JP2004339741A - Super-critical co2 refrigerant snow melting system - Google Patents

Super-critical co2 refrigerant snow melting system Download PDF

Info

Publication number
JP2004339741A
JP2004339741A JP2003135926A JP2003135926A JP2004339741A JP 2004339741 A JP2004339741 A JP 2004339741A JP 2003135926 A JP2003135926 A JP 2003135926A JP 2003135926 A JP2003135926 A JP 2003135926A JP 2004339741 A JP2004339741 A JP 2004339741A
Authority
JP
Japan
Prior art keywords
snow melting
refrigerant
pipe
snow
pavement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135926A
Other languages
Japanese (ja)
Inventor
Kosaku Nishida
耕作 西田
Yasunori Izawa
保憲 井澤
Masahiko Miura
雅彦 三浦
Kazutoshi Ito
一敏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003135926A priority Critical patent/JP2004339741A/en
Publication of JP2004339741A publication Critical patent/JP2004339741A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a snow melting system equipped with a super-critical CO<SB>2</SB>heat pump reducing the number of constituent components to lower the cost, obtaining low environmental load having high snow melting capacity and a snow melting device with energy conservation without using a boiler heating means and a heating wire heating means or the like even for a heavy snow-fall district or a cold district and simplifying a structure of a snow melting pipe in accordance with the rise of temperature of anti-freeze supplied to the snow melting pipe. <P>SOLUTION: In the snow melting system constituted by embedding a snow melting pipe connected to a heat source device inside of a paving body, the heat source comprises the CO<SB>2</SB>heat pump system using the CO<SB>2</SB>refrigerant, a gas cooler of the heat pump is so constituted that heat-exchange of the anti-freeze supplied to the snow melting pipe and the CO<SB>2</SB>refrigerant is made to heat the anti-freeze at not lower than a predetermined temperature, and the snow melting pipe is so flexibly formed that one consecutive pipe is an every certain length of the paving body can spread a heating range to the whole surface of the paving body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、舗装道路等の融雪や凍結防止に適用され、舗装体の内部に加熱流体が流動する融雪パイプを埋設し、該融雪パイプに前記加熱流体を生成する熱源装置を接続してなる融雪装置であって、CO(炭酸ガス)ヒートポンプを備えた超臨界CO冷媒融雪システムに関する。
【0002】
【従来の技術】
舗装道路上の積雪の除去または凍結防止の融雪装置として、フロンやアンモニアを冷媒とするヒートポンプの熱によって該積雪の除去や凍結防止を行なうようにしたヒートポンプ式融雪システムが用いられている。
図4はかかるヒートポンプ式融雪システムの一例を示し、図において100はヒートポンプで、該ヒートポンプ100の凝縮器で冷媒を冷却することにより昇温された不凍液は、不凍液ポンプ014によって不凍液供給管012を経て入口ヘッダー015に達し、該入口ヘッダー015に複数接続されている融雪パイプ011を通流することにより舗装道路上の積雪を加熱して融解せしめた後、該融雪パイプ011から出口ヘッダー016に流出し、該出口ヘッダー016から不凍液戻り管013を通って前記ヒートポンプ100の凝縮器に戻される。
【0003】
また、冷媒にCO(炭酸ガス)を使用したヒートポンプ式融雪システムに関する技術が特許文献1(特開2001−241785公報)にて提供されている。
特許文献1の技術においては、ヒートポンプ100の凝縮器におけるCO冷媒の冷却流体として吸収冷凍機を循環する冷却流体を用いるとともに、凝縮器においてCO冷媒を冷却することにより昇温された不凍液等の冷却流体を融雪装置に導き、該昇温流体によって舗装体上の積雪を加熱して融解せしめるように構成している。
【0004】
【特許文献1】
特開2001−241785公報
【0005】
【発明が解決しようとする課題】
図4に示されている従来技術にあっては、前記ヒートポンプ100の凝縮器からの昇温された不凍液の温度は25℃程度であって、この不凍液が前記融雪パイプ011を通流して舗装道路上の積雪を加熱して融解しヒートポンプ100の凝縮器に戻される温度が20℃程度必要であることから、前記不凍液の融雪パイプ011出入り口温度差は5℃程度となる。また、従来は一定温度で冷媒が冷却される凝縮過程が存在することから、不凍液の温度の昇温が制限されていた。
このため、かかる従来技術にあっては、積雪量の多い舗装道路の融雪を行う場合には、融雪パイプ011の数及び入口ヘッダー015、出口ヘッダー016を増加した融雪システムが必要となって、融雪装置が大型で、複雑な構造となり、また、積雪量が過大な豪雪地域や寒冷地域においては、ボイラー加熱手段や電熱線加熱手段等の加熱手段を用いることを要しており、ボイラーでは環境負荷が大きく、電熱線ではエネルギー消費が大きい装置となる。
【0006】
