JPS603456A - Fuel feed controlling method for multicylinder internal-combustion engine - Google Patents
Fuel feed controlling method for multicylinder internal-combustion engineInfo
- Publication number
- JPS603456A JPS603456A JP11166883A JP11166883A JPS603456A JP S603456 A JPS603456 A JP S603456A JP 11166883 A JP11166883 A JP 11166883A JP 11166883 A JP11166883 A JP 11166883A JP S603456 A JPS603456 A JP S603456A
- Authority
- JP
- Japan
- Prior art keywords
- time
- signal
- fuel injection
- input
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は多気筒内燃エンジンの燃料供給制御方法に関し
、特に始動時における燃料の供給制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply control method for a multi-cylinder internal combustion engine, and more particularly to a fuel supply control method during startup.
内燃エンジンに供給する燃料量をエンジンの運転状態を
表すパラメータ信号に基づいて電子燃料噴射制御装置に
より電気的に算出する燃料供給制御方法としては、前記
電子燃料噴射制御装置に内蔵された中央処理装置により
エンジンのクランク軸の所定位置で該エンジンの1サイ
クルに1回発生されるシリンダ判別信号により噴射順序
を決定し、各気筒の噴射タイミングに対応する前記クラ
ンク輔の所定位置を示すタイミング信号の発生毎に各気
筒に順次燃料を噴射供給するようにした燃料供給制御方
法がある。また、始動時には最初のタイミング信号で全
気筒に燃料を同時に噴射する燃料供給制御方法もある。A fuel supply control method in which an electronic fuel injection control device electrically calculates the amount of fuel to be supplied to an internal combustion engine based on a parameter signal representing the operating state of the engine includes a central processing unit built in the electronic fuel injection control device. The injection order is determined by a cylinder discrimination signal generated once per cycle of the engine at a predetermined position on the crankshaft of the engine, and a timing signal indicating the predetermined position of the crankshaft corresponding to the injection timing of each cylinder is generated. There is a fuel supply control method that sequentially injects and supplies fuel to each cylinder. There is also a fuel supply control method that simultaneously injects fuel into all cylinders using the first timing signal during startup.
ところで、エンジン始動時、特に冷寒始動時にスタータ
を駆動させるとバッテリ電圧が低下し、この結果、各気
筒への燃料量を制御する前記中央処理装置の作動電圧以
下となることかあり、しかしこのときにはスタータの端
子電圧即ち、バッテリ電圧が脈動的に変動し、これに伴
い前記中央処理装置はバッテリ電圧が当該中央処理装置
の前記作動電圧に復帰した後の噴射タイミング信号毎に
全気筒に燃料を噴射することとなり、前回噴射された燃
料か未だ吸入されていない間に次の燃料が噴射されるこ
ととなる。このため、かかる作動が2〜3回繰り返して
行われると燃料過多即ら、オーバリッチとなる虞がある
と共に、エンジンの始動性が低下する等の不具合がある
。By the way, when the starter is driven when starting the engine, especially during a cold start, the battery voltage decreases, and as a result, it may drop below the operating voltage of the central processing unit that controls the amount of fuel to each cylinder. Sometimes, the terminal voltage of the starter, that is, the battery voltage fluctuates pulsatingly, and as a result, the central processing unit injects fuel into all cylinders at every injection timing signal after the battery voltage returns to the operating voltage of the central processing unit. The next fuel will be injected while the previously injected fuel has not yet been injected. Therefore, if such an operation is repeated two or three times, there is a risk of excess fuel, that is, over-richness, and there are problems such as a decrease in engine startability.
本発明は上述の点に鑑めでなされたもので、始動時にお
ける燃料噴射量の過多(以下オ−バリッチという)を防
止し、且つバッテリの電圧降下に対しても良好な始動性
を得ることを目的とする。The present invention was made in view of the above points, and aims to prevent excessive fuel injection amount (hereinafter referred to as overrich) at the time of starting, and to obtain good starting performance even against battery voltage drop. purpose.
