JPS6034653B2 - Freezing method for cavities with insulation - Google Patents

Freezing method for cavities with insulation

Info

Publication number
JPS6034653B2
JPS6034653B2 JP54127318A JP12731879A JPS6034653B2 JP S6034653 B2 JPS6034653 B2 JP S6034653B2 JP 54127318 A JP54127318 A JP 54127318A JP 12731879 A JP12731879 A JP 12731879A JP S6034653 B2 JPS6034653 B2 JP S6034653B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
cavity
freezing
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54127318A
Other languages
Japanese (ja)
Other versions
JPS5652227A (en
Inventor
乙郎 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP54127318A priority Critical patent/JPS6034653B2/en
Publication of JPS5652227A publication Critical patent/JPS5652227A/en
Publication of JPS6034653B2 publication Critical patent/JPS6034653B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 開示技術は岩盤内部に形成した空洞を冷凍、冷蔵庫とし
て用いるために岩盤内壁面に取付ける断熱材を介しての
冷却凍結技術に属する。
DETAILED DESCRIPTION OF THE INVENTION The disclosed technique belongs to a cooling/freezing technique in which a cavity formed inside a rock is used as a refrigerator for freezing through a heat insulating material attached to the inner wall surface of the rock.

而して、この出願の発明は岩盤内に掘削して形成した地
下空洞の岩盤内壁面に断熱材を添接した後該空洞内を氷
点下に冷却することにより該断熱材の含水氷結を介して
岩盤内自由水を凍結させ不透過層の庫壁に形成して地下
冷凍庫、或は、地下冷蔵庫とする断熱材付空洞の凍結工
法に関するものであり、特に、岩盤内壁面に取付けられ
た断熱材をあえて過飽和含水状態にして氷点下に冷却し
、該断熱材氷結状態を介して岩盤中の自由水を凍結させ
ると共に断熱材内氷結の含水については昇華作用を与え
る様にして本来の断熱機能が回復される様にし、又、更
に氷結を一たん融解して気相、液相、接触面の温度を上
昇させて更氷結させ昇華を速やかにする様にして空洞の
凍結を行う様にした工法に係るものである。
Accordingly, the invention of this application attaches a heat insulating material to the inner wall surface of the rock of an underground cavity formed by excavating into the bedrock, and then cools the inside of the cavity to below freezing point, whereby the water content of the heat insulating material freezes. This relates to a method of freezing a cavity with insulation material to create an underground freezer or an underground refrigerator by freezing free water in the bedrock and forming it on the wall of an impermeable layer.In particular, it relates to a method of freezing a cavity with insulation material installed on the inner wall surface of the bedrock. We purposely bring the material into a supersaturated water-containing state and cool it below freezing, freezing the free water in the rock through the freezing state of the insulation material, and sublimating the frozen water content within the insulation material to restore its original insulation function. In addition, this method freezes the cavity by once melting the ice and increasing the temperature of the gas phase, liquid phase, and contact surfaces to further freeze and sublimate quickly. This is related.

周知の如く海産物、或は、畜産物、加工食品等の大量ス
トック等は生産地のみならず流通過程に於ても不可欠の
ものであり、その場合通例、貯蔵条件によって冷凍貯蔵
、或は、冷蔵貯蔵方式がとられている。
As is well known, large stocks of marine products, livestock products, processed foods, etc. are essential not only in the production area but also in the distribution process, and in such cases, they are usually stored frozen or refrigerated depending on storage conditions. A storage method is used.

而して、一般在釆の冷凍庫、冷蔵庫は所謂ビルタイプの
地上構築建造物であり、従って、冷却効率の設計、用地
確保、景観及び公害問題等から規制を受ける様になり定
容量以上の能力を有する庫建造が出来なくなって来てい
る。
Generally existing freezers and refrigerators are so-called building-type above-ground structures, and therefore, they are subject to regulations for cooling efficiency design, land acquisition, landscape and pollution issues, etc. It is becoming impossible to build warehouses with

そこで、近時所定適正岩盤内に設定容量の空洞を掘削し
該岩盤内の空洞囲線城に含有されている自由水を凍結し
て不透過層とし、該空洞を冷凍庫、冷蔵庫として供する
技術が案出され実用化の設計研究が進められている。
Therefore, recently, a technology has been developed to excavate a cavity of a set capacity in a predetermined appropriate rock mass, freeze the free water contained in the cavity enclosure within the rock mass to form an impermeable layer, and use the cavity as a freezer or refrigerator. It has been devised, and design research is underway to put it into practical use.

