JPS6034679B2 - Electrode device for electrical heating of hydrocarbon underground resources - Google Patents

Electrode device for electrical heating of hydrocarbon underground resources

Info

Publication number
JPS6034679B2
JPS6034679B2 JP5116680A JP5116680A JPS6034679B2 JP S6034679 B2 JPS6034679 B2 JP S6034679B2 JP 5116680 A JP5116680 A JP 5116680A JP 5116680 A JP5116680 A JP 5116680A JP S6034679 B2 JPS6034679 B2 JP S6034679B2
Authority
JP
Japan
Prior art keywords
oil
electrode
layer
pipe
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5116680A
Other languages
Japanese (ja)
Other versions
JPS56146592A (en
Inventor
利行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5116680A priority Critical patent/JPS6034679B2/en
Publication of JPS56146592A publication Critical patent/JPS56146592A/en
Publication of JPS6034679B2 publication Critical patent/JPS6034679B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 この発明は炭化水素系地下資源を電気加熱する場合に使
用する電極装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode device used for electrically heating hydrocarbon underground resources.

さらに詳しくいえば、地中に存在する高粘度、低流動性
の炭化水素を井戸から生産するに際して、当該炭化水素
の流動性を高めるため地中に通電し加熱するために使用
するため使用する電極装置に関するものである。ここで
いう「炭化水素」とは、ベトロリウムまたはオイル、オ
イルサンド(タールサンドともよばれる)に含まれるビ
チューメン(B肌men)、オイルシェルに含まれるケ
ロゲン(Kerogen)を指し、以下簡略化のためこ
れら炭化水素をオイルと呼ぶことにする。
More specifically, when producing hydrocarbons with high viscosity and low fluidity that exist underground from wells, electrodes are used to heat and conduct electricity underground in order to increase the fluidity of the hydrocarbons. It is related to the device. The term "hydrocarbons" used here refers to vetrolium or oil, bitumen contained in oil sands (also called tar sands), and kerogen contained in oil shells. Let's call hydrocarbons oil.

また、「生産」とは、自噴、汲出し、流体移送など油井
から流動性のオイルを取出すことをいう。地中に存在す
るオイルが流動性を有する場合は、地表より油層に到達
する井戸を掘り、油層に共存するガス圧による自噴、あ
るいはポンプによる汲上げ、あるいは一方の井戸より塩
水等の液体を圧入し他方の井戸から流出させるなどの方
法がオイルを生産することが可能である。
Furthermore, "production" refers to the extraction of fluid oil from an oil well, such as artesian injection, pumping, and fluid transfer. If the oil existing underground has fluidity, a well is dug to reach the oil layer from the surface of the earth, and it can be self-injected by the pressure of the gas coexisting in the oil layer, pumped up, or injected with liquid such as salt water from one well. It is possible to produce oil by draining one well from the other.

しかし、地中のオイルの流動性が低い場合は、オイルが
流動するための手段を講じなければ生産できない。オイ
ルを流動化させる為の一般的な方法は、加熱によりオイ
ルの粘度を低下させる方法で、流動化に適した温度はオ
イルの個々の性状により異なるが、地中の油層と加熱す
る必要が生ずる。油層の加熱方法として、熱水の注入、
高温高圧水蒸気の注入、地中通電、地中燃焼法(地中の
油層に着火させ空気を送り、燃焼させる)、爆薬の利用
などが提唱されているが、後二者は制御が難しく一般性
に乏しい。
However, if the fluidity of underground oil is low, production cannot be achieved unless measures are taken to make the oil fluid. The general method for fluidizing oil is to reduce the viscosity of the oil by heating.The temperature suitable for fluidizing varies depending on the individual properties of the oil, but it is necessary to heat the oil layer underground. . As a method of heating the oil layer, injection of hot water,
Injection of high-temperature, high-pressure steam, underground electrification, underground combustion method (igniting an underground oil layer and sending air to burn it), and the use of explosives have been proposed, but the latter two are difficult to control and are not common. Poor.