また、融雪パイプ011に供給される不凍液温度が25℃程度と低いことから、加熱効果を上げるため、該融雪パイプ011を舗装道路の表面近くに埋設することを必要とし、このため、夏季等の融雪パイプ不使用時において融雪パイプの熱膨張による舗装体の割れが発生し易い。
【0007】
また、前記特許文献1の技術においては、CO冷媒を臨界圧力以下で用いるものであるため、フロンやアンモニア冷媒と同様に凝縮過程が存在し、不凍液温度は30℃以下に限定される。また、気液分離器や液ポンプが必要となりコストが高くなる。
【0008】
本発明はかかる従来技術の課題に鑑み、豪雪地域や寒冷地域に対しても、ボイラー加熱手段や電熱線加熱手段等を用いることなく融雪能力の大きい融雪装置が得られ、かつ融雪パイプに供給される不凍液温度の上昇に対応して融雪パイプの構造を簡単化し、構成部品数を減少して低コスト化したCO冷媒を用いた融雪システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明はかかる目的を達成するもので、舗装道路等の舗装体の内部に加熱流体が流動する融雪パイプを埋設し、該融雪パイプに前記加熱流体を生成する熱源装置を接続してなる融雪システムにおいて、前記熱源装置はCOガス(炭酸ガス)冷媒を超臨界圧力まで圧縮する圧縮機と、該圧縮機により圧縮した超臨界状態のCOガス冷媒を冷却するガスクーラと、該ガスクーラにより冷却したCO冷媒を減圧、膨張させる膨張装置と、膨張後のCO冷媒に熱を与えて気化させる蒸発器とを備えたCOヒートポンプシステムからなり、前記融雪パイプ内に不凍液を流動せしめるように構成するとともに、前記ガスクーラを前記融雪パイプに送られる不凍液と前記CO冷媒とを熱交換して該不凍液を所定温度以上に加熱するように構成し、さらに前記融雪パイプを前記舗装体の一定長さ毎に1本の連続したパイプを該舗装体の全面に加熱範囲が広がるように屈曲して形成して、該融雪パイプの不凍液入口及び出口と前記ガスクーラとを接続管にて接続してなることを特徴とする。
かかる発明において好ましくは、前記ガスクーラは、前記不凍液の前記融雪パイプ入口温度を60℃程度に加熱するように構成されてなる。
【0010】
かかる発明によれば、COガス冷媒は圧縮機において超臨界圧力(73atm)以上に圧縮され、ガスクーラにおいて融雪パイプから接続管を経て導入される冷却流体即ち低温の不凍液と熱交換する。
該COガス冷媒は、31℃以上で超臨界状態となり温度が一定となる飽和状態が存在しないため、前記圧縮機においてCOガス冷媒を高圧、高温に加圧し、ガスクーラにおいて該高圧、高温のCOガス冷媒を冷却流体である不凍液と熱交換することにより、該COガス冷媒を冷却するとともに、該COガス冷媒と熱交換後の前記不凍液を60℃程度の温度レベルにして取り出すことが可能となる。
【0011】
融雪パイプ内を通流することにより舗装体表面の融雪作用を行った後の不凍液の温度は20℃程度とすることから、60℃程度の不凍液を前記融雪パイプに導入することにより、該融雪パイプ内で40℃程度の温度差まで融雪が可能となり、舗装体の一定長さ毎に1本の連続したパイプを屈曲して該舗装体の全面に加熱範囲が広がるように形成すれば、1本の融雪パイプで該舗装体上の融雪を確実に行うことができる。
【0012】
従って、かかる発明によれば、融雪パイプに60℃程度の温度レベルに保持された高温の冷却流体(不凍液)を供給することが可能となって、積雪量の多い舗装体に対しても該舗装体表面への供給熱量を増大して融雪装置の融雪能力を増大することができる。
これにより、従来のヒートポンプ式融雪装置では適用が困難であった豪雪地域や寒冷地域に対しても、ボイラー加熱手段や電熱線加熱手段等の加熱手段を用いることなく、かかる地域に適応した融雪能力の大きい融雪装置を得ることができる。
また、融雪パイプに60℃程度の温度レベルに保持された高温の冷却流体(不凍液)を供給することが可能となるため、該融雪パイプの埋設深さを大きくしても、充分な融雪作用をなし得ることとなり、これによって、夏季等の融雪パイプ不使用時における融雪パイプの熱膨張量を小さくすることができ、該融雪パイプの熱膨張による舗装体の割れの発生を防止できる。
【0013】
また、かかる発明によれば、融雪パイプに60℃程度の温度レベルに保持された高温の不凍液を供給することにより、融雪パイプ出入り口間における不凍液の温度差を大きくとることが可能となって、これによって舗装体の一定長さ毎に1本の連続したパイプで融雪パイプを構成することができ、従来技術のような舗装体毎に多数のパイプを埋設して多数のヘッダーに連結するものに比べて、融雪パイプの構造が簡単化され構成部品数が少なくて済む。
【0014】
かかる発明において、前記融雪パイプを次のように構成することが可能となる。
即ち、前記融雪パイプを、一定長さの前記舗装体の幅方向外側から内側へ向けて延びかつ該舗装体の長手方向に往復するような形態で埋設する。
また、前記融雪パイプを、前記舗装体の幅方向及び長手方向における埋設間隔が200mm〜300mmの範囲になるように埋設する。
【0015】
このように構成することにより、融雪パイプの設置ピッチを従来技術(100mm〜150mm)よりも大きく採って、従来技術に比べて舗装体当たりの融雪パイプ数を低減でき、融雪パイプの施工コストを低減できる。
【0016】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0017】
図1は本発明の第1実施例に係る超臨界CO冷媒融雪システムを備えた舗装道路の融雪装置の全体構成を示す系統図である。図2は舗装体及び融雪パイプの平面略図であり、(A)はその第1例を、(B)はその第2例を示す。図3は冷凍サイクル図である。
【0018】
第1実施例を示す図1において、1はモータ2により駆動される圧縮機である。
3は圧縮機1から冷媒管21を通して送られる超臨界高圧COガスを冷却するガスクーラである。
【0019】
4は前記ガスクーラ3の冷媒出口に冷媒管22を介して接続されるCOガスの膨張弁である。該膨張弁4は、通常の冷凍サイクル用減圧弁、あるいは毛細管状の細管内を前記ガスクーラ3からのCO液冷媒を通流させることにより、該COガス冷媒を減圧する公知のキャピラリチューブを用いるのがよい。
【0020】
5は前記膨張弁4から、冷媒管23を通して送られる冷媒を加熱して蒸発、気化する蒸発器で、該蒸発器5にて気化されたCOガス冷媒は冷媒管24を通して、前記圧縮機1の吸入口に送られる。
前記蒸発器5におけるCO冷媒の蒸発によって、冷却負荷6を循環する冷却流体を冷却するようになっている。
以上により、COヒートポンプ100を構成する。
【0021】
10は表面が積雪状態にある舗装体、11は該舗装体の内部に埋設された融雪パイプである。
該融雪パイプ11は、内部を不凍液が通流し、前記舗装体10の一定長さL毎に1本の連続したパイプを該舗装体10の全面に加熱範囲が広がるように屈曲して形成している。そして、該融雪パイプ11の不凍液入口は不凍液供給管12を介して前記ガスクーラ3の冷却媒体出口に接続され、該融雪パイプ11の不凍液出口は不凍液戻り管13を介して前記ガスクーラ3の冷却媒体入口に接続されている。
【0022】
前記舗装体10及び融雪パイプ11の施工例を示す図2において、図2(A)に示す第1例においては、該融雪パイプ11を、一定長さLの舗装体10の幅方向外側から内側へ向けて、長手方向つまり前記一定長さLの方向に往復するような螺旋状に連続的に巻いた形態で、かつ隣り合うパイプ内における不凍液の流動方向が対向流になるように埋設している。
そして、かかる第1例においては、前記融雪パイプ11の幅方向間隔e及び長手方向間隔fを、図4に示される従来のもの(150mm)よりも大きい200mm〜300mmの範囲になるように(好ましくはe=f=250mm)設定し、入口及び出口を前記不凍液供給管12及び不凍液戻り管13に接続する。