ところで、該種地下式冷凍庫等の形成に際しては当然の
ことながら不透水層としての自由水凍結層を形成させる
ための予冷凍結工程を経る必要があり、又、他方に於て
冷凍庫等の運転時の冷熱エネルギー節減のため岩盤中の
凍結ゾーンの成長拡大を抑制減速させるべく岩盤内壁面
に断熱材を添接させる必要がある。
By the way, when forming such underground type freezers, etc., it is of course necessary to go through a pre-cooling freezing process to form a free water frozen layer as an impermeable layer, and on the other hand, when operating the freezer, etc. In order to save cooling energy, it is necessary to attach heat insulating material to the inner wall surface of the rock in order to suppress and slow down the growth and expansion of the frozen zone in the rock.

さりながら、該予冷凍結工程は空洞内設置冷却装置を運
転することにより適宜行うことが可能であるが、該予冷
凍結と併行裡に断熱材を添接することには種々の問題が
あり、実用化のネックとなつている。
Although the pre-cooling and freezing process can be carried out as appropriate by operating a cooling device installed in the cavity, there are various problems in adding a heat insulating material at the same time as the pre-cooling and freezing process, and it is difficult to put it into practical use. It has become a bottleneck.

即ち、該断熱材添薮態様としては基本的に2施工方式が
あり、その1つは予冷却後添接する方式であり、該方式
は予め空洞内を岩盤凍結温度以下に冷却することにより
該空洞周囲の岩盤自由水を氷結させて凍結層を形成し、
その後壁面に断熱材を添接させるものである。
That is, there are basically two construction methods for adding the insulation material, one of which is the method of attaching the insulation material after pre-cooling. The free water in the surrounding bedrock is frozen to form a frozen layer.
After that, a heat insulating material is attached to the wall surface.

而して、該方式では断熱材は凍結岩盤内壁面に対し密接
装着させるためその作業が低温下で極めてやり難い難点
があり、作業能率の悪さにより工期も長くコストアップ
に蓮る不利点があり、又、添援そのものが凍結に阻害さ
れて確実に添綾保証されないという欠点がある。
However, in this method, the insulation material is attached closely to the inner wall surface of the frozen rock, which has the disadvantage that the work is extremely difficult to do at low temperatures, and the work efficiency is poor, resulting in a long construction period and increased costs. Furthermore, there is a drawback that support itself is inhibited by freezing and support cannot be guaranteed.

一方、その2つの方式は上記方式とは逆に予め岩盤内壁
に断熱材を添接して後空洞冷却させることにより凍結さ
せる方式であるが、該前方式に比し断熱材が確実に好精
度裡に添援出来、作業性も良い等の利点はあるもの)、
該断熱材が添接直後から岩盤内懐水のため液濡れ状態と
なり、後段凍結では含水氷結状態となるため断熱機能が
低下してしまう不具合があり、又、後段冷却に於ける空
洞冷却が該断熱材のために内外の温度勾配を大きくとら
れ、岩盤内自由水凍結に極めて長時間を要するデメリッ
トがあった。
On the other hand, in these two methods, contrary to the above method, insulation material is attached to the inner wall of the rock in advance and then frozen by cooling the cavity, but compared to the previous method, the insulation material is applied more accurately. There are advantages such as being able to assist in the field and having good work efficiency)
Immediately after attachment, the heat insulating material becomes wet due to water retention in the rock, and in the later stages of freezing, it becomes hydrated and frozen, resulting in a reduction in its insulation function. This had the disadvantage of requiring a large internal and external temperature gradient due to the insulation, and requiring an extremely long period of time for free water to freeze within the rock.

この出願の発明の目的は上述従来技術に基づく断熱材付
空洞の凍結工法の問題点を解決すべき技術的課題とし、
岩盤内自由水が極めて急速に凍結させることができ、断
熱材の機能を遠やく回復させ、添接作業が効率良く行な
える様にしてエネルギー産業に於ける備蓄利用分野に益
する優れた断熱材空洞の凍結工法を提供せんとするもの
である。
The purpose of the invention of this application is to solve the problems of the method of freezing a cavity with insulation material based on the above-mentioned prior art, and
An excellent insulation material that can freeze free water within the rock extremely quickly, restore the function of the insulation material over a long period of time, and enable efficient attachment work, benefiting the field of storage utilization in the energy industry. The aim is to provide a method for freezing cavities.

上述目的に沿うこの世顔の発明の構成は、前述問題点を
解決するために、岩盤内に掘削形成された地下空洞の岩
盤内壁面に断熱材を添接させ、その後、該断熱材を放水
等により過飽和状態に含水させ、岩盤凍結温度以下に凍
結させて熱伝導性の高い固体として岩盤を凍結させる様
にしその凍結状態により氷結含水は昇華して消失し、或
は融解して液相となし気相に対して毛細管を利用して氷
面上昇させ、再び昇華させ、速やかに含水分を消失して
断熱材の機能を回復させる様にした技術的手段を講じた
ことを要旨とするものである。
In order to solve the above-mentioned problems, the present invention according to the above-mentioned purpose attaches a heat insulating material to the inner wall surface of the rock of an underground cavity excavated in the bedrock, and then the heat insulating material is sprayed with water, etc. The material is made to contain water in a supersaturated state, and is frozen below the freezing temperature of the rock to freeze the rock as a highly thermally conductive solid. Depending on the frozen state, the frozen water sublimes and disappears, or melts and becomes a liquid phase. The gist is that a technical measure was taken to raise the ice level using a capillary tube against the gas phase, causing it to sublime again, quickly disappearing moisture content, and restoring the function of the insulation material. be.