熱水あるいは高温高圧水蒸気注入法は、油層を加熱しオ
イルの流動性を高めると同時に流動化したオイルを地表
へ流出させることも可能であるが、油層に裂け目などの
通過抵抗の低い個所が存在すると、その個所ばかりを通
り抜け全体に拡散しないおそれがあり、反対に油層が固
く繊密な場合は熱水あるいは蒸気が拡散せず温度が上昇
しがたい。
Hot water or high-temperature, high-pressure steam injection methods can heat the oil layer to increase the fluidity of the oil and at the same time allow the fluidized oil to flow to the surface, but there are places in the oil layer with low passage resistance, such as cracks. If this happens, there is a risk that the oil will pass through only that area and not spread throughout the area.On the other hand, if the oil layer is hard and dense, hot water or steam will not diffuse and the temperature will be difficult to rise.

通電加熱法は油層に複数の井戸を掘り、これら井戸に電
極を設置し、各電極間に電位差を与えて油層の導電性を
利用して加算するので、油層に裂け目があったり、ある
いは固く繊密であっても全体を加熱しやすい利点がある
In the energization heating method, multiple wells are dug in the oil layer, electrodes are installed in these wells, and a potential difference is applied between each electrode to add up using the conductivity of the oil layer. It has the advantage of being easy to heat the whole thing even if it is dense.

しかし、流動化したオイルを取り出すには別の手段が必
要である。そこで、オイル生産の効率を上げる方法とし
て、まず通電法により油層を加熱し、油層が鮫イした時
に熱水あるいは高温高圧水蒸気を注入して加熱を続ける
とともに流動化したオイルを取り出す方法が考えられて
いる。この方法に使用する極積層は、効率よく油層を加
熱するために、油層以外への電流の漏洩をできる限り避
けるよう電気絶縁を施す必要があり、地中の土庄とか加
熱により発生した蒸気または注入された熱水あるいは高
温高圧水蒸気の圧力で破壊しないことが必要であり、さ
らに熱水あるいは高温高圧水蒸気が洩れないことが必要
である。この電極装置についてより具体的に説明するた
め、オイルサンドよりオイルを生産する場合の例を以下
に述べる。
However, other means are required to remove the fluidized oil. Therefore, a method to increase the efficiency of oil production is to first heat the oil layer using an electric current method, and when the oil layer becomes hot, hot water or high-temperature, high-pressure steam is injected to continue heating and take out the fluidized oil. ing. In order to efficiently heat the oil layer, the polar laminated layers used in this method must be electrically insulated to avoid current leakage outside the oil layer as much as possible. It is necessary that the pressure of the heated hot water or high-temperature, high-pressure steam does not cause damage, and furthermore, it is necessary that the hot water or high-temperature, high-pressure steam does not leak. In order to explain this electrode device more specifically, an example in which oil is produced from oil sand will be described below.

オイルサンドはタールサンドとも呼ばれ、カナダ、ベェ
ネゼラ、アメリカ合衆国に埋蔵が確認されている。
Oil sands, also known as tar sands, have been found in Canada, Venezuela, and the United States.

オイルサンド中のオイルは、砂の表面および砂と砂との
間隙に塩化と共存しているが、極めて精度が高く自然に
存在する状態では流動性を有しない。オイルサンドの層
は狭谷、川岸などで1部露出している他は、大部分地下
200〜50仇hの深さに数十mの厚さで存在し、オイ
ルサンドを堀り出し地上でオイルを分離するのは経済性
および環境保護の面から制約を受けるため、地中よりオ
イルのみ取り出す必要がある。また、地中の浅い層から
のオイルの生産は陥没の危険があるため、地下30印
n以下の層から採取するのが望ましいとされる。通電に
よりオイルサンド層を加熱する場合の従来装置を模型的
に示せば、第1図のごとく電極装置が配される。
Oil in oil sands coexists with chloride on the surface of the sand and in the interstices between the sands, but the oil is extremely precise and has no fluidity in its naturally existing state. The oil sand layer is partially exposed in valleys, riverbanks, etc., but most of the oil sand layer exists at a depth of 200 to 50 h underground with a thickness of several tens of meters. Separating oil is subject to economic and environmental protection considerations, so it is necessary to extract only the oil from underground. In addition, since oil production from shallow underground layers is at risk of cave-ins, it is necessary to
It is said that it is desirable to collect from n layers or less. If a conventional device for heating an oil sand layer by electricity is schematically shown, an electrode device is arranged as shown in FIG.

