JPS6034680B2 - Electrode device for electrical heating of hydrocarbon underground resources - Google Patents

Electrode device for electrical heating of hydrocarbon underground resources

Info

Publication number
JPS6034680B2
JPS6034680B2 JP5116880A JP5116880A JPS6034680B2 JP S6034680 B2 JPS6034680 B2 JP S6034680B2 JP 5116880 A JP5116880 A JP 5116880A JP 5116880 A JP5116880 A JP 5116880A JP S6034680 B2 JPS6034680 B2 JP S6034680B2
Authority
JP
Japan
Prior art keywords
oil
pipe
electrode
layer
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5116880A
Other languages
Japanese (ja)
Other versions
JPS56146593A (en
Inventor
利行 小林
武男 井上
宏 寺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5116880A priority Critical patent/JPS6034680B2/en
Priority to CA000375294A priority patent/CA1168282A/en
Publication of JPS56146593A publication Critical patent/JPS56146593A/en
Publication of JPS6034680B2 publication Critical patent/JPS6034680B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 この発明は炭化水素系地下資源を電気刀oする場合に使
用する電極装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode device used in electrocuting hydrocarbon underground resources.

さらに詳しくいえば、地中に存在する高粘度、低流動性
の炭化水素を井戸から生産するに際して、当該炭化水素
の流動性を高めるため地中に通電し加熱するために使用
する電極装置に関するものである。ここでいう「炭化水
素」とは、ベトロリウムまたはオイル、オイルサンド(
タールサンドともよばれる)に含まれるビチューメン(
Bi如men)、オイルシェルに含まれるケロゲン(K
erogen)を指し、以下簡略化のためこれら炭化水
素をオイルと呼ぶことにする。
More specifically, it relates to an electrode device used to heat and energize underground in order to increase the fluidity of hydrocarbons that exist underground, with high viscosity and low fluidity, when produced from wells. It is. “Hydrocarbon” here refers to vetrolium, oil, oil sands (
bitumen (also called tar sands)
Kerogen (K) contained in the oil shell
For simplicity, these hydrocarbons will be referred to as oil hereinafter.

また、「生産」とは、自噴、汲出し、流体移動など油井
か流動性のオイルを取出すこという。地中に存在するオ
イルが流動性を有する場合は、地表より油層に到達する
井戸を掘り、油層に共存するガス圧による自噴、あるい
はポンプによる汲上げ、あるいは一方の井戸より塩水等
の液体を庄入し他方の井戸から流出させるなどの方法で
オイルを生産することが可能である。
In addition, "production" refers to extracting fluid oil from an oil well, such as artesian injection, pumping, and fluid movement. If the oil in the ground has fluidity, it is possible to dig a well from the surface of the earth to reach the oil layer, and use the pressure of the gas coexisting in the oil layer to pump it out, or pump up liquid such as salt water from one well. It is possible to produce oil by entering one well and letting it flow out from the other well.

しかし、地中のオイルの流動性が低い場合は、オイルが
流動するための手段を鰭じなければ生産できない。オイ
ルを流動化させる為の一般的な方法は、加熱によりオイ
ルの粘度を低下させる方法で、流動化に通した温度はオ
イルの個々の性状により異なるが、地中の油層を加熱す
る必要が生ずる。油層の加熱方法として、熱水の注入、
高温高圧水蒸気の注入、地中通電、地中燃焼法(地中の
油層に着火させ空気を送り燃焼させる)、爆薬の利用な
どが提唱されているが、後二者は制御が難しく一般性に
乏しい。
However, if the fluidity of the oil underground is low, production cannot be achieved unless there is a means for the oil to flow. A common method for fluidizing oil is to reduce the viscosity of the oil by heating.The temperature at which the oil is fluidized varies depending on the individual properties of the oil, but it becomes necessary to heat the oil layer underground. . As a method of heating the oil layer, injection of hot water,
Injection of high-temperature, high-pressure steam, underground electrification, underground combustion method (igniting an underground oil layer and blowing air to burn it), and the use of explosives have been proposed, but the latter two are difficult to control and are not widely used. poor.

