JPS603476A - Fuel supply controller - Google Patents

Fuel supply controller

Info

Publication number
JPS603476A
JPS603476A JP11078583A JP11078583A JPS603476A JP S603476 A JPS603476 A JP S603476A JP 11078583 A JP11078583 A JP 11078583A JP 11078583 A JP11078583 A JP 11078583A JP S603476 A JPS603476 A JP S603476A
Authority
JP
Japan
Prior art keywords
fuel
air
intake passage
fuel injection
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11078583A
Other languages
Japanese (ja)
Other versions
JPH0416634B2 (en
Inventor
Mineo Kashiwatani
峰雄 柏谷
Yoshiyuki Tanabe
好之 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11078583A priority Critical patent/JPS603476A/en
Publication of JPS603476A publication Critical patent/JPS603476A/en
Publication of JPH0416634B2 publication Critical patent/JPH0416634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/043Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve

Abstract

PURPOSE:To improve distribution property of mixture to each cylinder to provide a stable air-fuel ratio by providing a guide plate along an intake flow between a Venturi portion of an intake path and a case for supporting a fuel injection valve. CONSTITUTION:The lower ends of guide plates 11a, 11b are formed to diverge to the right and left of an injection hole 10 so that an angle made by the lower end faces of both guide plates 11 is equalized to the maximum angle of fuel injection. Air guided from an air duct path to an intake path 1 is divided into four at a Venturi portion 6 by a stay 4a and the guide plates 11a, 11b perpendicular thereto to be conducted to the periphery of a throttle valve 5 so that the flow of intake air is put in order. Thus, the air is uniformly mixed with fuel sprayed from a fuel injection valve 2 to form a homogeneous mixture and improve distribution property to each cylinder.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動車等の内燃機関に供給する燃料を運転状態
に応じて制御する供給燃料制御装置に係り、特に、絞り
弁の上流側吸気通路に燃料噴射弁を1個設置した単点式
の供給燃料制御装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel supply control device that controls fuel supplied to an internal combustion engine of an automobile or the like according to operating conditions, and particularly relates to a fuel supply control device that controls fuel supplied to an internal combustion engine of an automobile or the like according to operating conditions. This invention relates to a single-point type fuel supply control device equipped with one fuel injection valve.

〔発明の背景〕[Background of the invention]

絞シ弁の上流に燃料噴射弁を設置して内燃機関に混合気
を供給する単点式の供給燃料制御装置は、絞υ弁に向っ
て円錐状に燃料を噴射させているので吸気通路内には略
一様に燃料を分布させることができる。しかるに吸気通
路を通る空気は、エアクリーナ、エアダクト通路を経て
吸気通路の入口に到り、更にベンチュリ部を通って絞シ
弁の周辺へと導入されるので、上記エアダクト通路やベ
ンチュリ部の燃料通路用ステーの影響で一様な流れとは
ならない。
A single-point fuel supply control device, which installs a fuel injection valve upstream of the throttle valve and supplies the mixture to the internal combustion engine, injects fuel in a conical shape toward the throttle valve, so there is no fuel inside the intake passage. The fuel can be distributed substantially uniformly. However, the air passing through the intake passage passes through the air cleaner and air duct passage, reaches the entrance of the intake passage, and then passes through the venturi section and is introduced around the throttle valve. The flow is not uniform due to the influence of the stay.

したがって、内燃機関へ供給される混合気は所によって
濃淡が生じ、これがインテークマニホールドの分岐部ま
で波及して各気筒への燃料分配性を悪化させていた。ま
た、燃料噴射弁から噴射された燃料の噴霧は、その支持
ケースの下端部にまつわシ付着し、大きな燃料滴に成長
して間欠的に落下して混合気の空燃比を変動させるとい
う欠点を生じていた。これを次の図によって説明する。
Therefore, the air-fuel mixture supplied to the internal combustion engine is concentrated in some places, and this spreads to the branching part of the intake manifold, deteriorating the fuel distribution to each cylinder. Another drawback is that the fuel spray injected from the fuel injection valve adheres to the lower end of the support case, grows into large fuel droplets, and falls intermittently, causing fluctuations in the air-fuel ratio of the mixture. was occurring. This will be explained using the following diagram.