【0023】
図2(B)に示す第2例においては、一定長さLの2つの舗装体10の夫々について、前記第1例と同一形態で配置した融雪パイプ11を、2つの舗装体10における融雪パイプ11の入口及び出口が向かい合うように、該入口及び出口に関して対称な形態で埋設している。
【0024】
かかる構成からなるCO冷凍システムを備えた融雪装置において、前記蒸発器5から冷媒管24を通して圧縮機1に吸入されたCOガス冷媒は、該圧縮機1において圧縮がなされ、図3に示される臨界点CP(73atm)以上の超臨界圧力に圧縮されて高圧、高温COガスとなり、ガスクーラ3に導入される。
【0025】
該ガスクーラ3においては、前記高圧、高温COガスと、前記融雪パイプ11にて融雪作用を行った後、不凍液戻り管13を通して導入された不凍液とを熱交換する。
該COガス冷媒は、図3に示されるように、31.1℃以上で超臨界状態となり温度が一定となる飽和状態が存在しないため、前記圧縮機1によって該COガス冷媒を高圧、高温に加圧し、ガスクーラ3において該高圧、高温のCOガス冷媒を冷却流体である不凍液と熱交換することにより、該COガス冷媒を冷却するとともに、該COガス冷媒と熱交換後の前記不凍液を60℃程度の温度レベルにして取り出すことが可能となる。
【0026】
前記ガスクーラ3において、60℃程度の温度レベルに昇温された不凍液は不凍液ポンプ14により不凍液供給管12を通して融雪パイプ11に送り込まれ、該融雪パイプ11内を流動することにより、舗装体10上の積雪を融解した後、不凍液戻り管13を通して前記ガスクーラ3に戻される。
ここで、かかる実施例においては、前記融雪パイプ11を、一定長さLの舗装体10の幅方向外側から内側へ向けて、長手方向に往復するような螺旋状に連続的に巻いた形態でかつ隣り合うパイプ内における不凍液の流動方向が対向流になるように配置しているので、該融雪パイプ11からの熱が舗装体10内で分散しながら積雪路面に伝達されることとなり、該積雪路面への熱流束を一様にして積雪路面を均一に加熱できる。
【0027】
一方、前記ガスクーラ3において、前記不凍液によって冷却されたCO冷媒は膨張弁4に導入される。該膨張弁4においてはCO冷媒を減圧して蒸発器5に導入されて、該蒸発器5において前記冷熱負荷6を循環する冷却流体(熱媒体)と熱交換することにより、蒸発、気化されて前記圧縮機1に吸入される。
【0028】
かかる実施例によれば、前記ガスクーラ3において60℃程度の高温不凍液を生成して、該高温不凍液を融雪パイプ11に導入して該融雪パイプ11内を流動せしめ、前記舗装体10表面の融雪作用を行った後の不凍液の温度は20℃程度であるから、該融雪パイプ11内で40℃程度の温度差まで融雪が可能となる。従って、前記融雪パイプ11を、図2(A)、(B)のように、前記舗装体10の一定長さL毎に1本の連続したパイプを屈曲して該舗装体10の全面に加熱範囲が広がるように形成すれば、1本の融雪パイプ11で該舗装体10上の融雪を確実に行うことができる。
【0029】
従って、かかる実施例によれば、前記ガスクーラ3において60℃程度の温度レベルに保持された高温の不凍液を生成して、前記融雪パイプ11に供給することが可能となって、積雪量の多い舗装体10に対しても該舗装体10の積雪表面への供給熱量を増大して融雪装置の融雪能力を増大することが可能となる。
これにより、豪雪地域や寒冷地域に対しても、ボイラー加熱手段や電熱管加熱手段等の格別な加熱手段を付設することなく、かかる地域に適応した融雪能力の大きい融雪システムを提供できる。
【0030】
また、前記融雪パイプ11に60℃程度の温度レベルに保持された高温の不凍液を供給することが可能となるため、該融雪パイプ11の埋設深さを大きくしても、充分な融雪作用をなし得ることとなる。
これによって、夏季等の融雪パイプ不使用時における融雪パイプ11の熱膨張量を小さくすることができ、該融雪パイプ11の熱膨張による舗装体10の割れの発生を防止できる。
【0031】
【発明の効果】
以上記載のごとく本発明によれば、融雪パイプに60℃程度の温度レベルに保持された高温の冷却流体(不凍液)を供給することが可能となって、積雪量の多い舗装体に対しても該舗装体表面への供給熱量を増大させて融雪システムの融雪能力を増大することができる。
これにより、従来のヒートポンプ式融雪装置では適用が困難であった豪雪地域や寒冷地域に対しても、ボイラー加熱手段や電熱線加熱手段等の加熱手段を用いることなく、かかる地域に適応した低環境負荷でありかつ省エネルギーの融雪能力の大きい融雪システムを得ることができる。
また、融雪パイプに60℃程度の温度レベルに保持された高温の冷却流体(不凍液)を供給することが可能となるため、該融雪パイプの埋設深さを大きくしても、充分な融雪作用をなし得ることとなり、これによって、夏季等の融雪パイプ不使用時における舗装体の割れの発生を防止できる。
【0032】
また、かかる発明によれば、融雪パイプに60℃程度の温度レベルに保持された高温の不凍液を供給することにより、融雪パイプ出入り口間における不凍液の温度差を大きくとることが可能となって、これによって舗装体の一定長さ毎に1本の連続したパイプで融雪パイプを構成することができ、従来技術のような舗装体毎に多数のパイプを埋設して多数のヘッダーに連結するものに比べて融雪パイプの構造が簡単化され構成部品数が少なくて済む。
【図面の簡単な説明】
【図1】本発明の実施例に係る超臨界CO冷媒融雪システムを備えた舗装道路の融雪システムの全体構成を示す系統図である。
【図2】舗装体及び融雪パイプの平面略図であり、(A)はその第1例を、(B)はその第2例を示す。
【図3】超臨界炭酸ガスの冷凍サイクルである。
【図4】従来のヒートポンプ式融雪システムの一例である。
【符号の説明】
1 圧縮機
2 モータ
3 ガスクーラ
4 膨張弁
5 蒸発器
6 冷却負荷
10 舗装体
11 融雪パイプ
12 不凍液供給管
13 不凍液戻り管
14 不凍液ポンプ
100 ヒートポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is applied to the prevention of snow melting and freezing on a pavement road or the like, and is formed by burying a snow melting pipe through which a heating fluid flows inside a pavement, and connecting a heat source device that generates the heating fluid to the snow melting pipe. The present invention relates to a supercritical CO 2 refrigerant snow melting system including a CO 2 (carbon dioxide) heat pump.
[0002]
[Prior art]
2. Description of the Related Art As a snow melting apparatus for removing or preventing freezing of snow on a pavement road, a heat pump type snow melting system that removes or prevents freezing of the snow by using heat of a heat pump using Freon or ammonia as a refrigerant is used.