この目的を達成するために本発明においては、電子コン
トロールユニットの中央処理装置によりエンジンのクラ
ンク軸の所定位置で該エンジンの1ザイクルに1回発生
されるシリンダ判別信号により噴射順序を決定し、各気
筒の噴射タイミングに対応する前記クランク軸の所定位
置を示すタイミング信号の発生毎に各気筒に順次燃料を
噴射供給する多気筒内燃エンジンの燃料供給制御方法に
おいて、前記中央処理装置に供給される作動電圧を検出
し、該作動電圧が所定電圧以上のときには始動後前記シ
リンダ判別信号が最初に入力されるまでの間は前記タイ
ミング信号の入力毎に全燃料噴射弁を同時に開弁させ、
前記最初のシリンダ判別信月の入力後から前記タイミン
グ信号の入力毎に燃料噴射弁の動作数を漸減させ、第2
番目のシリンダ判別信号の入力後の前記タイミンク信号
から夫々のタイミング信号に対応した燃料噴射弁を順次
開弁させる多気筒内燃エンジンの燃料供給制御方法、及
び前記中央処理装置に供給される作動電圧を検出し、該
作動電圧が所定電圧以上のときには、始動後前記シリン
ダ判別信号か最初に入力されるまでの間は前記タイミン
グ信号の入力毎に全燃料噴射弁を同時に開弁させ、前記
最初のシリンダ判別信号の入力後から前記タイミング信
号の入力毎に燃料噴射弁の動作数を漸減させ、第2番目
のシリンダ判別信号の入力後の前記タイミング信号から
夫々のタイミング信号に対応した燃料噴射弁を順次開弁
させ、前記作動電圧が所定電圧に達しないときには定電
圧時作動回路により前記タイミング信号に応して各タイ
ミンク信号毎に全燃料噴射弁を同時に開弁させる多気筒
内燃エンジンの燃料供給制御方法を提供するものである
。In order to achieve this object, in the present invention, the injection order is determined by the cylinder discrimination signal that is generated once per cycle of the engine at a predetermined position on the crankshaft of the engine by the central processing unit of the electronic control unit. In a fuel supply control method for a multi-cylinder internal combustion engine that sequentially injects fuel to each cylinder each time a timing signal indicating a predetermined position of the crankshaft corresponding to the injection timing of the cylinder is generated, the operation supplied to the central processing unit detecting the voltage, and when the operating voltage is equal to or higher than a predetermined voltage, all the fuel injection valves are opened simultaneously every time the timing signal is input until the cylinder discrimination signal is first input after startup;
After inputting the first cylinder discrimination signal, the number of operations of the fuel injection valve is gradually decreased every time the timing signal is input, and the second cylinder discrimination signal is inputted.
A fuel supply control method for a multi-cylinder internal combustion engine in which fuel injection valves corresponding to each timing signal are sequentially opened from the timing signal after the input of the th cylinder discrimination signal, and an operating voltage supplied to the central processing unit is provided. When the operating voltage is equal to or higher than a predetermined voltage, all the fuel injection valves are opened simultaneously every time the timing signal is input until the cylinder discrimination signal is input for the first time after starting, and the first cylinder is opened. After the discrimination signal is input, the number of fuel injection valves to be operated is gradually decreased each time the timing signal is input, and from the timing signal after the second cylinder discrimination signal is input, the fuel injection valves corresponding to each timing signal are sequentially operated. A fuel supply control method for a multi-cylinder internal combustion engine in which the valves are opened, and when the operating voltage does not reach a predetermined voltage, all fuel injection valves are simultaneously opened for each timing signal in response to the timing signal by a constant voltage operating circuit. It provides:
以下本発明の一実施例を添付図面に基づいて詳述する。An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明を通用した燃料供給制御装置の全体の構
成図を示し、エンジン1は副燃焼室を備える多気筒例え
ば4気筒のエンジンで、吸気管2は各主燃焼室に連通さ
れた主吸気管2aと各副燃焼室に連通された副吸気管2
bとから成り、吸気管2の途中にはスロットルボディ3
が設けられ、内部には主吸気管2a、副吸気管2b内に
夫々配設された主スロットル弁3a、副スロットル弁3
bが連動して設けられている。主スロットル弁3aには
スロットル弁開度センサ4が連設され、主スロットル弁
3aの弁開度を電気信号に変換して電子コントロールユ
ニット(以下ECUという)5に供給する。FIG. 1 shows an overall configuration diagram of a fuel supply control device according to the present invention, in which an engine 1 is a multi-cylinder engine, for example a four-cylinder engine, equipped with a sub-combustion chamber, and an intake pipe 2 is connected to each main combustion chamber. A sub-intake pipe 2 communicating with the main intake pipe 2a and each sub-combustion chamber
b, and a throttle body 3 is located in the middle of the intake pipe 2.