熱水あるいは高温高圧水蒸気注入法は、油層を加熱しオ
イルの流動性を高めると同時に流動化したオイルを地表
へ流出させることも可能であるが、油層に裂け目などの
通過抵抗の低い個所が存在すると、その個所ばかりを通
り抜け全体に拡散しないおそれがあり、反対に油層が固
く繊密な場合は熱水あるいは蒸気が拡散せず温度が上昇
しがたい。
Hot water or high-temperature, high-pressure steam injection methods can heat the oil layer to increase the fluidity of the oil and at the same time allow the fluidized oil to flow to the surface, but there are places in the oil layer with low passage resistance, such as cracks. If this happens, there is a risk that the oil will pass through only that area and not spread throughout the area.On the other hand, if the oil layer is hard and dense, hot water or steam will not diffuse and the temperature will be difficult to rise.

通電加熱法は油層に複数の井戸を掘り、これら井戸に電
極を設置し、各電極間に電位差を与えて油層の導電性を
利用して加熱するので、油層に裂け目があったり、ある
いは固く繊密であっても全体を加熱しやすい利点がある
In the energization heating method, multiple wells are dug in the oil layer, electrodes are installed in these wells, and a potential difference is applied between each electrode to heat the oil layer using the conductivity of the oil layer. It has the advantage of being easy to heat the whole thing even if it is dense.

しかし、流動化したオイルを取り出すには別の手段が必
要である。そこで、オイル生産の効率を上げる方法とし
て、まず通電法により油層を加熱し、油層が軟化した時
に熱水あるいは高温高圧水蒸気を注入して加熱を続ける
とともに流動化したオイルを取り出す方法が考えられて
いる。この方法に使用する電極装置は、効率よく油層を
加熱するために、油層以外への電流の漏洩をできる限り
避けるよう電気絶縁を施す必要があり、地中の土庄とか
加熱により発生した蒸気または注入された熱水あるいは
高温高圧水蒸気の圧力で破壊しないことが必要であり、
さらに熱水あるいは高温高圧水蒸気が洩れないことが必
要である。この電極装置についてより具体的に説明する
ため、オイルサンドよりオイルを生産する場合の例を以
下に述べる。
However, other means are required to remove the fluidized oil. Therefore, as a method to increase the efficiency of oil production, a method has been considered that first heats the oil layer by applying electricity, and when the oil layer becomes soft, hot water or high-temperature, high-pressure steam is injected to continue heating and extract the fluidized oil. There is. In order to efficiently heat the oil layer, the electrode device used in this method must be electrically insulated to avoid leakage of current outside the oil layer as much as possible, and must be electrically insulated to avoid leakage of current to areas other than the oil layer. It is necessary that the product not be destroyed by the pressure of heated hot water or high-temperature, high-pressure steam.
Furthermore, it is necessary that hot water or high-temperature, high-pressure steam does not leak. In order to explain this electrode device more specifically, an example in which oil is produced from oil sand will be described below.

オイルサンドはタールサンドとも呼ばれ、カナダ、ベニ
ネゼラ、アメリカ合衆国に埋蔵が確認されている。
Oil sands, also known as tar sands, have been found in Canada, Venezuela, and the United States.

ナイルサンド中のオイルは、砂の表面および砂と砂との
間隙に塩水と共存しているが、極めて粘度が高く自然に
存在する状態では流動性を有しない。オイルサンドの層
は狭谷、川岸などで1部露出している他は、大部分地下
200〜50瓜hの深さに数十mの厚さで存在し、オイ
ルサンドを掘り出し地上でオイルを分離するのは経済性
および環境保護の面から制約を受けるため、地中よりオ
イルのみを取り出す必要がある。また、地中の浅い層か
らのオイルの生産は陥没の危険があるため、地下30仇
h以下の層から採取するのが望ましいとされる。通電に
よりオイルサンド層を加熱する場合の従来装置を模型的
に示せば第1図のごとく電極装置が配置される。
Oil in Nile sand coexists with salt water on the surface of the sand and in the interstices between the sand, but it is extremely viscous and has no fluidity in its natural state. The oil sand layer is partially exposed in valleys, riverbanks, etc., but most of the oil sand layer exists at a depth of 200 to 50 meters underground, with a thickness of several tens of meters. Separation is limited by economics and environmental protection, so it is necessary to extract only the oil from underground. Furthermore, since oil production from shallow underground layers is at risk of cave-ins, it is said that it is desirable to extract oil from layers less than 30 meters underground. A conventional device for heating an oil sand layer by applying electricity is schematically shown in which electrode devices are arranged as shown in FIG.