FIG. 4 shows an example of such a heat pump type snow melting system. In the figure, reference numeral 100 denotes a heat pump, and an antifreeze liquid heated by cooling a refrigerant in a condenser of the heat pump 100 passes through an antifreeze liquid supply pipe 012 by an antifreeze liquid pump 014. After reaching the entrance header 015 and flowing through a plurality of snow melting pipes 011 connected to the entrance header 015, the snow cover on the pavement is heated and melted, and then flows out from the snow melting pipe 011 to the exit header 016. The heat is returned from the outlet header 016 to the condenser of the heat pump 100 through the antifreeze liquid return pipe 013.
[0003]
Further, a technology relating to a heat pump type snow melting system using CO 2 (carbon dioxide) as a refrigerant is provided in Patent Document 1 (JP-A-2001-241785).
In the technique of Patent Document 1, a cooling fluid circulating in an absorption refrigerator is used as a cooling fluid of a CO 2 refrigerant in a condenser of a heat pump 100, and an antifreeze liquid or the like heated by cooling the CO 2 refrigerant in the condenser is used. The cooling fluid is guided to a snow melting device, and the snow cover on the pavement is heated and melted by the heating fluid.
[0004]
[Patent Document 1]
JP 2001-241785 A
[Problems to be solved by the invention]
In the prior art shown in FIG. 4, the temperature of the heated antifreeze from the condenser of the heat pump 100 is about 25 ° C., and this antifreeze flows through the snow melting pipe 011 and the pavement road. Since the temperature at which the upper snow cover is heated and melted and returned to the condenser of the heat pump 100 needs to be about 20 ° C., the temperature difference between the inlet and outlet of the antifreeze liquid at the snow melting pipe 011 is about 5 ° C. Further, conventionally, since there is a condensing process in which the refrigerant is cooled at a constant temperature, the temperature rise of the antifreeze is limited.
For this reason, in the prior art, when performing snow melting on a pavement road with a large amount of snow, a snow melting system in which the number of snow melting pipes 011 and the number of inlet headers 015 and outlet headers 016 are increased is required. The equipment is large and has a complicated structure, and it is necessary to use heating means such as boiler heating means and electric heating wire heating means in heavy snowfall areas and cold areas where the amount of snow is excessive, and the boiler has an environmental impact. And the heating wire is a device that consumes a large amount of energy.
[0006]
Further, since the temperature of the antifreeze supplied to the snow melting pipe 011 is as low as about 25 ° C., it is necessary to bury the snow melting pipe 011 near the surface of the pavement road in order to enhance the heating effect. When the snow melting pipe is not used, the pavement is easily cracked due to the thermal expansion of the snow melting pipe.
[0007]
Further, in the technique of Patent Document 1, since a CO 2 refrigerant is used at a critical pressure or lower, a condensation process exists similarly to Freon or ammonia refrigerant, and the antifreeze temperature is limited to 30 ° C. or lower. Further, a gas-liquid separator and a liquid pump are required, which increases the cost.