第1図は特開昭57−73858号公報に記載の技術を
改良した供給燃料制御装置の平面図で、第2図は第1図
のA−B断面図である。吸気通路1の中心で絞り弁5の
上流には支持ケース6に収容されて燃料噴射弁2が設置
されている。この支持ケース6の左右方向は比較的厚肉
のステー43によってベンチュリ部9に接続され、その
中には燃料通路3a、3bが形成されている。また、支
持ケース6の下端には燃料の噴出孔10が開口し、ステ
ー4aの上部には皿を伏せた形状のステー4bが設置さ
れて燃料噴射弁2を支持ケース6内に固定している。
FIG. 1 is a plan view of a fuel supply control device improved from the technique described in Japanese Patent Application Laid-Open No. 57-73858, and FIG. 2 is a cross-sectional view taken along line AB in FIG. At the center of the intake passage 1 and upstream of the throttle valve 5, a fuel injection valve 2 is installed and housed in a support case 6. The left and right sides of the support case 6 are connected to the venturi portion 9 by a relatively thick stay 43, and fuel passages 3a and 3b are formed therein. Further, a fuel injection hole 10 is opened at the lower end of the support case 6, and a stay 4b in the shape of a face down is installed on the upper part of the stay 4a to fix the fuel injection valve 2 within the support case 6. .

第1図に示すごとく吸気通路1のベンチュリ部9はステ
ー4a、4bによって2分されて吸気通路1a、lbを
形成し、吸気通路1aの側方の本体中にはバイパス空気
路7が形成されてその中にエア70−センサ8が設置し
である。
As shown in FIG. 1, the venturi portion 9 of the intake passage 1 is divided into two by stays 4a and 4b to form intake passages 1a and lb, and a bypass air passage 7 is formed in the main body on the side of the intake passage 1a. An air 70-sensor 8 is installed therein.

このように構成された従来の装置は、燃料通路3をステ
ー4a内に形成する必要があるのでステー4aは厚くな
っていた。即ち、3Tnm径の燃料通路3を形成するた
めにステー4aは10m+n余の厚さとしていだので、
吸気流はこれによって乱される。また、噴出孔10は肉
厚の支持ケース6の下端に形成されているのでこの付近
の吸気流は乱れて噴出孔10を出た噴霧がこの近くに漂
って付着し、燃料滴に集合して間欠的に絞り弁5に落下
する。しだがって、その混合気の空燃比はその都度変化
するという欠点を生じていたのである。
In the conventional device configured in this manner, the stay 4a is thick because it is necessary to form the fuel passage 3 inside the stay 4a. That is, in order to form the fuel passage 3 with a diameter of 3Tnm, the stay 4a has a thickness of more than 10m+n, so
The inspiratory flow is thereby disturbed. In addition, since the nozzle hole 10 is formed at the lower end of the thick support case 6, the intake air flow in this area is disturbed, and the spray that exits the nozzle hole 10 drifts and adheres to this area, collecting into fuel droplets. It falls on the throttle valve 5 intermittently. Therefore, the air-fuel ratio of the air-fuel mixture changes each time, which is a drawback.

第3図は第1図の装置のエアクリーナとの接続状態の説
明図である。エンジン室内の配置上の制約で第3図(a
)のような関係位置で接続しているので、吸気通路1a
、lbの流速は大小不均等となる。第3図(b)は第3
図(、)の側面図であるが、このような不均等な吸気流
が各気筒への混合気配分を不均一なものとし、運転性を
低下させるという欠点も生じていた。
FIG. 3 is an explanatory diagram of a state in which the device shown in FIG. 1 is connected to an air cleaner. Due to layout constraints in the engine compartment, Figure 3 (a)
), so the intake passage 1a
, lb flow velocities are uneven in size. Figure 3(b) shows the third
As shown in the side view of FIG. 2, such uneven intake air flow makes the air-fuel mixture distributed unevenly to each cylinder, resulting in a disadvantage that the driveability is degraded.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を解消し、混合気の各気筒
への分配性を改善すると共に、安定した空燃比を維持さ
せるのに好適な供給燃料制御装置を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel supply control device suitable for eliminating the drawbacks of the prior art described above, improving the distribution of air-fuel mixture to each cylinder, and maintaining a stable air-fuel ratio.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、吸気通路のベンチュリ部
と燃料噴射弁の支持ケースとの間に吸気流に沿って薄肉
のガイド板を設け、このガイド板の下端を燃料噴射最大
角に合致させるごとく形成してなることにある。
A feature of the present invention is that a thin guide plate is provided along the intake air flow between the venturi part of the intake passage and the support case of the fuel injection valve, and the lower end of this guide plate is aligned with the maximum fuel injection angle. It is about forming and becoming like that.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例である供給燃料制御装置の平
面図で、第5図は第4図のC−D断面図である。第1図
と同じ部分には同一符号を付しであるが、この場合は燃
料通路3を形成したステー43とは直角の方向にベンチ
ュリ部9と支持ケース6を接続する薄肉のガイド板11
a、llbを吸気流に沿って設けである。また、これら
ガイド板11a、llbの下端は第5図に示すごとく噴
出孔10の左右にハの字状に開いて形成してあり、との
両ガイド板11の下端面のなす角は燃料噴射の最大角と
等しくしである。なお、ガイド板]、 1 aの側方の
本体内にはバイパス空気路7が形成され、その中にエア
フローセンサ8が設置しである。
FIG. 4 is a plan view of a fuel supply control device which is an embodiment of the present invention, and FIG. 5 is a sectional view taken along line CD in FIG. 4. The same parts as in FIG. 1 are given the same reference numerals, but in this case, a thin guide plate 11 connects the venturi part 9 and the support case 6 in a direction perpendicular to the stay 43 forming the fuel passage 3.
a, llb are provided along the intake flow. The lower ends of these guide plates 11a and llb are formed to open in a V-shape on the left and right sides of the nozzle 10, as shown in FIG. is equal to the largest angle of . Note that a bypass air passage 7 is formed in the main body on the side of the guide plate 1a, and an air flow sensor 8 is installed in the bypass air passage 7.