A main throttle valve 3a and a sub-throttle valve 3 are provided in the main intake pipe 2a and the sub-intake pipe 2b, respectively.
b are provided in conjunction with each other. A throttle valve opening sensor 4 is connected to the main throttle valve 3a, converts the valve opening of the main throttle valve 3a into an electrical signal, and supplies the electrical signal to an electronic control unit (hereinafter referred to as ECU) 5.
主吸気管2a及び副吸気管2bには夫々主燃料噴射弁6
及び副燃料噴射弁7が設けられ、主燃料噴射弁6は主吸
気管2aの図示しない吸気弁の少し上流側に各気筒毎に
、副燃料噴射弁7は1個のめ副吸気管2bの副スロット
ル弁3bの少し下流側に各気筒に共通して夫々設げられ
Cいる。主燃料噴射弁6及び副燃料噴射弁7は夫々図示
しない燃料ポンプに接続されると共に、ECU5に電気
的に接続されており、当該ECU5からの制御信号によ
り燃料噴射の開弁時間が制御される。スロットル弁3a
の直ぐ下流には管8を介して絶対用センサ9が設けられ
ており、ECU5に接続されている。Main fuel injection valves 6 are provided in the main intake pipe 2a and the auxiliary intake pipe 2b, respectively.
and an auxiliary fuel injection valve 7 are provided, the main fuel injection valve 6 being located slightly upstream of an unillustrated intake valve in the main intake pipe 2a for each cylinder, and the auxiliary fuel injection valve 7 being one in the auxiliary intake pipe 2b. A valve C is provided in common to each cylinder slightly downstream of the sub-throttle valve 3b. The main fuel injection valve 6 and the auxiliary fuel injection valve 7 are each connected to a fuel pump (not shown) and are electrically connected to the ECU 5, and the opening time of fuel injection is controlled by a control signal from the ECU 5. . Throttle valve 3a
An absolute sensor 9 is provided immediately downstream of the ECU 5 via a pipe 8, and is connected to the ECU 5.
エンジン1の本体にはエンジン水温センサ10が設けら
れ、該センサ10はサーミスタ等から成り冷却水が充満
したエンジン気筒周壁内に装着され、検出した水温信号
をECU5に供給する。又エンジン回転数センサ(以下
TDCセンサという)11及び気筒判別センサ(以下C
YLセンサという)12h夫々エンジン1の図示しない
カム軸周囲又はデストリビュータ軸周囲に取り付りられ
ており、TDCセンサ11は各気筒の噴射タイミングに
対応する前記クランク軸の所定位置を示すタイミング信
号を発生し、CYLセンサ12は前記クランク軸の所定
位置で該エンジンの1サイクルに1回シリンダ判別信号
を発生ずる。これらのタイミング信号及びシリンタ判別
信号はECU5に供給される。The main body of the engine 1 is provided with an engine water temperature sensor 10. The sensor 10 is made of a thermistor or the like, and is mounted in the circumferential wall of the engine cylinder filled with cooling water, and supplies a detected water temperature signal to the ECU 5. In addition, an engine speed sensor (hereinafter referred to as TDC sensor) 11 and a cylinder discrimination sensor (hereinafter referred to as C
YL sensor) 12h is attached around the camshaft or distributor shaft (not shown) of the engine 1, and the TDC sensor 11 sends a timing signal indicating a predetermined position of the crankshaft corresponding to the injection timing of each cylinder. The CYL sensor 12 generates a cylinder discrimination signal once per cycle of the engine at a predetermined position of the crankshaft. These timing signals and cylinder discrimination signals are supplied to the ECU 5.
