基づいて冷却水開閉弁16の開閉を制御する。内燃機関の出力は、エアフローセンサ41、吸気温センサ42、クランク角センサ43、スロットル開度センサ46、車速センサ47等の検出信号に基づいて算出される。冷却水開閉弁制御部53は、4つの冷却水開閉弁16をそれぞれ独立して開閉制御できる。冷却水開閉弁制御部53は、気筒作動制御部51による休止可能気筒20bの制御と独立している。   The cooling water on / off valve control unit 53, which is an example of the adjustment control unit according to the present invention, includes information on the operation of the restable cylinder 20b output from the cylinder operation control unit 51, and the estimated wall output from the wall body temperature estimation unit 52. The opening / closing of the cooling water on / off valve 16 is controlled based on information on the body temperature, information on the output of the internal combustion engine, and the like. The output of the internal combustion engine is calculated based on detection signals from the air flow sensor 41, the intake air temperature sensor 42, the crank angle sensor 43, the throttle opening sensor 46, the vehicle speed sensor 47, and the like. The cooling water on / off valve control unit 53 can open / close the four cooling water on / off valves 16 independently. The cooling water on / off valve control unit 53 is independent of the control of the cylinder 20 b that can be stopped by the cylinder operation control unit 51.

内燃機関の全ての気筒が作動して高出力を連続して発生するときには冷却水の温度が高くなる。このような状態で休止可能気筒20bが作動を休止したときに、作動休止と同時に冷却水開閉弁制御部53が冷却水開閉弁16の閉じ制御をしてしまうと、冷却水が休止可能気筒20bを流通しなくなるので、冷却水が局所沸騰してしまうおそれがある。そこで、休止可能気筒20bが作動を休止したときには、冷却水開閉弁制御部53は、冷却水が局所沸騰するおそれがなくなるまで冷却水開閉弁16に対して開き制御をして休止可能気筒20bに冷却水を流通させるように制御する。図4に、休止可能気筒20bが作動を休止してから冷却水開閉弁16が閉じ制御により冷却水の流通を停止させるまでのフローを示す。   When all the cylinders of the internal combustion engine are operated to continuously generate high output, the temperature of the cooling water becomes high. In such a state, when the stoppable cylinder 20b stops operating, if the cooling water on / off valve control unit 53 controls closing of the cooling water on / off valve 16 simultaneously with the stop of operation, the cooling water can be stopped. Since there is no circulation, the cooling water may locally boil. Therefore, when the inactive cylinder 20b is deactivated, the cooling water on / off valve control unit 53 controls the cooling water on / off valve 16 to open to the inactive cylinder 20b until there is no risk of local boiling of the cooling water. Control to circulate cooling water. FIG. 4 shows a flow from the stoppage of the operation of the inactive cylinder 20b until the stoppage of the cooling water by the control of the cooling water on / off valve 16 being closed.

休止可能気筒20bが作動を休止する(S11)。次に、第1冷却水温度センサ44の検出温度thwが予め定められた冷却水の水温T1より高いか否かを判断する(S12)。第1冷却水温度センサ44の検出温度thwが予め定められた冷却水の水温T1より高ければ(Yes)、冷却水停止遅延時間t1の間冷却水を流通させ(S14)、その後冷却水開閉弁制御部53は冷却水開閉弁16の閉じ制御を行い冷却水の流通を停止させる(S15)。   The restable cylinder 20b stops operating (S11). Next, it is determined whether or not the detected temperature thw of the first cooling water temperature sensor 44 is higher than a predetermined cooling water temperature T1 (S12). If the detected temperature thw of the first cooling water temperature sensor 44 is higher than the predetermined cooling water temperature T1 (Yes), the cooling water is circulated during the cooling water stop delay time t1 (S14), and then the cooling water on / off valve is operated. The control unit 53 controls the closing of the cooling water on / off valve 16 and stops the flow of the cooling water (S15).