第1図に於て、所定適正地域の岩盤内1内にて周囲に地
下自由水2が充分に含水されている態様にて慣用工法に
より地下空洞3を冷凍庫用に掘削する。その場合、立抗
4は作業抗兼、完成後の貯蔵品搬出入ェレベータシャフ
トとして利用する様にされ搬出入管理建屋5に接続する
様にされる。次に該空洞3の形成に伴ってその上塗部6
には所定冷却装置7を内部に臨ませる様に配設すると共
に薮続抗8を介しての制御装置9に接続する様にされる
。而して、前記した如くこの世願の発明に於ては該第1
図及び第2図にす様に岩盤1の内壁面10に対して吹付
コンクリート11をラィニングして内壁面とし、更に該
吹付コンクリートライニング11の内面12に対してポ
リスチレン系の強力瞬間接着剤を介して親水性多孔質の
断熱材としてのナイロンスポンジ13を添暖固接する。
In FIG. 1, an underground cavity 3 for a freezer is excavated in a bedrock 1 in a predetermined appropriate area using a conventional construction method in such a manner that the surrounding area is sufficiently hydrated with underground free water 2. In that case, the vertical shaft 4 is used both as a work shaft and as an elevator shaft for loading and unloading stored goods after completion, and is connected to the loading and unloading control building 5. Next, with the formation of the cavity 3, the overcoat part 6
A predetermined cooling device 7 is disposed so as to face the inside, and is connected to a control device 9 via a bush connection 8. Therefore, as mentioned above, in this much-desired invention, the first invention
As shown in Figures 1 and 2, the inner wall surface 10 of the rock mass 1 is lined with shotcrete 11 to form the inner wall surface, and the inner wall surface 12 of the shotcrete lining 11 is lined with polystyrene-based strong instant adhesive. Then, a nylon sponge 13 as a hydrophilic porous heat insulating material is heated and bonded.

従って、該断熱材13の添鞍工程に於ては当然のこをな
がらコンクリートラィニング11内の水分及びその紬隙
を介しての岩盤1の自由水が湧出し該断熱材13に鯵出
して湿潤状態とし、その本来の乾燥状態に於ける断熱性
能を当座としては著るしく劣化させる状態とすることに
なる。
Therefore, in the process of adding the heat insulating material 13, it is natural that moisture in the concrete lining 11 and free water in the rock 1 gushes out through the gaps in the concrete lining 11 and drains into the heat insulating material 13. This results in a wet state, which significantly deteriorates the heat insulation performance of the original dry state for the time being.

勿論、当該状態はこの出願の発明に於ける積極的過渡工
程を成すものであってコンクリート壁面12の養生作業
や期間を省略出来るものとして有効である。
Of course, this state constitutes an active transitional step in the invention of this application, and is effective as it can omit the curing work and period of the concrete wall surface 12.

而して、全断熱材13の添援終了後、更に空洞内にて程
宜放水手段等を介して該断熱材13に過飽和状態まで吸
水ごせ第3a,3b図の様に該断熱材13の繊維基質等
の組織13′の間隙に充分に水分14を保水させる。
After all of the heat insulating material 13 has been supplemented, water is further absorbed into the heat insulating material 13 until it is in a supersaturated state by means of water discharging means or the like in the cavity.As shown in FIGS. 3a and 3b, the heat insulating material 13 is Sufficient water 14 is retained in the interstices of the tissue 13' such as a fiber matrix.

勿論、基質13′自体にも吸水させるがこの状態では更
に断熱材13の断熱性能は低下するものの、前記同機意
図的なものであり、本来的な運転時の乾燥状態での断熱
性能、機能に影響するものではない。
Of course, the substrate 13' itself also absorbs water, but in this state, the insulation performance of the insulation material 13 further deteriorates, but this is intentional and does not affect the insulation performance and function of the original dry state during operation. It doesn't affect anything.

尚、第3a,3b図は説明の都合上断熱材13を模式的
に部分縦断、横断面として組織及び過飽和保水状態を示
してものである。
For convenience of explanation, Figures 3a and 3b schematically show the structure and supersaturated water retention state of the heat insulating material 13 as a partial longitudinal section and cross section.