第1図において、1,11は鋼管で作られたケーシング
、2,12はケーシング1,11に接合された絶縁され
たケーシング3,13は絶縁されたケーシング2,12
に接合された電極、4,14は電極3,13に電流を送
るケーブルでこれらを併せて電極装置とよぶ。5は電源
装置6はオイルサンド層、7は電極3,13の間の電流
、8は地上、9はオイルサンド上層、10はオイルサン
ド下層である。
In Fig. 1, 1 and 11 are casings made of steel pipes, 2 and 12 are insulated casings 3 and 13 joined to the casings 1 and 11, and 3 and 13 are insulated casings 2 and 12.
Electrodes 4 and 14 connected to the electrodes 4 and 14 are cables that send current to the electrodes 3 and 13, and these are collectively called an electrode device. Reference numeral 5 indicates a power supply device 6 in the oil sand layer, 7 indicates a current between the electrodes 3 and 13, 8 indicates the ground, 9 indicates an upper layer of oil sand, and 10 indicates a lower layer of oil sand.

オイルサンド層6に埋設した電極13,3に地上の電源
装置5よりケーブル4,14を通じて電圧が印加される
と、オイルサンド層6中の電気抵抗に応じて電流7が流
れてジュール損が発生しオイルサンド層6が加熱される
。このとき電流7の1部はオイルサンド上層9およびオ
イルサンド下層10へも流れるが、ケーシング1,11
と電極3,13の間に絶縁されたケーシング2,12が
介在するため、電流7の洩れは小さく抑えられる。オイ
ルサンド層6が温まれば通電を止め、電極装置の一方の
ケーシング1の上部から熱水あるいは高温高圧水蒸気を
圧入すれば、オイルサンド層6中を通り、他方の電極装
置のケーシング11よりオイルとともに流出する。熱水
あるいは高温高圧水蒸気の流出をよくするため、電極3
,13は細孔があげられるのが普通である。第1図に示
すような従来装置においては、ケーシング1,11を通
って、オイルサンド上層9に流れる電力損失が大きく、
電極3,13部が過熱することによりケーシング2,1
2の絶縁物が熱に耐えられないという欠点があった。
When a voltage is applied to the electrodes 13, 3 buried in the oil sand layer 6 through the cables 4, 14 from the power supply device 5 on the ground, a current 7 flows according to the electrical resistance in the oil sand layer 6, generating Joule loss. Then, the oil sand layer 6 is heated. At this time, a part of the current 7 also flows to the oil sand upper layer 9 and the oil sand lower layer 10, but the casings 1, 11
Since the insulated casings 2 and 12 are interposed between the electrodes 3 and 13, leakage of the current 7 can be suppressed to a small level. When the oil sand layer 6 warms up, the electricity is turned off and hot water or high-temperature, high-pressure steam is injected from the top of the casing 1 of one of the electrode devices. It flows out along with the water. In order to improve the outflow of hot water or high-temperature and high-pressure steam, the electrode 3
, 13 are usually pores. In the conventional device as shown in FIG. 1, the power loss flowing through the casings 1 and 11 to the upper oil sand layer 9 is large;
Casing 2, 1 due to overheating of electrodes 3, 13
The disadvantage was that the insulator in No. 2 could not withstand heat.

また、熱水を通す際、ケーシングー,11及び絶縁され
たケーシング2,12は断熱が充分施されないので、熱
。スが大きいという欠点もあった。この発明は、従来装
置が持つ以上のような欠点を除去し、オイルサンド層を
効率よく加熱することができる炭化水素系地下資源加熱
用電極装置を提供することを目的とするものである。
In addition, when hot water is passed through, the casings 1 and 11 and the insulated casings 2 and 12 are not sufficiently insulated, so heat is generated. Another drawback was that the space was large. An object of the present invention is to provide an electrode device for heating hydrocarbon-based underground resources that can eliminate the above-mentioned drawbacks of conventional devices and can efficiently heat an oil sand layer.

この発明の構成を、図面を参照しながら説明する。The configuration of this invention will be explained with reference to the drawings.