[0008]
In view of the problems of the related art, the present invention can provide a snow melting apparatus having a large snow melting ability without using a boiler heating unit or a heating wire heating unit even in a heavy snowfall region or a cold region, and is supplied to a snow melting pipe. It is an object of the present invention to provide a snow melting system using a CO 2 refrigerant which simplifies the structure of a snow melting pipe in response to an increase in antifreeze temperature, reduces the number of components, and reduces cost.
[0009]
[Means for Solving the Problems]
The present invention achieves the above object and provides a snow melting system in which a snow melting pipe through which a heating fluid flows is embedded in a pavement such as a pavement road, and a heat source device that generates the heating fluid is connected to the snow melting pipe. , The heat source device compresses a CO 2 gas (carbon dioxide) refrigerant to a supercritical pressure, a gas cooler that cools a supercritical CO 2 gas refrigerant compressed by the compressor, and is cooled by the gas cooler. CO 2 refrigerant under reduced pressure, and an expansion device for expanding consists CO 2 heat pump system comprising an evaporator to evaporate giving heat to the CO 2 refrigerant after expansion, configured allowed to flow antifreeze into the snow melting pipe while, configured to an antifreeze sent the gas cooler to the snow melting pipe and the CO 2 refrigerant to heat above a predetermined temperature the antifreeze and heat exchanger Further, the snow melting pipe is formed by bending one continuous pipe for every fixed length of the pavement so that the heating range is spread over the entire surface of the pavement, and the antifreeze liquid inlet and outlet of the snow melting pipe are formed. And the gas cooler are connected by a connection pipe.
Preferably, in the present invention, the gas cooler is configured to heat the antifreeze solution to an inlet temperature of the snow melting pipe to about 60 ° C.
[0010]
According to the invention, the CO 2 gas refrigerant is compressed to a supercritical pressure (73 atm) or more in the compressor, and exchanges heat with the cooling fluid introduced from the snow melting pipe through the connection pipe, that is, the low-temperature antifreeze in the gas cooler.
Since the CO 2 gas refrigerant is in a supercritical state at 31 ° C. or higher and does not have a saturated state in which the temperature is constant, the CO 2 gas refrigerant is pressurized to a high pressure and a high temperature in the compressor, and the high pressure and the high temperature by antifreeze and heat exchange of CO 2 gas coolant is cooling fluid, thereby cooling the CO 2 gas coolant, to retrieve by the antifreeze of the CO 2 gas refrigerant after the heat exchange to a temperature level of about 60 ° C. Becomes possible.
[0011]
Since the temperature of the antifreeze after the snow melting action on the surface of the pavement is performed by flowing through the inside of the snow melting pipe is set to about 20 ° C., the antifreezing liquid of about 60 ° C. is introduced into the snow melting pipe, thereby It is possible to melt snow up to a temperature difference of about 40 ° C within the pipe, and if one continuous pipe is bent at a fixed length of the pavement so that the heating range is spread over the entire surface of the pavement, one Snow melting pipe can reliably melt snow on the pavement.
[0012]
Therefore, according to the invention, it is possible to supply a high-temperature cooling fluid (antifreeze) maintained at a temperature level of about 60 ° C. to the snow-melting pipe, so that even a pavement having a large amount of snow can be covered with the pavement. By increasing the amount of heat supplied to the body surface, the snow melting ability of the snow melting device can be increased.
As a result, even in heavy snow areas and cold areas, which were difficult to apply with the conventional heat pump type snow melting equipment, the snow melting ability adapted to such areas without using heating means such as boiler heating means or heating wire heating means And a snow melting device with a large size can be obtained.
Also, since a high-temperature cooling fluid (antifreeze) maintained at a temperature level of about 60 ° C. can be supplied to the snow melting pipe, a sufficient snow melting action can be obtained even if the burying depth of the snow melting pipe is increased. As a result, the amount of thermal expansion of the snow-melting pipe can be reduced when the snow-melting pipe is not used in summer or the like, and cracks in the pavement due to the thermal expansion of the snow-melting pipe can be prevented.
[0013]
Further, according to the invention, by supplying a high-temperature antifreeze kept at a temperature level of about 60 ° C. to the snow-melting pipe, it is possible to increase the temperature difference of the antifreeze between the entrance and the exit of the snow-melting pipe. This makes it possible to form a snowmelt pipe with one continuous pipe for each fixed length of pavement, compared to a conventional technique in which many pipes are buried for each pavement and connected to multiple headers. Therefore, the structure of the snow melting pipe is simplified and the number of components is reduced.
[0014]
In this invention, the snow melting pipe can be configured as follows.
That is, the snow-melting pipe is buried in a form extending from the outside in the width direction of the pavement of a fixed length to the inside and reciprocating in the longitudinal direction of the pavement.
In addition, the snow melting pipe is buried such that the burying interval in the width direction and the longitudinal direction of the pavement is in a range of 200 mm to 300 mm.
[0015]
With this configuration, the pitch at which snow melting pipes are installed is larger than that of the prior art (100 mm to 150 mm), so that the number of snow melting pipes per pavement can be reduced as compared with the prior art, and the construction cost of snow melting pipes can be reduced. it can.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.
[0017]
FIG. 1 is a system diagram showing an entire configuration of a snow melting apparatus for a pavement provided with a supercritical CO 2 refrigerant snow melting system according to a first embodiment of the present invention. FIGS. 2A and 2B are schematic plan views of a pavement and a snow melting pipe, wherein FIG. 2A shows a first example and FIG. 2B shows a second example. FIG. 3 is a refrigeration cycle diagram.
[0018]
In FIG. 1 showing the first embodiment, reference numeral 1 denotes a compressor driven by a motor 2.