次いで冷却装置7を作動させて空洞3内を氷点下に冷却
するとまず、上記断熱材13がその過飽和保水水分14
を氷結することにより氷結固形化し熱伝導性の高い媒体
と変化する。
Next, when the cooling device 7 is operated to cool the inside of the cavity 3 to below freezing point, the above-mentioned heat insulating material 13 first cools down its supersaturated water retention water 14.
By freezing, it becomes solid and becomes a highly thermally conductive medium.

而して、第3a,3b図に示す断熱材13の組織13′
間の水分14が氷結した時点で岩盤1の凍結温度以下に
該冷却装置7を介して空洞3内を増冷することにより該
空洞3内の空気は低温乾燥化され、断熱材13は上記固
形化により岩盤1を冷却し、凍結させる。
Therefore, the structure 13' of the heat insulating material 13 shown in FIGS. 3a and 3b
When the moisture 14 in between freezes, the air inside the cavity 3 is cooled down to below the freezing temperature of the rock 1 via the cooling device 7, and the air inside the cavity 3 is dried at a low temperature. The bedrock 1 is cooled and frozen by oxidation.

ところで、一般に第6図に示す様に含水率wを縦軸に昇
華時間tを機軸にとると、含水か時間経過と共に昇華低
減し、飽和含水率woに漸近する低減曲線Pを画くこと
が理論的にも実験的にも知られている。
By the way, in general, as shown in Figure 6, if we take the water content w as the vertical axis and the sublimation time t as the axis, the theory is that the water content sublimates and decreases over time, drawing a reduction curve P that asymptotically approaches the saturated water content wo. known both physically and experimentally.

従って、断熱材13内に保水されている氷結水分は空洞
3内の岩盤1の凍結温度以下の温度で氷片昇華を始める
Therefore, the frozen water retained in the heat insulating material 13 starts to sublimate ice chips at a temperature below the freezing temperature of the rock 1 in the cavity 3.

尚、氷片昇華はあまり低温では昇華率が削減されるため
、岩盤1の凍結温度以下であって設定温度以上であるこ
とが昇華速度の迅速化の点から望ましい。
In addition, since the sublimation rate of ice flake sublimation is reduced if the temperature is too low, it is desirable that the temperature be below the freezing temperature of the rock 1 and above the set temperature in order to speed up the sublimation rate.

そこで、凍結乾燥による昇華が始まると、第3b図の断
熱材13の断面全体に含水されていた水分の氷結分はそ
の内側、即ち、空洞3の乾燥空気との接触面から第4図
Aプロセスの如く氷片14′が昇華し始め、Bプロセス
、C、Dプロセスと冷却時間を経るに従って断熱材13
の内部氷片14′を昇華させ行き、昇華氷片は冷却装置
7に回収され、一方、第4図Dプロセスに示す様に最終
的には断熱材13内の氷片14は全て収奪回収されて空
洞3内に於ける冷凍温度の水蒸気分圧に至る乾燥度にな
り、該水蒸気分圧での乾燥断熱材13を添接したこと〉
同様の状態になり、従って、当該状態での断熱性能を回
復具備することになる。
Therefore, when sublimation due to freeze-drying begins, the frozen portion of the water contained in the entire cross section of the heat insulating material 13 shown in FIG. The ice pieces 14' begin to sublimate, and as the cooling time passes through the B process, C, and D processes, the heat insulating material 13
The ice pieces 14' inside the heat insulating material 13 are sublimated, and the sublimated ice pieces are collected by the cooling device 7, while finally all the ice pieces 14 inside the heat insulating material 13 are collected and collected as shown in process D in FIG. The degree of dryness reached the water vapor partial pressure at the freezing temperature in the cavity 3, and the dry heat insulating material 13 was attached at this water vapor partial pressure>
A similar state will occur, and therefore the insulation performance in that state will be restored.

上記実施例は第6図に示す昇華の含水率、時間曲線に沿
うものであり、空洞3内の他の工事と併工して行う様な
時間的予猶のある場合に可能な態様であるが、工期、作
業能率、動力費減等種々の施工条件等により上記態様よ
り更に早期に断熱機能を回復する態様の実施例を次に示
す。
The above embodiment follows the sublimation moisture content and time curve shown in Fig. 6, and is possible when there is time leeway, such as when the work is carried out concurrently with other work inside the cavity 3. However, the following is an example of an embodiment in which the insulation function is restored even earlier than the above embodiment due to various construction conditions such as construction period, work efficiency, and reduction in power cost.

即ち、上記昇華は乾燥空気に対する開放面の接触面積及
び流過気流々遠に正比例することが判っている。
That is, it has been found that the sublimation is directly proportional to the contact area of the open surface to the dry air and the flow distance of the open surface.