このように構成した供給燃料制御装置は、空気ダクト通
路から吸気通路1に導かれた空気を、ベンチュリ部9で
ステー4aとこれに直角なガイド板11a、llbで4
分割して絞り弁5の周辺へ導いている。したがって吸入
空気の流れは整流された状態となっているので、燃料噴
射弁2よりの燃料噴霧と均一に混合してむらのない混゛
合気を形成することになシ、各気筒への分配性は向上す
る。
The fuel supply control device configured as described above directs the air guided from the air duct passage to the intake passage 1 through the stay 4a at the venturi section 9 and the guide plates 11a and llb perpendicular to the stay 4a.
It is divided and guided around the throttle valve 5. Therefore, the flow of intake air is in a rectified state, so that it mixes uniformly with the fuel spray from the fuel injection valve 2 to form an even mixture, and is distributed to each cylinder. Sexuality improves.

第6図は4気筒内燃機関の排気組成の変化を比較して示
す線図で、排気中のCO,CO2、)−ICの総量をチ
で縦軸に示しである。また、白丸を連ねた実線は本実施
例の第4図の装置の実験値を示し、黒点を連ねた破線は
従来の第1図の装置による実験値を示している。第6図
(a)は無負荷で内燃機関を750r戸で運転した場合
、第6図(b)はロード負荷で40Km/hの速度で運
転した場合、第6図(C)は4/4で2000rPで運
転した場合を示している。
FIG. 6 is a diagram comparing and showing changes in exhaust composition of a four-cylinder internal combustion engine, and the vertical axis indicates the total amount of CO, CO2, )-IC in the exhaust gas. Further, a solid line with white circles indicates the experimental values of the apparatus shown in FIG. 4 of this embodiment, and a broken line with black dots indicates the experimental values with the conventional apparatus of FIG. 1. Figure 6 (a) shows the case when the internal combustion engine is operated at 750 rpm with no load, Figure 6 (b) shows the case when the engine is operated at a speed of 40 km/h with load, and Figure 6 (C) shows 4/4 This shows the case of operation at 2000 rP.

これらのデータを比較すると実線で示す本実施例の装置
が排気組成の変化が少なく、各気筒への燃料配分性が良
いことを示している。また、実験中は各エミッション、
出力、燃費効率等が向上していることが認められた。更
に、燃料滴が間欠的に落下して混合気の空燃比を乱す現
象についても、次の如く改善された。
Comparing these data shows that the device of this embodiment shown by the solid line has less change in exhaust composition and has better fuel distribution to each cylinder. Also, during the experiment, each emission,
It was recognized that output, fuel efficiency, etc. were improved. Furthermore, the phenomenon in which fuel droplets fall intermittently and disturb the air-fuel ratio of the air-fuel mixture has been improved as follows.

第7図は第1図の装置と第4図の装置による運転性を比
較して示す線図で、破線は第1図の装置の測定記録であ
り、実線は第4図の本実施例の装置における測定記録で
ある。第7図(a)は800聯付近でアイドル運転した
時に間欠的に回転数が低下する現象を示しているが、こ
れは燃料滴が落下して混合気が過濃化し運転性が一時低
下することを示している。また、第7図(b)は第7図
(a)と併設させた排気組成の変化を示すもので、破線
で示す第1図の装置のデータには上記回転数の低下と同
期してCO、C02、HC総量の増加を示す小ピークを
生じている。
FIG. 7 is a diagram comparing the operability of the device shown in FIG. 1 and the device shown in FIG. 4. The broken line is the measurement record of the device shown in FIG. This is a measurement record of the device. Figure 7 (a) shows a phenomenon in which the rotational speed drops intermittently when idling at around 800 revs, but this is because fuel droplets fall and the air-fuel mixture becomes over-enriched, causing a temporary drop in drivability. It is shown that. In addition, Fig. 7(b) shows the change in exhaust gas composition in parallel with Fig. 7(a), and the data of the apparatus shown in Fig. 1 indicated by the broken line shows that CO , C02, and a small peak indicating an increase in the total amount of HC.