ECU5はキースイッチ16のイグニッションスイッチ
16aを介してバッテリ17に接続され、スイッチオン
時にバッテリ17から作動電圧が供給される。スタータ
18はキースイッチ16のスタータスイッチ16bを介
してバッテリ17に接続される。またスタータ18とキ
ースイッチ16bとの接続点はECUに接続されており
、始動時のバッテリにおけるスタータ18の端子電圧即
ち、始動時のバッテリ電圧がECU5で検知されるよう
になっている。The ECU 5 is connected to a battery 17 via an ignition switch 16a of the key switch 16, and is supplied with operating voltage from the battery 17 when the ECU 5 is turned on. The starter 18 is connected to the battery 17 via a starter switch 16b of the key switch 16. Further, the connection point between the starter 18 and the key switch 16b is connected to the ECU, so that the ECU 5 detects the terminal voltage of the starter 18 on the battery at the time of starting, that is, the battery voltage at the time of starting.
第2は本発明の制御方法の手順を示すフローチャートで
、第4図のタイミングチャートを参照しつつ説明する。The second is a flowchart showing the procedure of the control method of the present invention, which will be explained with reference to the timing chart of FIG.
始動時においてECU5に供給される電源電圧が当該E
CU内の中央処理装置の作動電圧よりも高いか否かを判
別し(ステップ20)その答が否定(No)のときには
中央処理装置による制御は行わずに他の電子回路に基づ
いてバックアップ斉次噴射(第4図(d)、(e))を
行わせる(ステップ22)。肯定(Yes)のときには
始動後シリンダ判別信号CYLが一度でも入力されたか
否かを判別し(ステップ23)、その答が否定(No)
のときにはTDC信号が入力される毎に全気筒に斉次噴
射(第4図(a)、(b)、(d)、(c)を行わせる
(ステップ24)と共に、値iを所定値4に設定する(
ステップ25)。この値4は気筒数に対応した値でもよ
く、又気筒数よりも大きい任意の整数に設定してもよい
。The power supply voltage supplied to the ECU 5 at the time of starting is
It is determined whether the voltage is higher than the operating voltage of the central processing unit in the CU (step 20), and if the answer is negative (No), backup is performed simultaneously based on other electronic circuits without being controlled by the central processing unit. Injection (Fig. 4(d), (e)) is performed (step 22). When the answer is affirmative (Yes), it is determined whether the cylinder discrimination signal CYL has been input even once after starting (step 23), and the answer is negative (No).
When the TDC signal is input, simultaneous injection is performed in all cylinders (Fig. 4 (a), (b), (d), and (c) (step 24), and the value i is set to a predetermined value 4. Set to (
Step 25). This value 4 may be a value corresponding to the number of cylinders, or may be set to any integer larger than the number of cylinders.
ステップ23の答が肯定(Yes)のときには始動後C
YL信号が2度以上入力されたか否かを判別し(ステッ
プ26)、その答が否定(No)のときには斉次噴射さ
せる気筒数を減少させ(ステップ27)肯定(Yes)
のときには順次噴射させる(ステップ28)。If the answer to step 23 is affirmative (Yes), C after startup.
It is determined whether or not the YL signal has been input twice or more (step 26), and if the answer is negative (No), the number of cylinders in which simultaneous injection is performed is reduced (step 27) and affirmative (Yes).
When , the fuel is injected sequentially (step 28).
ステップ27におりる斉次噴射気筒数の減少制御は第3
図のフローチャートに従って行われる。即ち、所定値i
が4であるが否かを判別し(ステップ30)、その答が
肯定(Yes)のときには始動後に最初にシリンタ判別
信号CYL1(第4図(a))が入力された直後に入力
されるタイミンク信号TDCにより気筒番号#1、3、
4、2で示す全気筒に斉次噴射(第4図(b)、(c)
)を行い(ステップ31)、前記所定値i(=4)から
値lを減ずる(ステップ32)。ステップ30の答が否
定(No)のときには値iが3であるか否かを判別しく
ステップ33)、その答が11定(Yes )のときに
は2回目の斉次噴射であると判断し第1の気筒#lを除
く他の気筒#3、4、2に斉次噴射(第4図(e))を
行いステップ32に進む。The control to reduce the number of simultaneous injection cylinders in step 27 is performed in the third step.