Reference numeral 3 denotes a gas cooler for cooling the supercritical high-pressure CO 2 gas sent from the compressor 1 through the refrigerant pipe 21.
[0019]
Reference numeral 4 denotes a CO 2 gas expansion valve connected to a refrigerant outlet of the gas cooler 3 via a refrigerant pipe 22. The expansion valve 4 is an ordinary pressure reducing valve for a refrigeration cycle, or a known capillary tube that decompresses the CO 2 gas refrigerant by flowing the CO 2 liquid refrigerant from the gas cooler 3 through a capillary tube. Good to use.
[0020]
Reference numeral 5 denotes an evaporator that heats and evaporates and vaporizes the refrigerant sent from the expansion valve 4 through the refrigerant pipe 23. The CO 2 gas refrigerant vaporized in the evaporator 5 passes through the refrigerant pipe 24 through the compressor 1. Sent to the suction port.
The cooling fluid circulating through the cooling load 6 is cooled by the evaporation of the CO 2 refrigerant in the evaporator 5.
Thus, the CO 2 heat pump 100 is configured.
[0021]
Reference numeral 10 denotes a pavement having a snow-covered surface, and reference numeral 11 denotes a snow-melting pipe buried inside the pavement.
The snow-melting pipe 11 is formed such that an antifreeze flows through the inside thereof, and a single continuous pipe is bent at a predetermined length L of the pavement 10 so that a heating range is spread over the entire surface of the pavement 10. I have. The antifreeze liquid inlet of the snow melting pipe 11 is connected to the cooling medium outlet of the gas cooler 3 via the antifreezing liquid supply pipe 12, and the antifreezing liquid outlet of the snow melting pipe 11 is connected to the cooling medium inlet of the gas cooler 3 via the antifreeze liquid return pipe 13. It is connected to the.
[0022]
In FIG. 2 showing a construction example of the pavement body 10 and the snow melting pipe 11, in the first example shown in FIG. 2 (A), the snow melting pipe 11 is placed inside the pavement body 10 having a constant length L from the width direction outside. In the form of continuous winding in a spiral shape reciprocating in the longitudinal direction, that is, the direction of the constant length L, and buried in such a manner that the flow direction of the antifreeze in the adjacent pipes becomes countercurrent. I have.
In the first example, the width e of the snow melting pipe 11 and the length f of the snow melting pipe 11 are set in a range of 200 mm to 300 mm (preferably, larger than the conventional one (150 mm) shown in FIG. 4). Is set to e = f = 250 mm), and the inlet and outlet are connected to the antifreeze liquid supply pipe 12 and the antifreeze liquid return pipe 13.
[0023]
In the second example shown in FIG. 2 (B), for each of the two pavements 10 having a fixed length L, a snowmelt pipe 11 arranged in the same form as the first example is used. Eleven inlets and outlets are buried in a symmetrical configuration with respect to the inlets and outlets such that they face each other.
[0024]
In the snow melting apparatus provided with the CO 2 refrigeration system having such a configuration, the CO 2 gas refrigerant drawn into the compressor 1 from the evaporator 5 through the refrigerant pipe 24 is compressed in the compressor 1 and shown in FIG. Is compressed to a supercritical pressure equal to or higher than the critical point CP (73 atm), and becomes high-pressure, high-temperature CO 2 gas, which is introduced into the gas cooler 3.
[0025]
In the gas cooler 3, heat exchange is performed between the high-pressure, high-temperature CO 2 gas and the antifreeze introduced through the antifreeze return pipe 13 after the snow melting pipe 11 performs the snow melting action.
The CO 2 gas refrigerant, as shown in FIG. 3, since there is no saturation temperature becomes a supercritical state is constant at 31.1 ° C. or higher, a high pressure the CO 2 gas refrigerant by the compressor 1, pressurized to a high temperature, the high pressure in the gas cooler 3, by antifreeze heat exchange is a cooling fluid CO 2 gas refrigerant of high temperature and, while cooling the CO 2 gas refrigerant, the CO 2 gas refrigerant after the heat exchange The antifreeze can be taken out at a temperature level of about 60 ° C.
[0026]
In the gas cooler 3, the antifreeze heated to a temperature level of about 60 ° C. is sent to the snow melting pipe 11 through the antifreezing liquid supply pipe 12 by the antifreeze pump 14, and flows through the snow melting pipe 11, thereby causing the antifreeze liquid to flow on the pavement 10. After the snow is thawed, it is returned to the gas cooler 3 through the antifreeze liquid return pipe 13.
Here, in this embodiment, the snow melting pipe 11 is continuously wound in a spiral shape so as to reciprocate in the longitudinal direction from the outside in the width direction to the inside of the pavement 10 having a constant length L. In addition, since the flow direction of the antifreeze liquid in the adjacent pipes is arranged to be the counterflow, the heat from the snow melting pipe 11 is transmitted to the snow-covered road surface while being dispersed in the pavement 10, and the snow The heat flux to the road surface is made uniform and the snow-covered road surface can be heated uniformly.
[0027]
On the other hand, in the gas cooler 3, the CO 2 refrigerant cooled by the antifreeze is introduced into the expansion valve 4. In the expansion valve 4, the CO 2 refrigerant is decompressed and introduced into the evaporator 5, where the refrigerant exchanges heat with a cooling fluid (heat medium) circulating through the cold load 6, thereby being evaporated and vaporized. And is sucked into the compressor 1.
[0028]
According to this embodiment, a high-temperature antifreeze of about 60 ° C. is generated in the gas cooler 3, and the high-temperature antifreeze is introduced into the snow-melting pipe 11 to flow through the snow-melting pipe 11, and the snow-melting action on the surface of the pavement 10 is performed. Since the temperature of the antifreeze solution after performing the above is about 20 ° C., it is possible to melt snow up to a temperature difference of about 40 ° C. in the snow melting pipe 11. Therefore, as shown in FIGS. 2A and 2B, one continuous pipe is bent at every fixed length L of the pavement body 10 to heat the snow melting pipe 11 over the entire surface of the pavement body 10. If it is formed so that the range is widened, snow melting on the pavement 10 can be reliably performed by one snow melting pipe 11.