しかるに実線で示す第4図の装置を用いた場合のデータ
は、上記のよう々小さな谷や小さなピークを生じること
なく平坦となっている。このことは燃料滴下が生じてい
ないことを示している。なお、本実施例の装置の場合で
も噴出孔10からの燃料噴霧の一部はガイド板11a、
llbの下端に付着して時には滴状になることもあるが
、下端面は吸気通路lの壁面に向って傾斜しているので
、その燃料滴は壁面を伝って流下し、その途中で気化し
てしまうと推定される。なお、噴出孔10付近に付着す
る燃料量は全体の1φ以下の微量であるので、内壁面を
伝わって流れる間に気化しても混合気の空燃比を乱す程
の影響を与えない。
However, the data obtained when using the apparatus shown in FIG. 4, indicated by the solid line, is flat without producing small valleys or small peaks as described above. This indicates that no fuel dripping occurred. In addition, even in the case of the device of this embodiment, a part of the fuel spray from the jet hole 10 is transferred to the guide plate 11a,
Sometimes it adheres to the lower end of llb and forms a droplet, but since the lower end surface is inclined toward the wall of intake passage l, the fuel droplets flow down the wall and vaporize on the way. It is estimated that the Note that since the amount of fuel adhering to the vicinity of the nozzle hole 10 is very small, less than 1φ in total, even if it vaporizes while flowing along the inner wall surface, it does not have a significant effect on the air-fuel ratio of the air-fuel mixture.

本実施例の供給燃料制御装置は、吸気通路のベンチュリ
部と燃料噴射弁の支持ケースとの間に吸気流に沿って薄
肉のガイド板を設けて、燃料噴射弁への燃料通路を形成
した一対のステーと共に吸気通路内の空気流を整流して
いる。また、上記ガイド板の下端面を傾斜させて吸気路
壁面に連続させているので、噴出孔付近に付着する燃料
滴の発生を抑制し、万一発生しても絞シ弁へ向って滴下
するととがないようにしているので、運転性を向上する
と共に排気組成の変動と悪化を防止することができると
いう効果が得られる。
The fuel supply control device of this embodiment includes a pair of thin guide plates provided along the intake flow between the venturi portion of the intake passage and the support case of the fuel injection valve to form a fuel passage to the fuel injection valve. Together with the stay, it rectifies the airflow in the intake passage. In addition, since the lower end surface of the guide plate is sloped so as to be continuous with the wall surface of the intake passage, the generation of fuel droplets adhering to the vicinity of the nozzle is suppressed, and even if they occur, they will not drip toward the throttle valve. Since the exhaust gas composition is prevented from changing, it is possible to improve the drivability and prevent fluctuations and deterioration of the exhaust gas composition.

〔発明の効果〕 本発明の供給燃料制御装置は、比較的簡単な改造によっ
て各気筒への燃料分配性を向上すると共に安定化し、運
転性、燃費特性及び排気組成を向上させるという効果が
得られる。
[Effects of the Invention] The fuel supply control device of the present invention has the effect of improving and stabilizing fuel distribution to each cylinder through relatively simple modification, and improving drivability, fuel efficiency characteristics, and exhaust composition. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の供給燃料制御装置の平面図、第2図は第
1図のA−B断面図、第3図は第1図の装置のエアクリ
ーナとの接続状態の説明図、第4図は本発明の一実施例
である供給燃料制御装置の平面図、第5図は第4図のC
−D断面図、第6図は4気筒内燃機関の排気組成の変化
を比較して示す線図、第7図は第1図の装置と第4図の
装置による運転性を比較して示す線図である。 1・・・吸気通路、2・・・燃料噴射弁、3・・・燃料
通路、4・・・ステー、訃・・絞シ弁、6・・・支持ケ
ース、7・・・バイバス空気路、8・・・エアフローセ
ンザ、901.ぺ氾B図
Fig. 1 is a plan view of a conventional supply fuel control device, Fig. 2 is a sectional view taken along line A-B in Fig. 1, Fig. 3 is an explanatory diagram of the connection state of the device in Fig. 1 with an air cleaner, and Fig. 4 5 is a plan view of a fuel supply control device which is an embodiment of the present invention, and FIG.
-D sectional view, Figure 6 is a line diagram comparing changes in exhaust composition of a four-cylinder internal combustion engine, Figure 7 is a line diagram comparing drivability between the device in Figure 1 and the device in Figure 4. It is a diagram. DESCRIPTION OF SYMBOLS 1... Intake passage, 2... Fuel injection valve, 3... Fuel passage, 4... Stay, end... Throttle valve, 6... Support case, 7... Bypass air path, 8...Air flow sensor, 901. Flood map B