第1図において、1,11は鋼管で作られたケーシング
、2,12はケーシングー,11に接合された絶縁され
たケーシング、3,13は絶縁されたケーシング2,1
2に接合された電極、4,14は電極3,13に電流を
送るケーブルでこれらを併せて電極装置とよぶ。5は電
源装置、6はオイルサンド層、7は電極3,13の間の
電流、8は地上、9はオイルサンド上層、10はオイル
サンド下層である。
In Fig. 1, 1 and 11 are casings made of steel pipes, 2 and 12 are insulated casings joined to casing 11, and 3 and 13 are insulated casings 2 and 1.
Electrodes 4 and 14 connected to electrodes 2 and 14 are cables that send current to electrodes 3 and 13, and these are collectively called an electrode device. 5 is a power supply device, 6 is an oil sand layer, 7 is a current between the electrodes 3 and 13, 8 is the ground, 9 is an oil sand upper layer, and 10 is an oil sand lower layer.

オイルサンド層6に埋設した電極3,13に地上の電源
装置5よりケーブル4,14を通じて電圧が印加される
と、オイルサンド層6中の電気抵抗に応じて電流7が流
れてジュール損が発生しオイルサンド層6が加熱される
。このとき電流7の1部はオイルサンド上層9およびオ
イルサンド下層10へも流れるが、ケーシング1,11
と電極3,13の間に絶縁されたケーシング2,12が
介在するため、電流7の洩れは小さく抑えられる。オイ
ルサンド層9が温まれば通電を止め、電極装置の一方の
ケーシング1の上部から熱水あるいは高温高圧水蒸気を
圧入すれば、オイルサンド層6中を通り、他方の電極装
置のケーシング11よりオイルとともに流出する。熱水
あるいは高温高圧水蒸気の流出をよくするため、電極3
,13には紬孔があげられるのが普通である。第1図に
示すような従来装置においては、ケーシングー,11を
通って、オイルサンド上層9に流れる電力損失が大きい
When a voltage is applied to the electrodes 3, 13 buried in the oil sand layer 6 from the ground power supply 5 through the cables 4, 14, a current 7 flows according to the electrical resistance in the oil sand layer 6, generating Joule loss. Then, the oil sand layer 6 is heated. At this time, a part of the current 7 also flows to the oil sand upper layer 9 and the oil sand lower layer 10, but the casings 1, 11
Since the insulated casings 2 and 12 are interposed between the electrodes 3 and 13, leakage of the current 7 can be suppressed to a small level. When the oil sand layer 9 warms up, the electricity is turned off and hot water or high-temperature, high-pressure steam is injected from the upper part of the casing 1 of one of the electrode devices. It flows out along with the water. In order to improve the outflow of hot water or high-temperature and high-pressure steam, the electrode 3
, 13 usually includes Tsumugi-kou. In the conventional device as shown in FIG. 1, there is a large power loss flowing through the casing 11 and into the upper layer 9 of the oil sand.

また、この電力損失を小さくしようとすれば、絶縁され
たケーシング2,12の部分を長くする必要があり、製
作費が高くなる。また、通電時に、電極3,「13が過
熱され、ケーシング2,12の絶縁物が熱に耐えられな
いという欠点があった。さらに、熱水を通す際、ケーシ
ング1,11及び絶縁れたケ−シング2,12は断熱が
充分でないので熱ロスが大きいという欠点もあった。こ
の発明は、上記欠点を除去し、オイルサンド層を効率よ
く加熱する炭化水素系地下資源加熱用電極装置を提供す
る。
Furthermore, in order to reduce this power loss, it is necessary to lengthen the insulated casings 2 and 12, which increases manufacturing costs. In addition, when electricity is applied, the electrodes 3 and 13 are overheated, and the insulation of the casings 2 and 12 cannot withstand the heat.Furthermore, when passing hot water, the casings 1 and 11 and the insulated - Things 2 and 12 had the disadvantage of large heat loss due to insufficient insulation.The present invention eliminates the above disadvantages and provides an electrode device for heating hydrocarbon-based underground resources that efficiently heats oil sand layers. do.

以下、図について説明する。The figures will be explained below.