従って、冷却装置7による循環気流々速が一定であると
すれば、断熱材13の空洞3内面に於ける表面に可及的
に氷結氷片14′が露呈されている方が組織13′の内
部に昇華と共に内探されている場合よりも接触面積及び
流過気流々速共に速いことが判る。
Therefore, assuming that the circulating air flow rate by the cooling device 7 is constant, it is better to expose the frozen ice pieces 14' on the inner surface of the cavity 3 of the heat insulating material 13 as much as possible. It can be seen that both the contact area and the flow rate of the passing air are faster than when the air is sublimated and searched inside.

そこで、昇華と共に断熱材13の組織13′内部に内探
化する氷片14′を空洞3内気温の一時的昇温によって
融解液相化し、該断熱材13の組織13′の微細間隙を
利用して毛細管現象により断熱材13の内表面まで上昇
させて再び空洞3内気温の急冷により氷結させ、昇華量
の増加を企ることにより昇華を促進させることが可能と
なる。
Therefore, the ice pieces 14' that are sublimated and infiltrated inside the structure 13' of the heat insulating material 13 are melted and turned into a liquid phase by temporarily increasing the temperature inside the cavity 3, and the fine gaps in the structure 13' of the heat insulating material 13 are utilized. It is possible to promote sublimation by raising it to the inner surface of the heat insulating material 13 by capillary action and freezing it again by rapidly cooling the temperature inside the cavity 3, thereby increasing the amount of sublimation.

第5、7図に示す通り第1回の前記設定温度による冷却
氷結により断熱材13内の氷片14′は第5図Eプロセ
スに示す様にその内表面から第1回昇華プロセスP,を
第7図に示す様に昇華曲線Pに沿って始め、ち→t,′
時間昇華作用に行って氷片14′は第5図Eの如く断熱
材13の内部に内深し、次第に昇華率は低下する。そこ
で、ち′→t2時間冷却装置7の停止、或は、積極的に
空洞3を加溢して断熱材13内氷片14′を融解し液相
化プロセスQ,をとらせ、その結果、第5図Fプロセス
に示す様に水分14は該断熱材13の内表面、或は、そ
の近くの毛細管現象により上昇して来る。
As shown in FIGS. 5 and 7, the ice pieces 14' inside the heat insulating material 13 undergo the first sublimation process P, from the inner surface as shown in the process E in FIG. As shown in Figure 7, starting along the sublimation curve P, → t,'
Due to the sublimation effect over time, the ice pieces 14' go deep inside the heat insulating material 13 as shown in FIG. 5E, and the sublimation rate gradually decreases. Therefore, the cooling device 7 is stopped for t2 hours, or the cavity 3 is actively flooded to melt the ice chips 14' in the heat insulating material 13 and undergo the liquid phase process Q. As a result, As shown in the process in FIG. 5F, the moisture 14 rises due to capillary action on or near the inner surface of the heat insulating material 13.

尚、その場合、予め、理論分析及び実験により断熱材1
3内の氷片14′のみが融解され、岩盤1の凍結が解凍
しない程度に昇温することは勿論である。
In that case, the insulation material 1 is determined by theoretical analysis and experiments in advance.
It goes without saying that the temperature rises to such an extent that only the ice pieces 14' in the rock 3 are melted and the frozen rock 1 does not thaw.

そして、ら時に再び冷却装置7を稼動して空洞3内を氷
点下に冷却することにより断熱材13内融解水分14は
再び氷結し、岩盤1の凍結温度以下に冷却するために第
5図Gプロセスに示す如く再び昇華が開始され、氷片1
4′が断熱材13内表面にあり、従って、乾燥空気に対
する接触面積も広く、気流々も遠いためその第2回昇華
曲線P2は第7図に示す如く第1回のそれP,と相似に
なり、本来の昇華曲線Pの低減部を交叉する。
Then, at a later time, the cooling device 7 is operated again to cool the inside of the cavity 3 to below the freezing point, so that the melted water 14 in the heat insulating material 13 freezes again, and in order to cool it to below the freezing temperature of the rock 1, the process shown in FIG. As shown in the figure, sublimation starts again, and ice piece 1
4' is on the inner surface of the heat insulating material 13, therefore, the contact area with the dry air is wide and the air current is far away, so the second sublimation curve P2 is similar to the first sublimation curve P, as shown in FIG. and crosses the reduction part of the original sublimation curve P.

而して、ら→上2′時間後、即ち設定昇華率より昇華が
低下した時点で再び冷却を停止して昇温融解プロセスQ
2をとらせ、その後第3回の昇華プロセスと以下上記融
解、氷結、昇華プロセスを反復する。従って、第7図に
示す様に各昇華プロセスPnは第1図のそれP,と相似
な急昇華プロセスをとるため極めて早期に空洞温度に於
ける水蒸気分圧の乾燥断熱材13の断熱機能を回復する
ことが出来る。
Then, after 2' hours, that is, when the sublimation has decreased below the set sublimation rate, cooling is stopped again and the heating melting process Q is started.
2, and then repeat the third sublimation process and the melting, freezing, and sublimation processes described above. Therefore, as shown in FIG. 7, each sublimation process Pn takes a rapid sublimation process similar to that P in FIG. It is possible to recover.