Claims (1)

【特許請求の範囲】 1、内燃機関に空気を供給する吸気通路と、この吸気通
路内に設けた絞シ弁と、この絞り弁の上流の上記吸気通
路内に設置した燃料噴射弁と、ベンチュリ部の上流側吸
気通路と上記ベンチュリ部の吸気通路とを本体壁内を介
して連通しその中にエアフローセンサを設置したバイパ
ス空気路とを有する供給燃料制御装置において、上記吸
気通路のベンチュリ部と上記燃料噴射弁の支持ケースと
の間に吸気流に沿って薄肉のガイド板全設け、このガイ
ド板の下端を燃料噴射最大角に合致させるごとく形成し
てなることを特徴とする供給燃料制御装置。 2、上記ガイド:反が、上記燃料噴射弁への燃料通路等
を形成したステーとは直角な方向に形成し、上記吸気通
路の流路断面を4等分する部材である特許請求の範囲第
1項記載の供給燃料制御装置。
[Scope of Claims] 1. An intake passage that supplies air to the internal combustion engine, a throttle valve installed in the intake passage, a fuel injection valve installed in the intake passage upstream of the throttle valve, and a venturi. A supply fuel control device having a bypass air passage in which an upstream intake passage of the section and an intake passage of the venturi section communicate with each other through the main body wall and an air flow sensor is installed in the bypass air passage, wherein the venturi section of the intake passage and A supply fuel control device characterized in that a thin guide plate is entirely provided along the intake flow between the support case of the fuel injection valve and the lower end of the guide plate is formed to match the maximum fuel injection angle. . 2. The guide: a member whose opposite side is formed in a direction perpendicular to a stay forming a fuel passage to the fuel injection valve and divides a cross section of the intake passage into four equal parts. The supply fuel control device according to item 1.
JP11078583A 1983-06-22 1983-06-22 Fuel supply controller Granted JPS603476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11078583A JPS603476A (en) 1983-06-22 1983-06-22 Fuel supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078583A JPS603476A (en) 1983-06-22 1983-06-22 Fuel supply controller

Publications (2)

Publication Number Publication Date
JPS603476A true JPS603476A (en) 1985-01-09
JPH0416634B2 JPH0416634B2 (en) 1992-03-24

Family

ID=14544561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078583A Granted JPS603476A (en) 1983-06-22 1983-06-22 Fuel supply controller

Country Status (1)

Country Link
JP (1) JPS603476A (en)

Also Published As

Publication number Publication date
JPH0416634B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
US3965873A (en) Flow equalizing means
US4253441A (en) Fuel supply system for multi-cylinder engine equipped with fuel injector
JP3329935B2 (en) Intake device for internal combustion engine
JPS6215490Y2 (en)
US4873953A (en) Induction port arrangement for internal combustion engine having multiple inlet valves per combustion chamber
JPS603476A (en) Fuel supply controller
US4029063A (en) Intake apparatus for internal combustion engine
JPH022934Y2 (en)
US4038950A (en) Intake manifold of the internal combustion engine
JPH05272432A (en) Fuel injecting valve
JPH07103078A (en) Egr device for cylinder direct injection type engine
JP2861496B2 (en) Intake device for double intake valve type internal combustion engine
JPS63306268A (en) Intake manifold for internal combustion engine
JPS5852367Y2 (en) Fuel injection engine intake system
JPS581653Y2 (en) Fuel supply system for multi-cylinder internal combustion engine
JPS61116026A (en) Intake-air device in internal-combustion engine
JP3786050B2 (en) Intake device for internal combustion engine
JPH0729220Y2 (en) Multi-valve internal combustion engine
JPS59147867A (en) Fuel injection type internal-combustion engine
JPS61234266A (en) Intake apparatus of engine
JPS58160537A (en) Mixer of liquefied gas internal-combustion engine
JP2542030B2 (en) Internal combustion engine intake system
JPH0861190A (en) Fuel injection type engine
JPS59128959A (en) Carburetor
JPS61132773A (en) Air intake device for internal-combustion engine