S12において、第1冷却水温度センサ44の検出温度thwが予め定められた冷却水の水温T1以下(No)であれば、次のステップとして、過去の所定時間範囲内での内燃機関の平均出力Pe_aveが内燃機関の予め定められた出力Pe1より高いか否かを判断する(S13)。過去の所定時間範囲内での内燃機関の平均出力Pe_aveが内燃機関の予め定められた出力Pe1より高ければ(Yes)、冷却水停止遅延時間t1の間冷却水を流通させ(S14)、その後冷却水開閉弁制御部53は冷却水開閉弁16の閉じ制御を行い冷却水の流通を停止させる(S15)。過去の所定時間範囲内での内燃機関の平均出力Pe_aveが内燃機関の予め定められた出力Pe1以下(No)であれば、冷却水開閉弁制御部53は直ちに冷却水開閉弁16の閉じ制御を行い冷却水の流通を停止させる(S15)。   In S12, if the detected temperature thw of the first cooling water temperature sensor 44 is equal to or lower than the predetermined cooling water temperature T1 (No), as the next step, the average output of the internal combustion engine within the past predetermined time range. It is determined whether Pe_ave is higher than a predetermined output Pe1 of the internal combustion engine (S13). If the average output Pe_ave of the internal combustion engine in the past predetermined time range is higher than the predetermined output Pe1 of the internal combustion engine (Yes), the cooling water is circulated during the cooling water stop delay time t1 (S14), and then cooled. The water on / off valve control unit 53 controls the closing of the cooling water on / off valve 16 and stops the flow of the cooling water (S15). If the average output Pe_ave of the internal combustion engine within the past predetermined time range is equal to or less than the predetermined output Pe1 of the internal combustion engine (No), the cooling water on / off valve control unit 53 immediately controls the closing of the cooling water on / off valve 16. And the circulation of the cooling water is stopped (S15).

このように、休止可能気筒20bが作動を休止したときに、所定の条件を充足するまで冷却水開閉弁制御部53は冷却水開閉弁16の開き制御を行って休止可能気筒20bに冷却水を流通させることにより、冷却水が局所沸騰するおそれがなくなる。図4においては冷却水の水温と内燃機関の出力の両方の条件を判断して冷却水開閉弁16の閉じ制御を行ったが、いずれか一方の条件だけを判断して冷却水開閉弁16の閉じ制御を行ってもよい。   As described above, when the inactive cylinder 20b is deactivated, the cooling water on / off valve control unit 53 controls the opening of the cooling water on / off valve 16 until the predetermined condition is satisfied, and supplies the inactive cylinder 20b with the cooling water. By making it circulate, there is no possibility that the cooling water will boil locally. In FIG. 4, both the cooling water temperature and the output of the internal combustion engine are determined to control the closing of the cooling water on / off valve 16. However, only one of the conditions is determined to determine the cooling water on / off valve 16. Close control may be performed.

次に休止可能気筒20bが休止から再作動を開始したときの冷却水開閉弁16の制御について述べる。休止可能気筒20bが休止しているときは燃焼が起こらないので、休止可能気筒20bの壁体温度は連続作動気筒20aの壁体温度と比べて低い。また、休止可能気筒20bのウォータジャケットにはラジエータ13やヒータコア15を経由した後の温度の低い冷却水が流通する。そのため、休止可能気筒20bの再作動と冷却水開閉弁制御部53による冷却水開閉弁16の開き制御を同時に行うと、休止可能気筒20bで燃焼が起こっても壁体温度の上昇は緩やかになる。その結果、休止可能気筒20bと連続作動気筒20aの両方の壁体温度を燃料効率がよく燃費が良好な温度に到達させるまでには長時間を要し、内燃機関全体の燃焼効率が低下し燃費が悪化する。   Next, the control of the cooling water on / off valve 16 when the inactive cylinder 20b starts re-operation from the inactive state will be described. Since combustion does not occur when the restable cylinder 20b is at rest, the wall temperature of the restable cylinder 20b is lower than the wall temperature of the continuously operated cylinder 20a. Cooling water having a low temperature after passing through the radiator 13 and the heater core 15 circulates in the water jacket of the restable cylinder 20b. For this reason, if the reactivation of the stoppable cylinder 20b and the opening control of the cooling water on / off valve 16 by the cooling water on / off valve control unit 53 are performed simultaneously, the rise in the wall temperature becomes moderate even if combustion occurs in the stoppable cylinder 20b. . As a result, it takes a long time to reach the wall temperature of both the deactivateable cylinder 20b and the continuously operated cylinder 20a to a temperature where the fuel efficiency is good and the fuel efficiency is good, and the combustion efficiency of the entire internal combustion engine is lowered and the fuel efficiency is reduced. Gets worse.