[0029]
Therefore, according to this embodiment, it is possible to generate a high-temperature antifreeze maintained at a temperature level of about 60 ° C. in the gas cooler 3 and supply the antifreeze to the snow-melting pipe 11, so that pavement with a large amount of snow Also for the body 10, the amount of heat supplied to the snow-covered surface of the pavement 10 can be increased to increase the snow melting ability of the snow melting device.
This makes it possible to provide a snow melting system having a large snow melting ability adapted to such a heavy snowfall area or a cold area without having to provide a special heating means such as a boiler heating means or an electric heating tube heating means.
[0030]
Further, since a high-temperature antifreeze maintained at a temperature level of about 60 ° C. can be supplied to the snow-melting pipe 11, even if the burying depth of the snow-melting pipe 11 is increased, a sufficient snow-melting action is not achieved. You will get.
Thus, the amount of thermal expansion of the snow melting pipe 11 when the snow melting pipe is not used in summer or the like can be reduced, and the occurrence of cracks in the pavement 10 due to the thermal expansion of the snow melting pipe 11 can be prevented.
[0031]
【The invention's effect】
As described above, according to the present invention, a high-temperature cooling fluid (antifreeze) maintained at a temperature level of about 60 ° C. can be supplied to a snow-melting pipe, and even a pavement having a large amount of snow can be supplied. The amount of heat supplied to the pavement surface can be increased to increase the snow melting capacity of the snow melting system.
As a result, even in heavy snow areas and cold areas, which were difficult to apply with the conventional heat pump snow melting apparatus, a low-environment environment adapted to such areas can be used without using heating means such as boiler heating means or heating wire heating means. It is possible to obtain a snow melting system which is a load and has a large snow melting ability with energy saving.
Also, since a high-temperature cooling fluid (antifreeze) maintained at a temperature level of about 60 ° C. can be supplied to the snow melting pipe, a sufficient snow melting action can be obtained even if the burying depth of the snow melting pipe is increased. This makes it possible to prevent the pavement from cracking when the snow melting pipe is not used in summer or the like.
[0032]
Further, according to the invention, by supplying a high-temperature antifreeze kept at a temperature level of about 60 ° C. to the snow-melting pipe, it is possible to increase the temperature difference of the antifreeze between the entrance and the exit of the snow-melting pipe. This makes it possible to form a snowmelt pipe with one continuous pipe for each fixed length of pavement, compared to a conventional technique in which many pipes are buried for each pavement and connected to multiple headers. The structure of the snow melting pipe is simplified and the number of components is reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an overall configuration of a snow melting system for a pavement provided with a supercritical CO 2 refrigerant snow melting system according to an embodiment of the present invention.
FIGS. 2A and 2B are schematic plan views of a pavement and a snow melting pipe, in which FIG. 2A shows a first example and FIG. 2B shows a second example.
FIG. 3 is a refrigeration cycle of supercritical carbon dioxide gas.
FIG. 4 is an example of a conventional heat pump type snow melting system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Motor 3 Gas cooler 4 Expansion valve 5 Evaporator 6 Cooling load 10 Pavement 11 Snow melting pipe 12 Antifreeze liquid supply pipe 13 Antifreeze liquid return pipe 14 Antifreeze liquid pump 100 Heat pump

Claims (4)

舗装道路等の舗装体の内部に加熱流体が流動する融雪パイプを埋設し、該融雪パイプに前記加熱流体を生成する熱源装置を接続してなる融雪システムにおいて、前記熱源装置はCOガス(炭酸ガス)冷媒を超臨界圧力まで圧縮する圧縮機と、該圧縮機により圧縮した超臨界状態のCOガス冷媒を冷却するガスクーラと、該ガスクーラにより冷却したCO冷媒を減圧、膨張させる膨張装置と、膨張後のCO冷媒に熱を与えて気化させる蒸発器とを備えたCOヒートポンプシステムからなり、前記融雪パイプ内に不凍液を流動せしめるように構成するとともに、前記ガスクーラを前記融雪パイプに送られる不凍液と前記CO冷媒とを熱交換して該不凍液を所定温度以上に加熱するように構成し、さらに前記融雪パイプを前記舗装体の一定長さ毎に1本の連続したパイプを該舗装体の全面に加熱範囲が広がるように屈曲して形成して、該融雪パイプの不凍液入口及び出口と前記ガスクーラとを接続管にて接続してなることを特徴とする超臨界CO冷媒融雪システム。In a snow melting system in which a snow melting pipe through which a heating fluid flows is embedded in a pavement such as a pavement road, and a heat source device that generates the heating fluid is connected to the snow melting pipe, the heat source device is a CO 2 gas (carbon dioxide). (Gas) a compressor for compressing a refrigerant to a supercritical pressure, a gas cooler for cooling a supercritical CO 2 gas refrigerant compressed by the compressor, and an expansion device for decompressing and expanding the CO 2 refrigerant cooled by the gas cooler. A CO 2 heat pump system having an evaporator for applying heat to the expanded CO 2 refrigerant to vaporize the CO 2 refrigerant. The CO 2 heat pump system is configured to flow the antifreeze into the snow melting pipe, and sends the gas cooler to the snow melting pipe. antifreeze and with said CO 2 refrigerant by heat exchange configured to heat the antifreeze above a predetermined temperature which is, further the paving the snow melting pipe A continuous pipe is bent at a predetermined length so as to expand the heating range over the entire surface of the pavement, and the antifreeze liquid inlet and outlet of the snow melting pipe and the gas cooler are connected by a connecting pipe. A supercritical CO 2 refrigerant snow melting system, comprising: 前記ガスクーラは、前記不凍液の前記融雪パイプ入口温度を60℃程度に加熱するように構成されてなることを特徴とする請求項1記載の超臨界CO冷媒融雪システム。The gas cooler is supercritical CO 2 refrigerant snow melting system according to claim 1, characterized by being configured the snow melting pipe inlet temperature of the antifreeze to heat to about 60 ° C.. 前記融雪パイプは、一定長さの前記舗装体の幅方向外側から内側へ向けて延び、かつ該舗装体の長手方向に往復するような形態で埋設されてなることを特徴とする請求項1記載の超臨界CO冷媒融雪システム。2. The snow melting pipe is buried in a form extending from the outside in the width direction of the pavement of a fixed length to the inside and reciprocating in the longitudinal direction of the pavement. Supercritical CO 2 refrigerant snow melting system. 前記融雪パイプは、前記舗装体の幅方向及び長手方向における埋設間隔を200mm〜300mmの範囲にて埋設されてなることを特徴とする請求項1記載の超臨界CO冷媒融雪システム。 2. The supercritical CO 2 refrigerant snow melting system according to claim 1, wherein the snow melting pipe is buried in a burying interval in a width direction and a longitudinal direction of the pavement in a range of 200 mm to 300 mm.