尚、この出願の発明の実施例は上記態様に限られるもの
ではなく、例えば、第1回氷結氷片昇華を相当時間続け
てその後昇温液相化する様な種々の実施態様が可能であ
り、断熱材もナイロンスポンジに限ることでないことも
勿論である。
Note that the embodiments of the invention of this application are not limited to the above-mentioned embodiments, and various embodiments are possible, for example, in which the first frozen ice flake sublimation is continued for a considerable period of time, and then the temperature is increased to turn it into a liquid phase. Of course, the heat insulating material is not limited to nylon sponge.

又、この出願の発明は冷凍庫に限らず、冷蔵庫にも適用
可能であることも勿論である。
Furthermore, it goes without saying that the invention of this application is applicable not only to freezers but also to refrigerators.

上記の様にこの出願の発明によれば、岩盤内に掘削形成
した空洞を冷蔵庫、冷凍庫として用いるに構築プロセス
に於て予め岩盤内壁面に所定断熱材を添接して後空洞を
冷却し、該断熱材を介して岩盤内囲縫目由水を凍結する
様にした断熱材を有する空洞の凍結工法に於て、上記添
接断熱材を添嬢後退飽和に含水ごせて空洞を氷点下に冷
却する様にしたことにより、基本的に添綾断熱材が過渡
的に全体を氷結されて熱伝導性の良好な固形体に形成さ
れ、従って、断熱材が介装されているにもかかわらず、
空洞と岩盤とが熱的に一種の直結状態となり、急速に岩
盤内自由水が凍結される優れた効果がある。
As described above, according to the invention of this application, when a cavity excavated in a bedrock is used as a refrigerator or a freezer, a predetermined heat insulating material is attached to the inner wall surface of the bedrock in advance in the construction process, and then the cavity is cooled. In the method of freezing a cavity that has a heat insulating material that freezes water from the surrounding seams in the bedrock through the heat insulating material, the above-mentioned attached heat insulating material is soaked with water to the extent that the joint is saturated and the cavity is cooled to below freezing. By doing so, basically the entire twilled insulation material is temporarily frozen and formed into a solid body with good thermal conductivity, and therefore, even though the insulation material is interposed,
The cavity and the bedrock form a kind of direct thermal connection, which has the excellent effect of rapidly freezing free water within the bedrock.

又、岩盤内壁面の吹付コンクリート面等に断熱材を取付
けた場合亀裂からの漠水やコンクリートの含水により該
断熱材が吸水温潤状態となり、断熱機能が一時的に低下
するが、それは後段昇華により回復されるので直接的に
は何の障害にもならないものである。
In addition, when a heat insulating material is installed on the shotcrete surface of the inner wall of the rock, the heat insulating material absorbs water due to moisture from the cracks or water content in the concrete, and the heat insulating function temporarily decreases, but this is due to sublimation at a later stage. It does not cause any problem directly because it is recovered by

而して、冷却前の断熱材添接はその作業もし易く、装着
精度も高いメリットもある。
Therefore, attaching the heat insulating material before cooling has the advantage of being easy to perform and having high installation accuracy.

そして、断熱材氷結空洞冷却を岩盤凍結温度以下に下げ
ることにより該断熱材中の氷結氷片は空洞内冷却乾燥空
気と接触し、昇華作用を受け、経時的に含有度を下、逐
には断熱材中から氷片、即ち含有水分を消滅し冷却装置
に回収することが出来、終局的に空洞の所定温度の飽和
蒸気の分圧に等しく、つまり、乾燥状態にすることが出
来、乾燥断熱材添嬢と同様の断熱機能を回復させること
が出来る壊れた効果がある。
By lowering the temperature of the insulation material freezing cavity to below the freezing temperature of the rock, the frozen ice pieces in the insulation material come into contact with the cooling dry air inside the cavity, undergo a sublimation action, and gradually reduce the content over time. Ice chips, that is, water content, can disappear from the insulation material and be collected in the cooling device, and the partial pressure can eventually be equal to that of saturated steam at a predetermined temperature in the cavity, that is, it can be in a dry state, resulting in dry insulation. It has a broken effect that can restore the insulation function similar to Zaizoejo.

従って、冷凍、冷蔵庫の運転時の冷熱エネルギーは該断
熱材によりコントロールされて岩盤中の凍結ゾーンの成
長抑止を企ることが出来る。
Therefore, the cold energy during operation of a refrigerator or refrigerator is controlled by the heat insulating material, and it is possible to suppress the growth of the frozen zone in the bedrock.