そこで、冷却水開閉弁制御部53は休止可能気筒20bが再作動を開始してすぐには冷却水開閉弁16の開き制御を行わずに、所定の条件を充足したときに初めて開き制御を行って冷却水を流通させるようにする。図5(a)、(b)のそれぞれに、休止可能気筒20bが再作動を開始してから冷却水開閉弁16が開き制御により冷却水の流通を再開させるまでのフローを示す。   Therefore, the cooling water on / off valve control unit 53 does not perform the opening control of the cooling water on / off valve 16 immediately after the inactive cylinder 20b starts to operate again, but performs the opening control only when a predetermined condition is satisfied. To circulate cooling water. Each of FIGS. 5A and 5B shows a flow from when the restable cylinder 20b starts re-operation until the cooling water on-off valve 16 is opened to resume the circulation of the cooling water by the control.

図5(a)において、休止可能気筒20bが再度作動を開始する(S21)。次に、冷却水流通遅延時間t2が経過したかどうかを判断する(S22)。冷却水流通遅延時間t2が経過した後に、冷却水開閉弁制御部53は冷却水開閉弁16の開き制御を行い冷却水の流通を再開させる(S23)。   In FIG. 5A, the restable cylinder 20b starts to operate again (S21). Next, it is determined whether or not the coolant circulation delay time t2 has elapsed (S22). After the cooling water circulation delay time t2 has elapsed, the cooling water on / off valve controller 53 controls the opening of the cooling water on / off valve 16 to resume the circulation of the cooling water (S23).

図5(b)において、休止可能気筒20bが再度作動を開始する(S31)。次に、壁体温度推定部52で推定された休止可能気筒20bの推定壁体温度tcbが予め定められた壁体温度Te1より高いかどうかを判断する(S32)。推定壁体温度tcbが予め定められた壁体温度Te1より高くなったら、冷却水開閉弁制御部53は冷却水開閉弁16の開き制御を行い冷却水の流通を再開させる(S33)。   In FIG. 5B, the restable cylinder 20b starts to operate again (S31). Next, it is determined whether or not the estimated wall temperature tcb of the restable cylinder 20b estimated by the wall temperature estimator 52 is higher than a predetermined wall temperature Te1 (S32). When the estimated wall temperature tcb becomes higher than the predetermined wall temperature Te1, the cooling water on / off valve control unit 53 controls the opening of the cooling water on / off valve 16 to resume the circulation of the cooling water (S33).

このように、休止可能気筒20bが再作動を開始した当初は、冷却水開閉弁制御部53は冷却水開閉弁16の閉じ制御を行って休止可能気筒20bへの冷却水の流通を停止させ続け、所定の条件を充足して初めて冷却水開閉弁16の開き制御を行って冷却水の流通を再開させることにより、休止可能気筒20bの壁体温度の上昇が早くなり、休止可能気筒と連続作動気筒の両方の壁体温度を短時間で燃焼効率がよく燃費が良好な温度に到達させることができる。   Thus, at the beginning of the re-activatable cylinder 20b, the cooling water on / off valve control unit 53 performs the closing control of the cooling water on / off valve 16 and continues to stop the flow of the cooling water to the incapable cylinder 20b. Only when a predetermined condition is satisfied, the opening control of the cooling water on / off valve 16 is controlled to resume the circulation of the cooling water, so that the temperature of the wall of the restable cylinder 20b is increased rapidly, so that the restable cylinder and the continuous operation are continued. The wall temperature of both cylinders can reach a temperature with good combustion efficiency and good fuel efficiency in a short time.