This is done according to the flowchart in the figure. That is, the predetermined value i
is 4 or not (step 30), and if the answer is affirmative (Yes), the timing input immediately after the cylinder discrimination signal CYL1 (Fig. 4 (a)) is input for the first time after starting. Cylinder number #1, 3, by signal TDC
4, Simultaneous injection to all cylinders shown in 2 (Fig. 4 (b), (c)
) (step 31), and the value l is subtracted from the predetermined value i (=4) (step 32). If the answer to step 30 is negative (No), it is determined whether the value i is 3 or not (step 33), and if the answer is 11 constant (Yes), it is determined that it is the second simultaneous injection and the first The simultaneous injection (FIG. 4(e)) is performed in the other cylinders #3, 4, and 2 except for the cylinder #l, and the process proceeds to step 32.
ステップ33の答が否定(No)のときには前記所定値
iが2であるか否かを判別し(ステップ35)、その答
か肯定(Yes)のときには3回目の斉次噴射であると
判断して第1、第2の気筒#1、3を除く他の気筒#4
、2に斉次噴射(第4図(e))を行い(ステップ36
)、ステップ32に進む。ステップ35の答が否定(N
o)のときには前記気筒#1.3、4を除く残りの気筒
#2(第4図(e))に燃料を噴射させてステップ32
に進む。When the answer to step 33 is negative (No), it is determined whether or not the predetermined value i is 2 (step 35), and when the answer is affirmative (Yes), it is determined that it is the third simultaneous injection. The other cylinder #4 except the first and second cylinders #1 and 3
, 2, simultaneous injection (Fig. 4(e)) is performed (step 36
), proceed to step 32. The answer to step 35 is negative (N
o), fuel is injected into the remaining cylinder #2 (FIG. 4(e)) excluding the cylinders #1, 3 and 4, and step 32
Proceed to.
上述のようにして始動後最初に入力されたCYL1信号
の直後のTDC信号により金気筒に斉次噴射を行い、2
番目のCYL2(第4図(a))信号が入力されるまで
の間、TDC信号が入力される毎に斉次噴射させる気筒
数を漸減させる。そして始動後2番目のCYL信号が入
力されると、以後タイミンク信号TI)Cか入力される
毎に所定の順序で順次噴射(第4図(e))を行う。尚
、副噴射弁はシリンダ判別信CYLに関係なく、タイミ
ンク信号TDCが入力される毎に駆動される。As described above, the TDC signal immediately after the CYL1 signal input after startup performs simultaneous injection into the gold cylinder, and the second
Until the CYL2 (FIG. 4(a)) signal is input, the number of cylinders in which simultaneous injection is performed is gradually decreased each time the TDC signal is input. When the second CYL signal is input after starting, injections are sequentially performed in a predetermined order (FIG. 4(e)) every time the timing signal TI)C is input. Note that the sub-injection valve is driven every time the timing signal TDC is input, regardless of the cylinder discrimination signal CYL.
第5図は第1図に示ずECU内の回路構成を示す。FIG. 5 shows a circuit configuration inside the ECU that is not shown in FIG. 1.
キースイソチ16を構成するイグニッションスイッチ1
6aを投入(オン)するとバッテリ17の電源電圧が定
電圧回路501に供給され、該定電圧回路501が一定
電圧Vccを出力する。この定電圧Vccは主演算制御
回路503及び電化低下検知回路502に供給される。Ignition switch 1 that constitutes key isochi 16
When 6a is turned on, the power supply voltage of the battery 17 is supplied to the constant voltage circuit 501, and the constant voltage circuit 501 outputs a constant voltage Vcc. This constant voltage Vcc is supplied to the main calculation control circuit 503 and the electrification drop detection circuit 502.
’TDCセンサ12から出力されるトリガ信号(第6図
(a))はワンショット回路504に供給され、このワ
ンショット回路504の出力パルス信号(第6図(b)
)は低電圧時作動回路505の遅延回路505a、ワン
ショット回路505b、505c、積分回路505d、
505e及び主演算制御回路503に供給される。水温
センサ10の出力信号は主演算制御回路503及び低電
圧時作動回路505の比較器505bの非反転入力端子
に供給される。'The trigger signal output from the TDC sensor 12 (FIG. 6(a)) is supplied to the one-shot circuit 504, and the output pulse signal of this one-shot circuit 504 (FIG. 6(b)) is supplied to the one-shot circuit 504.
) are the delay circuit 505a of the low voltage operation circuit 505, the one-shot circuits 505b, 505c, the integration circuit 505d,
505e and the main operation control circuit 503. The output signal of the water temperature sensor 10 is supplied to the main calculation control circuit 503 and the non-inverting input terminal of the comparator 505b of the low voltage operation circuit 505.