第2図はこの発明の一実施例を示す図である。図は電極
がオイルサンド層6に挿入された状態を示す。第2図に
おいて、15は電極3をオイルサンド層6に挿入後、閉
塞したセメント部あり、16は電極3を吊り下げる主導
管であり、主導管16と電極3との間には、電気絶縁を
するアルミナガィ管の絶縁管17が接続されている。主
導管16および絶縁管17内には地上電源5より電極3
に至る電気導体18と塩水および熱水を供給する水管1
9と電気導体18、主導管16水管19間を電気絶縁す
る絶縁油を供給する絶縁油供給管20が貫通している。
絶縁物17と電極3間には仕切部材21があり、仕切部
材21は絶縁油が外部へもれないような構造となってい
る。仕切部材21と電極3は電気的に接続されている。
絶縁油供給管2川ま仕切部材21の近傍で開○しており
、絶縁油の順環を容易にする配置となっており、絶縁油
は水管により熱水を送って、オイルサンド層6を加熱す
る際、主導管16を通ってオイルサンド上層9へ伝わる
熱量を少なくする断熱材の働きをする。水管19は仕切
部材21を貫通して電極3内で先端が開□しており、オ
イルサンド層6を電気加熱する際は塩水を送り、熱水加
熱する際は熱水を送る。22は電極3と絶縁管17また
は絶縁管17と主導管16を接続する接続金具である。
FIG. 2 is a diagram showing an embodiment of the present invention. The figure shows the electrode inserted into the oil sand layer 6. In FIG. 2, 15 is a cement part that is closed after inserting the electrode 3 into the oil sand layer 6, 16 is a main pipe from which the electrode 3 is suspended, and there is electrical insulation between the main pipe 16 and the electrode 3. An insulating tube 17 made of an alumina guy tube is connected to the insulating tube 17. An electrode 3 is connected to the main pipe 16 and the insulating pipe 17 from the ground power source 5.
Electrical conductor 18 leading to and water pipe 1 supplying salt water and hot water
An insulating oil supply pipe 20 that supplies insulating oil for electrically insulating between the electrical conductor 18, the main pipe 16, and the water pipe 19 passes through the pipe.
A partition member 21 is provided between the insulator 17 and the electrode 3, and the partition member 21 has a structure that prevents insulating oil from leaking to the outside. The partition member 21 and the electrode 3 are electrically connected.
The insulating oil supply pipe 2 is open near the partition member 21, and is arranged to facilitate the circulation of the insulating oil. During heating, it acts as a heat insulator to reduce the amount of heat transmitted to the upper oil sand layer 9 through the main pipe 16. The water pipe 19 penetrates the partition member 21 and has an open end inside the electrode 3, and sends salt water when electrically heating the oil sand layer 6, and sends hot water when heating the oil sand layer 6 with hot water. Reference numeral 22 denotes a connecting fitting for connecting the electrode 3 and the insulating tube 17 or the insulating tube 17 and the main conduit 16.

23は塩水や熱水がセメント部15と絶縁物17の間を
上昇しないように設けられた閉塞物である。
A blocker 23 is provided to prevent salt water or hot water from rising between the cement part 15 and the insulator 17.

オイルサンド層を加熱するには、第2図において、水管
19より矢印Aの方向に塩水を送り、電極3内を通って
閉口部3aから矢印Bのようにふき出して電極3挿入用
に堀つた穴を満す。
To heat the oil sand layer, in FIG. 2, salt water is sent from the water pipe 19 in the direction of arrow A, passes through the electrode 3, and is blown out from the closed part 3a in the direction of arrow B to form a trench for inserting the electrode 3. Fill the ivy hole.