複数の休止可能気筒20bを再作動させるときは、その再作動は同時である必要はなく、それぞれ独立して再作動させることができる。また、冷却水開閉弁16の開き制御について上述した要件も、休止可能気筒20bそれぞれに対して独立して設定することができる。   When the plurality of restable cylinders 20b are reactivated, the reactivations do not need to be performed at the same time, and can be reactivated independently. Further, the above-described requirements for the opening control of the cooling water on / off valve 16 can also be set independently for each of the restable cylinders 20b.

[他の実施形態]
第1実施形態では気筒ごとに分岐流路11bを形成したが、分岐流路11bが複数であれば複数の休止可能気筒20bを1つの分岐流路11bで接続してもよい。図6に、2つの休止可能気筒20bを直列に接続した分岐流路11bを2つ設けた内燃機関冷却制御装置1の模式図を示す。
[Other Embodiments]
In the first embodiment, the branch flow path 11b is formed for each cylinder. However, if there are a plurality of branch flow paths 11b, a plurality of restable cylinders 20b may be connected by one branch flow path 11b. FIG. 6 shows a schematic diagram of the internal combustion engine cooling control device 1 provided with two branch flow paths 11b in which two restable cylinders 20b are connected in series.

第1実施形態においては、直列に配置された気筒20のうち両端を連続作動気筒20aとし、それ以外を休止可能気筒20bとしたが、連続作動気筒20aと休止可能気筒20bの配置はこれに限られず、任意の配置を採用することができる。図7に、連続作動気筒20aと休止可能気筒20bを交互に配置した内燃機関冷却制御装置1の模式図を示す。   In the first embodiment, both ends of the cylinders 20 arranged in series are continuously operated cylinders 20a, and the other cylinders are deactivated cylinders 20b. However, the arrangement of the continuously activated cylinders 20a and the deactivated cylinders 20b is not limited thereto. Instead, any arrangement can be employed. FIG. 7 is a schematic diagram of the internal combustion engine cooling control device 1 in which continuously operated cylinders 20a and restable cylinders 20b are alternately arranged.

第1実施形態において、冷却水開閉弁16は、休止可能気筒20bのウォータジャケットへ冷却水を流通させ及び遮断する開閉弁であったが、流路を切り換える切換弁を用いる構成にしてもよい。図8に、冷却水切換弁17を用いた内燃機関冷却制御装置1の模式図を示す。冷却水切換弁17は、本発明に係る調節部の一例である。この場合、ウォータジャケットの上流側で分岐流路11bからさらに分岐する新たな分岐流路11cを形成し、分岐流路11bと分岐流路11cとの分岐点に冷却水切換弁17を設ける。分岐流路11cはウォータジャケットの内部を流通せずにウォータジャケットの下流側で流路11と合流するように形成されている。休止可能気筒20bが作動しているときは、冷却水切換弁17は分岐流路11bに冷却水を流通させるように設定されている。休止可能気筒20bが休止し休止可能気筒20bへの冷却水の流通を遮断するときには、冷却水切換弁17の流路を切り換え、冷却水が分岐流路11cを流通するようにする。   In the first embodiment, the cooling water on / off valve 16 is an on / off valve that circulates and shuts off the cooling water to / from the water jacket of the incapable cylinder 20b. FIG. 8 shows a schematic diagram of the internal combustion engine cooling control apparatus 1 using the cooling water switching valve 17. The cooling water switching valve 17 is an example of an adjusting unit according to the present invention. In this case, a new branch channel 11c that further branches from the branch channel 11b is formed on the upstream side of the water jacket, and the cooling water switching valve 17 is provided at the branch point between the branch channel 11b and the branch channel 11c. The branch channel 11c is formed so as to join the channel 11 on the downstream side of the water jacket without flowing through the water jacket. When the restable cylinder 20b is operating, the cooling water switching valve 17 is set so that the cooling water flows through the branch flow path 11b. When the stoppable cylinder 20b is stopped and the flow of the cooling water to the stoppable cylinder 20b is shut off, the flow path of the cooling water switching valve 17 is switched so that the cooling water flows through the branch flow path 11c.