JP2003135926A 2003-05-14 2003-05-14 Super-critical co2 refrigerant snow melting system Pending JP2004339741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135926A JP2004339741A (en) 2003-05-14 2003-05-14 Super-critical co2 refrigerant snow melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135926A JP2004339741A (en) 2003-05-14 2003-05-14 Super-critical co2 refrigerant snow melting system

Publications (1)

Publication Number Publication Date
JP2004339741A true JP2004339741A (en) 2004-12-02

Family

ID=33526049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135926A Pending JP2004339741A (en) 2003-05-14 2003-05-14 Super-critical co2 refrigerant snow melting system

Country Status (1)

Country Link
JP (1) JP2004339741A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump device
CN100425770C (en) * 2006-11-10 2008-10-15 哈尔滨工业大学 Installation of cooling and melting ice and snow for road surface and bridge road by using underground natural energy resource
CN103088741A (en) * 2013-01-17 2013-05-08 东南大学 Highway bridge pavement deicing and snow melting system based on energy pile and running mode
CN104631278A (en) * 2015-01-22 2015-05-20 索肯和平(上海)电气有限公司 Device and method for preserving heat and de-icing bridge floor
US9194615B2 (en) 2013-04-05 2015-11-24 Marc-Andre Lesmerises CO2 cooling system and method for operating same
CN115900134A (en) * 2022-11-16 2023-04-04 珠海格力电器股份有限公司 Multi-heat-pump module unit and anti-freezing control method thereof
US11656005B2 (en) 2015-04-29 2023-05-23 Gestion Marc-André Lesmerises Inc. CO2 cooling system and method for operating same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump device
CN100425770C (en) * 2006-11-10 2008-10-15 哈尔滨工业大学 Installation of cooling and melting ice and snow for road surface and bridge road by using underground natural energy resource
CN103088741A (en) * 2013-01-17 2013-05-08 东南大学 Highway bridge pavement deicing and snow melting system based on energy pile and running mode
US9194615B2 (en) 2013-04-05 2015-11-24 Marc-Andre Lesmerises CO2 cooling system and method for operating same
CN104631278A (en) * 2015-01-22 2015-05-20 索肯和平(上海)电气有限公司 Device and method for preserving heat and de-icing bridge floor
US11656005B2 (en) 2015-04-29 2023-05-23 Gestion Marc-André Lesmerises Inc. CO2 cooling system and method for operating same
CN115900134A (en) * 2022-11-16 2023-04-04 珠海格力电器股份有限公司 Multi-heat-pump module unit and anti-freezing control method thereof
CN115900134B (en) * 2022-11-16 2024-06-04 珠海格力电器股份有限公司 Multi-heat pump module unit and anti-freezing control method thereof

Similar Documents

Publication Publication Date Title
US6167715B1 (en) Direct refrigerant geothermal heat exchange or multiple source subcool/postheat/precool system therefor
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
JP4623600B2 (en) High performance heat storage and cooling system using refrigerant
JPWO2009072364A1 (en) Geothermal equipment
JP4588198B2 (en) Snow melting system using geothermal and air heat
KR101184699B1 (en) Hybrid heat pump system using geothermal or waste water heat
JP2011038764A (en) Snow melting or cooling system using underground heat/air heat
JPWO2006051617A1 (en) Heat pump using CO2 as a refrigerant and operating method thereof
JP2006220351A (en) Freezer
JP2004339741A (en) Super-critical co2 refrigerant snow melting system
CN209392767U (en) With the indirect condensing formula petroleum vapor recovery unit from the function that defrosts
CN105157274B (en) cooling/heating system
JP2004069228A (en) Heat exchanger
CA2599769C (en) System and method for creating rink ice and utilizing high-temperature heat generated when creating rink ice
JPS58217133A (en) Heat pump system
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method
RU2287119C2 (en) Method and device for defreezing in vapor compression system
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JP2001241785A (en) Co2 refrigerant heat pump and snow melting device
US20110225990A1 (en) Efficient heat pump
JP2003148803A (en) Heat pump-type water heater
KR200257255Y1 (en) refrigerator/heat pump system
KR101258182B1 (en) Heat pump system
JP4971482B2 (en) Anti-slip device for snow road surface
KR200366204Y1 (en) An evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A02 Decision of refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080410

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080509