次に絶縁油供給管20より矢印Cの方向に絶縁油を送り
矢印D方向に循環させ、電流を流してオイルサンド層6
を電気加熱する。一定期間電気加熱後、通亀を中止し、
水管19に塩水を変えて熱水を送って、熱水による加熱
をする。以下従来装置と同機にしてオイルサンド層6を
加熱し、オイルを取り出す。この発明によると、主導管
と電極との間に磁器からなる絶縁管を介在させ、主導管
と絶縁管内に絶縁油を供給することによって、オイルサ
ンド上層へのもれ電流を防止でき、オイルサンド層加熱
中の熱ロスの低減を図ることができる。
Next, insulating oil is fed in the direction of arrow C from the insulating oil supply pipe 20 and circulated in the direction of arrow D, and a current is applied to the oil sand layer 6.
is heated electrically. After electrical heating for a certain period of time, the tortoise is stopped,
Hot water is sent to the water pipe 19 instead of salt water, and heating is performed by the hot water. Thereafter, the oil sand layer 6 is heated and the oil is extracted using the same machine as the conventional device. According to this invention, by interposing an insulating tube made of porcelain between the main conduit and the electrode and supplying insulating oil into the main conduit and the insulating tube, it is possible to prevent current leakage to the upper layer of the oil sand. Heat loss during layer heating can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの構成図、第2図はこの発明の一実
施例を示す断面図である。 図において、16は主導管、17は絶縁管、18は電気
導体、19は水管、2川ま絶縁油供給管、21は仕切部
材である。なお各図中同一符号は同一又は相当部分を示
す。第1図 第2図
FIG. 1 is a configuration diagram of a conventional device, and FIG. 2 is a sectional view showing an embodiment of the present invention. In the figure, 16 is a main pipe, 17 is an insulating pipe, 18 is an electric conductor, 19 is a water pipe, two insulating oil supply pipes, and 21 is a partition member. Note that the same reference numerals in each figure indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 主導管、開口部を有する管状の電極、上記主導管と
上記電極間に水密に連結された磁器からなる絶縁管、上
記主導管を貫通し上記電極と接続された電気導体、上記
電極と上記絶縁管との間を水密にする仕切部材、上記主
導管を貫通し上記仕切部材の近傍で開口した絶縁油供給
管、上記主導管と上記絶縁管と仕切部材とを貫通して上
記電極内で一端を開口している水管を備えたことを特徴
とする炭化水素系地下資源の電気加熱用電極装置。
1. A main conduit, a tubular electrode having an opening, an insulating tube made of porcelain watertightly connected between the main conduit and the electrode, an electric conductor penetrating the main conduit and connected to the electrode, the electrode and the above a partition member that makes the space between the main pipe watertight and the insulating oil supply pipe watertight; an insulating oil supply pipe that penetrates the main pipe and opens near the partition member; An electrode device for electrically heating hydrocarbon-based underground resources, characterized by comprising a water pipe with one end open.
JP5116680A 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources Expired JPS6034679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116680A JPS6034679B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116680A JPS6034679B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources

Publications (2)

Publication Number Publication Date
JPS56146592A JPS56146592A (en) 1981-11-14
JPS6034679B2 true JPS6034679B2 (en) 1985-08-09

Family

ID=12879231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116680A Expired JPS6034679B2 (en) 1980-04-14 1980-04-14 Electrode device for electrical heating of hydrocarbon underground resources

Country Status (1)

Country Link
JP (1) JPS6034679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168796A (en) * 1987-01-07 1988-07-12 東芝テック株式会社 Sale register

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168796A (en) * 1987-01-07 1988-07-12 東芝テック株式会社 Sale register

Also Published As

Publication number Publication date
JPS56146592A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
US4412124A (en) Electrode unit for electrically heating underground hydrocarbon deposits
US3211220A (en) Single well subsurface electrification process
US4037655A (en) Method for secondary recovery of oil
US9963959B2 (en) Hydrocarbon resource heating apparatus including upper and lower wellbore RF radiators and related methods
US3620300A (en) Method and apparatus for electrically heating a subsurface formation
US4926941A (en) Method of producing tar sand deposits containing conductive layers
US4199025A (en) Method and apparatus for tertiary recovery of oil
US4730671A (en) Viscous oil recovery using high electrical conductive layers
EP0940558B1 (en) Wellbore electrical heater
US6269876B1 (en) Electrical heater
US5623576A (en) Downhole radial flow steam generator for oil wells
RU2610459C2 (en) One-piece joint for insulated conductors
US20100108318A1 (en) Method and device for the in-situ extraction of a hydrocarbon-containing substance, while reducing the viscosity thereof, from an underground deposit
Ghannadi et al. Overview of performance and analytical modeling techniques for electromagnetic heating and applications to steam-assisted-gravity-drainage process startup
CA1165360A (en) Electrode device for electrically heating underground deposits of hydrocarbons
JPS6034679B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015108B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5944480B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
RU2728160C2 (en) Device and method for focused electric heating at oil-gas bearing beds occurrence place
JPS5945070B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015109B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6034680B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015105B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015106B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6034678B2 (en) Electrode device for electrical heating of hydrocarbon underground resources