第1実施形態では直列6気筒の内燃機関の一部の気筒を休止可能気筒20bにしたが、内燃機関の形式はこれに限られるものではない。例えば、6気筒以外の直列多気筒内燃機関やV型多気筒内燃機関の一部の気筒、さらにはV型多気筒内燃機関の片バンク全体の気筒を休止可能気筒20bにしてもよい。図9に、V型8気筒内燃機関に内燃機関冷却制御装置1を適用した模式図を示す。   In the first embodiment, some cylinders of the in-line 6-cylinder internal combustion engine are set to the deactivatable cylinder 20b, but the type of the internal combustion engine is not limited to this. For example, some cylinders of an in-line multi-cylinder internal combustion engine other than six cylinders or a V-type multi-cylinder internal combustion engine, or the entire cylinder of one bank of the V-type multi-cylinder internal combustion engine may be the restable cylinder 20b. FIG. 9 shows a schematic diagram in which the internal combustion engine cooling control device 1 is applied to a V-type 8-cylinder internal combustion engine.

上述した各実施形態は可能な限り組み合わせて実施してもよい。   The above embodiments may be combined as much as possible.

本発明は、複数の気筒を有し且つその一部の気筒が作動休止可能に構成されている内燃機関への冷却水の流通及び遮断を制御する内燃機関冷却制御装置に利用することができる。   The present invention can be used in an internal combustion engine cooling control device that controls the flow and shut-off of cooling water to an internal combustion engine that has a plurality of cylinders and that some of the cylinders are configured to be inoperative.

1:内燃機関冷却制御装置
11:流路
11a、11b、11c:分岐流路
12:電動ポンプ
16:冷却水開閉弁
17:冷却水切換弁
20:気筒
20a:連続作動気筒
20b:休止可能気筒
44:第1冷却水温度センサ
45:第2冷却水温度センサ
51:気筒作動制御部
52:壁体温度推定部
53:冷却水開閉弁制御部
1: Internal combustion engine cooling control device 11: flow passages 11a, 11b, 11c: branch flow passage 12: electric pump 16: cooling water on / off valve 17: cooling water switching valve 20: cylinder 20a: continuously operated cylinder 20b: restable cylinder 44 : 1st cooling water temperature sensor 45: 2nd cooling water temperature sensor 51: Cylinder operation control part 52: Wall body temperature estimation part 53: Cooling water on-off valve control part

Claims (4)

複数の気筒を有しており且つその全部又は一部の気筒が直列に配置されている内燃機関と、
前記直列に配置されている気筒の一部であって、前記内燃機関の作動中に燃焼を休止することができる休止可能気筒と、
前記内燃機関に冷却水を循環させるポンプと、
前記休止可能気筒に前記冷却水を流通させる複数の流路と
前記冷却水の流通を調節するよう前記複数の流路のそれぞれに対応している複数の調節部と、
前記複数の調節部における前記冷却水の流通の調整を夫々独立して制御する調節制御部と、
を備えた内燃機関冷却制御装置。
An internal combustion engine having a plurality of cylinders and all or some of the cylinders arranged in series;
A part of the cylinders arranged in series, the resting cylinder capable of pausing combustion during operation of the internal combustion engine;
A pump for circulating cooling water to the internal combustion engine;
A plurality of flow paths through which the cooling water flows to the restable cylinder; and a plurality of adjustment sections corresponding to the plurality of flow paths to adjust the flow of the cooling water;
An adjustment control unit that independently controls the adjustment of the flow of the cooling water in the plurality of adjustment units;
An internal combustion engine cooling control apparatus comprising:
前記複数の流路は前記休止可能気筒のそれぞれの気筒に対応して設けられている請求項1に記載の内燃機関冷却制御装置。   The internal combustion engine cooling control device according to claim 1, wherein the plurality of flow paths are provided corresponding to respective cylinders of the restable cylinder. 前記休止可能気筒は、前記直列に配置されている気筒の両端に配置された気筒以外の気筒である請求項1に記載の内燃機関冷却制御装置。   2. The internal combustion engine cooling control device according to claim 1, wherein the restable cylinders are cylinders other than cylinders arranged at both ends of the cylinders arranged in series. 前記調節制御部は、前記休止可能気筒が休止する前の内燃機関の作動状態に基づいて前記調節部に前記冷却水の流通を遮断させる制御を行う請求項1に記載の内燃機関冷却制御装置。   2. The internal combustion engine cooling control device according to claim 1, wherein the adjustment control unit controls the adjustment unit to block the flow of the cooling water based on an operating state of the internal combustion engine before the stoppable cylinder is stopped.
JP2011232062A 2011-10-21 2011-10-21 Internal combustion engine cooling control device Pending JP2013087759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232062A JP2013087759A (en) 2011-10-21 2011-10-21 Internal combustion engine cooling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232062A JP2013087759A (en) 2011-10-21 2011-10-21 Internal combustion engine cooling control device