第2図において、3,6,9は従来と同様である。15
は第1及び第2の管体15a,15bからなる主導管、
16は両替体間15a,15b間に介在し両菅体15a
,15b間を絶縁した第1の絶縁部材、17は第2の絶
縁部材で、第1の絶縁部材16を覆い第1の絶縁部材1
6の近傍の主導管15の外周を園縞している。
In FIG. 2, 3, 6, and 9 are the same as the conventional one. 15
is a main pipe consisting of first and second pipe bodies 15a and 15b,
16 is interposed between the exchange bodies 15a and 15b, and is connected to both the exchange bodies 15a.
, 15b, and 17 is a second insulating member that covers the first insulating member 16 and insulates the first insulating member 1.
The outer periphery of the main pipe 15 near the main pipe 15 is lined with stripes.

18は主導管15と電極3とを連結したカップリング、
19は電極13と主導管15との間を水密に仕切った仕
切部村、2川ま主導管15を貫通し仕切部材19を介し
て電極3と接続された電気導体、21は主導管15内に
配置され仕切部材19の近傍で閉口した絶縁油供給管、
22は主導管15内に配置され仕切部材を水密に貫通し
て電極3内で開□した水管である。
18 is a coupling connecting the main pipe 15 and the electrode 3;
Reference numeral 19 denotes a partition that watertightly partitions the electrode 13 and the main pipe 15; an electric conductor passes through the main pipe 15 between the two rivers and is connected to the electrode 3 via the partition member 19; and 21 indicates a part inside the main pipe 15. an insulating oil supply pipe disposed in and closed near the partition member 19;
A water pipe 22 is disposed within the main pipe 15, penetrates the partition member in a watertight manner, and is opened within the electrode 3.

23は電極3を挿入するために堀つた穴24と主導管1
5とのすきまを埋めるセメントで、底部は電極3の近傍
に達している。
23 is a hole 24 drilled to insert the electrode 3 and the main pipe 1
The cement fills the gap between electrode 5 and the bottom reaches near electrode 3.

25は塩水や熱水がセメント23と主導管15とのすき
まを上昇しないように設けられた閉塞物である。
A blocker 25 is provided to prevent salt water or hot water from rising through the gap between the cement 23 and the main pipe 15.

オイルサンド層6を加熱するには、第2図において、水
管22より矢印Aの方向に塩水を送り、電極3内を通っ
て関口部3aから矢印Bのように電極3挿入用に掘った
穴を満たす。
To heat the oil sand layer 6, in FIG. 2, salt water is sent from the water pipe 22 in the direction of arrow A, passes through the electrode 3, and is drilled into a hole for inserting the electrode 3 as shown by arrow B from the entrance 3a. satisfy.

次に、絶縁油供給管21より矢印Cの方向に絶縁油を送
り矢印D方向に循環させ、電流を流してオイルサンド層
6を電気加熱する。一定期間電気加熱後、通電を中止し
、水管22に塩水に変えて熱水を送って、熱水にる加熱
をする。以下、従来装置と同様にして、オイルサンド層
6を加熱してオイルを取り出す。この発明によると、主
導管を構成する管体間を第1の絶縁部材で絶縁したので
、主導管を流れる電流を阻止できるためオイルサンド上
層を加熱する電力損失がなくなった。
Next, insulating oil is fed from the insulating oil supply pipe 21 in the direction of arrow C and circulated in the direction of arrow D, and a current is applied to electrically heat the oil sand layer 6. After electrical heating for a certain period of time, the electricity is turned off, and hot water is sent instead of salt water to the water pipe 22 to heat the hot water. Thereafter, the oil sand layer 6 is heated and oil is taken out in the same manner as in the conventional apparatus. According to this invention, since the pipe bodies constituting the main conduit are insulated by the first insulating member, it is possible to block the current flowing through the main conduit, thereby eliminating power loss due to heating the upper layer of the oil sand.