更に、昇華に於ける含水率時間曲線は低減曲線を画くも
のであるが、初期冷却による断熱材の氷片昇華後空気接
触面が断熱材組織内方に内探して昇華率が低減すると一
時的に空洞内温度を上昇させて該断熱材温度昇温により
氷片を融解し、液相化し、組織との毛細管現象により液
相面を気相面に昇る様にして接触面積と気流々途の回復
を企り、以つて昇華率の項率を回復し、これを反復する
ことにより極めて早期に断熱村内の氷片、即ち、含水を
放散して該断熱材の乾燥断熱効率回復を早からしめるこ
とが出来る優れた効果がある。当該断熱材の早期機能回
復は岩盤に対する断熱材取付を冷却前に行う作業性の良
さ、精度向上に加えて工期短縮、工費削減、安全性向上
等の優れた利点を得ることが出来る。
Furthermore, the moisture content time curve during sublimation shows a decreasing curve, but after the ice flakes of the insulation material sublimate due to initial cooling, the air contact surface searches inside the insulation material structure and the sublimation rate decreases temporarily. The temperature inside the cavity is increased to increase the temperature of the insulation material, which melts the ice chips and turns them into a liquid phase, causing the liquid phase surface to rise to the gas phase surface due to capillary action with the tissue, thereby reducing the contact area and air flow. Attempt to recover, recover the sublimation rate, and repeat this process to quickly dissipate ice chips, that is, water content, in the insulation village, and quickly recover the dry insulation efficiency of the insulation material. There are excellent effects that can be achieved. Early functional recovery of the insulation material can provide excellent benefits such as improved workability and precision when installing the insulation material on the rock before cooling, as well as shortened construction time, reduced construction costs, and improved safety.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の実施例を示すものであり、第1
図は地下空洞概略説明図、第2図は断熱材添薮概略説明
図、第3a,3b図は断熱材の含水状態説明部分縦断及
び横断模式説明図、第4図A,B,C,Dは1実施例の
昇華プロセス説明図、第5図E,F,Gは他の実施例の
昇華、液相化、昇華の反復プロセス説明図、第6図は昇
華の含水率時間関係説明図、第7図は昇華、液相化、昇
華の含水率、時間関係説明図である。 1・・・・・・岩盤、3・・・・・・空洞、13・・・
・・・断熱材、2・・・・・・自由水、14・・・・・
・含水、14′・・・・・・氷片。 第1図第2図 第3a図 第3b図 第4図 第5図 第6図 第7図
The drawings show embodiments of the invention of this application, and
The figure is a schematic explanatory diagram of an underground cavity, Figure 2 is a schematic explanatory diagram of insulation material addition, Figures 3a and 3b are partial longitudinal and cross-sectional schematic diagrams explaining the moisture content of the insulation material, and Figure 4 A, B, C, D. 5 is an explanatory diagram of the sublimation process of the first embodiment, FIGS. 5E, F, and G are explanatory diagrams of the repeated process of sublimation, liquid phase, and sublimation of other embodiments. FIG. 6 is an explanatory diagram of the water content time relationship of sublimation. FIG. 7 is an explanatory diagram of the relationship between sublimation, liquid phase, and sublimation water content and time. 1...Bedrock, 3...Cavity, 13...
...Insulation material, 2...Free water, 14...
・Water content, 14'...Ice pieces. Figure 1 Figure 2 Figure 3a Figure 3b Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 岩盤内に形成された空洞が該岩盤内壁面に断熱材を
取付けられた状態で冷却され而して該空洞囲繞岩盤が該
断熱材を介して冷却される様にして該岩盤中の自由水を
凍結する工法において、前記断熱材を取付後過飽和含水
状態にし、次いで空洞冷却により該含水断熱材を氷結し
、該氷結を持続して該断熱材中の氷片を昇華させて乾燥
させ断熱材の断熱機能を回復させる様にしたことを特徴
とする断熱材空洞の凍結工法。 2 岩盤内に形成された空洞が該岩盤内壁面に断熱材を
取付けられた状態で冷却され而して該空洞囲繞岩盤が該
断熱材を介して冷却される様にして該岩盤中の自由水を
凍結する工法において、前記断熱材を取付後過飽和含水
状態にし、次いで空洞冷却により該含水断熱材を氷結し
て該断熱材中の氷結氷片を昇華させ、所定時間後空洞内
温度を上昇させて該断熱材内氷結氷片を融解液相にして
気液相接触面の温度を上昇させたる後再び空洞を冷却し
て該含水を氷結させて昇華させ、該昇華、融解液化を反
復することにより断熱材から氷片を昇華させ該断熱材の
断熱機能を回復させる様にしたことを特徴とする断熱材
付空洞の凍結工法。
[Claims] 1. A cavity formed in a rock mass is cooled with a heat insulating material attached to the inner wall surface of the rock mass, and the rock mass surrounding the cavity is cooled through the heat insulating material. In the method of freezing free water in the rock, the insulation material is brought into a supersaturated water-containing state after installation, and then the water-containing insulation material is frozen by cavity cooling, and the freezing is continued to sublimate the ice chips in the insulation material. A method for freezing insulation cavities, characterized by drying the insulation material and restoring the insulation function of the insulation material. 2. A cavity formed in the rock mass is cooled with a heat insulating material attached to the inner wall surface of the rock mass, and the rock mass surrounding the cavity is cooled through the heat insulating material, so that the free water in the rock mass is cooled. In the method of freezing, the heat insulating material is brought into a supersaturated water-containing state after installation, and then the water-containing heat insulating material is frozen by cavity cooling to sublimate the frozen ice pieces in the heat insulating material, and after a predetermined period of time, the temperature inside the cavity is raised. After turning the frozen ice pieces inside the heat insulating material into a melting liquid phase and increasing the temperature of the gas-liquid contact surface, the cavity is cooled again to freeze and sublimate the water content, and the sublimation, melting and liquefaction are repeated. A method for freezing a cavity with a heat insulating material, characterized in that ice chips are sublimated from the heat insulating material to restore the heat insulating function of the heat insulating material.
JP54127318A 1979-10-04 1979-10-04 Freezing method for cavities with insulation Expired JPS6034653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54127318A JPS6034653B2 (en) 1979-10-04 1979-10-04 Freezing method for cavities with insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54127318A JPS6034653B2 (en) 1979-10-04 1979-10-04 Freezing method for cavities with insulation