Publications (1)

Publication Number Publication Date
JP2013087759A true JP2013087759A (en) 2013-05-13

Family

ID=48531905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232062A Pending JP2013087759A (en) 2011-10-21 2011-10-21 Internal combustion engine cooling control device

Country Status (1)

Country Link
JP (1) JP2013087759A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203817A (en) * 1981-06-10 1982-12-14 Mazda Motor Corp Cooler for number of cylinders control engine
JPS6035113A (en) * 1983-08-05 1985-02-22 Mazda Motor Corp Engine cooling apparatus
JP3733550B2 (en) * 2000-12-05 2006-01-11 愛三工業株式会社 Engine cooling system
JP2009008036A (en) * 2007-06-29 2009-01-15 Honda Motor Co Ltd Cooling control device for water-cooled multicylinder internal combustion engine with cylinder deactivation mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203817A (en) * 1981-06-10 1982-12-14 Mazda Motor Corp Cooler for number of cylinders control engine
JPS6035113A (en) * 1983-08-05 1985-02-22 Mazda Motor Corp Engine cooling apparatus
JP3733550B2 (en) * 2000-12-05 2006-01-11 愛三工業株式会社 Engine cooling system
JP2009008036A (en) * 2007-06-29 2009-01-15 Honda Motor Co Ltd Cooling control device for water-cooled multicylinder internal combustion engine with cylinder deactivation mechanism

Similar Documents

Publication Publication Date Title
CN108699945B (en) Cooling device and control method for internal combustion engine for vehicle
JP5403171B2 (en) Engine cooling system
JP2015172355A (en) Internal combustion engine cooling device
JP2011047305A (en) Internal combustion engine
JP2008232031A (en) Exhaust heat recovery device
JP6148787B2 (en) Control device for internal combustion engine and control method for cooling device
JP4292888B2 (en) Engine cooling system
WO2016043229A1 (en) Cooling system control device and cooling system control method
JP5565283B2 (en) Cooling device for internal combustion engine
JP2013087758A (en) Internal combustion engine cooling control device
WO2013011768A1 (en) Engine cooling circuit
JP6607527B2 (en) Vehicle control device
WO2009113366A1 (en) Cooling system for internal combustion engine
JP2013087759A (en) Internal combustion engine cooling control device
JP4172296B2 (en) Control device for internal combustion engine
JP5187203B2 (en) Engine exhaust structure
JP6911634B2 (en) Internal combustion engine cooling control device
JP6548148B2 (en) Vehicle control device
JP2009287455A (en) Cooling device of internal combustion engine
JP4492240B2 (en) Engine cooling system
JP2014125974A (en) Internal combustion engine
JP6365179B2 (en) Control device for internal combustion engine
JP6687902B2 (en) Direct injection engine cooling system
US8434452B2 (en) Control device for internal combustion engine
JP2008157102A (en) Cooling device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104