また、絶縁油を循環させることにより過熱が緩和される
ので、絶縁材の耐久性が向上した。さらに、絶縁油が断
熱体の働きをし、熱水によるオイルサンド層6の加熱時
の熱ロスを少なくすることができた。従って、従来装置
に比較して、非常に熱効率が向上できた。
Additionally, by circulating the insulating oil, overheating is alleviated, improving the durability of the insulating material. Furthermore, the insulating oil acts as a heat insulator, making it possible to reduce heat loss when the oil sand layer 6 is heated by hot water. Therefore, compared to conventional equipment, thermal efficiency was significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置の構成図、第2図はこの発明の一実
施例を示す断面図である。 図において、3は電極、3aは関口部、15は主導管、
15a,15bは管体、16は第1の絶縁部材、17は
第2の絶縁部材、19は仕切部材、20Gま電気導体、
21は絶縁油供給管、22は水管である。なお各図中同
一符号は同一又は相当部分を示す。第1図第2図
FIG. 1 is a block diagram of a conventional device, and FIG. 2 is a sectional view showing an embodiment of the present invention. In the figure, 3 is the electrode, 3a is the entrance part, 15 is the main pipe,
15a, 15b are tube bodies, 16 is a first insulating member, 17 is a second insulating member, 19 is a partition member, 20G electric conductor,
21 is an insulating oil supply pipe, and 22 is a water pipe. Note that the same reference numerals in each figure indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の管体間が連結された主導管、この主導管と
水密に連結され開口部を有する管状の電極、この電極と
上記主導管との間を水密に仕切つた仕切部材、上記主導
管を貫通し上記電極と接続された電気導体、上記主導管
内に配置された上記仕切部材を水密に貫通して上記電極
内で開口した水管、上記主導管内に配置され上記仕切部
材の近傍で開口した絶縁油供給管、上記各管体間に介在
し上記各管体間を絶縁する第1の絶縁部材、この第1の
絶縁部材を覆い上記第1の絶縁部材の近傍の上記主導管
の外周を囲繞した第2の絶縁部材を備えたことを特徴と
する炭化水素系地下資源の電気加熱用電極装置。
1. A main pipe in which a plurality of pipe bodies are connected, a tubular electrode that is watertightly connected to the main pipe and has an opening, a partition member that partitions the electrode and the main pipe in a watertight manner, and the main pipe. an electric conductor that penetrates through the main conduit and is connected to the electrode; a water pipe that watertightly penetrates the partition member disposed within the main conduit and opens within the electrode; a water pipe disposed within the main conduit and opens in the vicinity of the partition member. an insulating oil supply pipe, a first insulating member interposed between each of the pipe bodies and insulating each of the pipe bodies, covering the first insulating member and covering the outer periphery of the main pipe in the vicinity of the first insulating member; An electrode device for electrically heating hydrocarbon-based underground resources, characterized by comprising a surrounding second insulating member.
JP5116880A 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources Expired JPS6034680B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5116880A JPS6034680B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources
CA000375294A CA1168282A (en) 1980-04-14 1981-04-13 Electrode device for electrically heating underground deposits of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116880A JPS6034680B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources

Publications (2)

Publication Number Publication Date
JPS56146593A JPS56146593A (en) 1981-11-14
JPS6034680B2 true JPS6034680B2 (en) 1985-08-09

Family

ID=12879287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116880A Expired JPS6034680B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources

Country Status (2)

Country Link
JP (1) JPS6034680B2 (en)
CA (1) CA1168282A (en)

Also Published As

Publication number Publication date
JPS56146593A (en) 1981-11-14
CA1168282A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
US4412124A (en) Electrode unit for electrically heating underground hydrocarbon deposits
US4730671A (en) Viscous oil recovery using high electrical conductive layers
US3211220A (en) Single well subsurface electrification process
US4926941A (en) Method of producing tar sand deposits containing conductive layers
CA2049627C (en) Recovering hydrocarbons from hydrocarbon bearing deposits
US3614986A (en) Method for injecting heated fluids into mineral bearing formations
US5060726A (en) Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
US8091632B2 (en) Method and device for the in-situ extraction of a hydrocarbon-containing substance from an underground deposit
US5623576A (en) Downhole radial flow steam generator for oil wells
US6269876B1 (en) Electrical heater
EP0940558B1 (en) Wellbore electrical heater
RU2610459C2 (en) One-piece joint for insulated conductors
US11306570B2 (en) Fishbones, electric heaters and proppant to produce oil
Ali et al. Electrical Heating—Doing the Same Thing Over and Over Again…
Ghannadi et al. Overview of performance and analytical modeling techniques for electromagnetic heating and applications to steam-assisted-gravity-drainage process startup
US9970275B2 (en) Em and combustion stimulation of heavy oil
CA1165360A (en) Electrode device for electrically heating underground deposits of hydrocarbons
JPS6034680B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015108B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5944480B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6034679B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015105B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015109B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015107B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5945070B2 (en) Electrode device for electrical heating of hydrocarbon underground resources