Publications (2)

Publication Number Publication Date
JPS5652227A JPS5652227A (en) 1981-05-11
JPS6034653B2 true JPS6034653B2 (en) 1985-08-09

Family

ID=14956961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54127318A Expired JPS6034653B2 (en) 1979-10-04 1979-10-04 Freezing method for cavities with insulation

Country Status (1)

Country Link
JP (1) JPS6034653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291965A (en) * 1985-10-18 1987-04-27 Fuji Xerox Co Ltd Controller for copying machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277103B (en) * 2013-05-20 2014-12-24 陕西彬长矿业集团有限公司 None-full-depth freezing method for penetrating through ultra-thick water-rich bed rock in shaft deepening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291965A (en) * 1985-10-18 1987-04-27 Fuji Xerox Co Ltd Controller for copying machine

Also Published As

Publication number Publication date
JPS5652227A (en) 1981-05-11

Similar Documents

Publication Publication Date Title
CN209620008U (en) A kind of self cooling steel pipe screw pile of anti-thaw collapse for frozen ground regions
JPS6034653B2 (en) Freezing method for cavities with insulation
CN109853518B (en) Solar jet type refrigerating device suitable for frozen soil area and frozen soil protection method
CN108457655B (en) Method for reducing range of surrounding rock freezing-thawing ring in tunnel construction period of permafrost region by using hot rod
JP3228728B2 (en) Ground improvement method by board drain using freeze-thaw
Shang et al. Freezeback behavior of a cast-in-place pile foundation surrounded by two-phase closed thermosyphons in permafrost regions
JP2689400B2 (en) Solar heat storage type road surface snow melting device
Sun et al. Field test study of a novel solar refrigeration pile in permafrost regions
CN105859093B (en) A kind of low-power consumption sludge method of vacuum freeze drying that energy regenerating utilizes
JPS5953994B2 (en) Underground tank construction method
CN205718218U (en) A kind of novel freeze dryer
CN110565662B (en) Anchoring device for preventing freeze-thaw damage of slope in cold region
JP2921935B2 (en) Tunnel formation method
CN112855243A (en) Heat pipe cooling and ventilating device for underground high-temperature stope and construction method and ventilating method thereof
CN113153378A (en) Open type cold-absorbing anti-melting structure of permafrost tunnel
CN208012999U (en) The discharge outlet anti-icing equipment of thermal shock test chamber
CN220015186U (en) Phase-change concrete supporting system suitable for high-ground-temperature tunnel
JP2921934B2 (en) Tunnel drilling method
JP2004339741A (en) Super-critical co2 refrigerant snow melting system
CN207019385U (en) Freeze drier
JPH0768682B2 (en) Heat storage type snow melting device using wind power
CN117684542A (en) A slide-resistant pile structure that is used for permafrost region and can cool down drainage filter sand
Di Donna et al. The use of geothermal energy to prevent road pavement icing and damage in cold climate areas
CN214842043U (en) In-situ freeze dryer with temperature control function
LU501868B1 (en) A brine freezing anti settlement system for underground structure construction