主演算制御回路503は第1図に示す水温センサ10等
の各種センサから出力されるエンジンパラメータ信号に
基ついてワンショット回路504から入力されるTI)
C信号に同期したパルスh:”>か入力される毎に次式
(1)及び(2)で表される主燃料噴射弁及び副燃料噴
射弁の各開弁時間T OUT M′及び T OUT
Sを演算して対応する開弁制御信号を出力する。The main calculation control circuit 503 receives TI input from the one-shot circuit 504 based on engine parameter signals output from various sensors such as the water temperature sensor 10 shown in FIG.
Each time the pulse h:'' synchronized with the C signal is input, the opening times T OUT M' and T OUT of the main fuel injection valve and the auxiliary fuel injection valve are expressed by the following equations (1) and (2).
S is calculated and a corresponding valve opening control signal is output.
T OUT M=TiM×K1+TK2・・・(1)T
OUT S=Tis×K’1+TK’2・・・(2)
更に、主演算制御回路503は始動時における斉次噴射
を行うための開弁時間T OUT M’を演算して対応
ずろ開弁制御信号を出力する。この斉次噴射時における
開弁時間は通常時における開弁時間の所定倍例えば気筒
数分の1倍即ち、4気筒であれば1/4倍に設定されて
いる。T OUT M=TiM×K1+TK2...(1)T
OUT S=Tis×K'1+TK'2...(2)
Further, the main calculation control circuit 503 calculates a valve opening time T OUT M' for performing simultaneous injection at the time of starting, and outputs a corresponding staggered valve opening control signal. The valve-opening time during this simultaneous injection is set to a predetermined times the valve-opening time during normal operation, for example, 1/4 times the number of cylinders, ie, 1/4 times in the case of 4 cylinders.
T OUT M’=(TiM×Kl)/4+TK2・・
・(3)
ここに、TiM及びTisは夫々主燃料噴射弁6及びひ
副燃料噴射弁7の各基本噴射時間を示し、これらの各基
本燃料噴射時間は例えば、吸気的内絶対圧PBAとエン
ジン回転故Neに応して演算される。T OUT M'=(TiM×Kl)/4+TK2...
-(3) Here, TiM and Tis indicate the basic injection times of the main fuel injection valve 6 and the secondary fuel injection valve 7, respectively, and these basic fuel injection times are, for example, based on the intake internal absolute pressure PBA and the engine It is calculated according to the rotational force Ne.
係数にK1、K′1及び補正値TK2、TK’2は前述
の各センサからのエンジンパラメータ信号に応じて演算
される補正係数及び補正値てあって、特に補正値TK2
、TK’2は電圧補正値であり、エンジン運転状態に応
して始動特性、排気カス特性、燃費特性、エンジン加速
特性等の諸特性が最適なものとなるように所定の演算式
に基づいて演算される。The coefficients K1, K'1 and correction values TK2, TK'2 are correction coefficients and correction values that are calculated according to the engine parameter signals from each sensor mentioned above, and especially the correction value TK2.
, TK'2 is a voltage correction value, which is calculated based on a predetermined calculation formula so that various characteristics such as starting characteristics, exhaust gas characteristics, fuel consumption characteristics, and engine acceleration characteristics are optimized according to the engine operating condition. Calculated.
主燃料噴射弁6の開弁制御信号は前記各気筒の主燃料噴
射弁6a〜6d別に出力され、後述するようにTDC信
号の発生毎に逐次開成状態にあるアンド回路521〜5
24及びオア回路526〜529を介して各駆動回路5
31〜534に逐次供給される。各駆動回路531〜5
37Iは開弁信層が入力されている開駆動信号を出力し
て対応する主燃料噴射弁6a〜6dを開弁させる。The valve opening control signal for the main fuel injection valve 6 is outputted separately for the main fuel injection valve 6a to 6d of each cylinder, and as described later, AND circuits 521 to 525 are successively opened each time a TDC signal is generated.
24 and each drive circuit 5 via OR circuits 526 to 529.
31 to 534 are sequentially supplied. Each drive circuit 531-5
37I outputs an opening drive signal into which the valve opening signal layer is input to open the corresponding main fuel injection valves 6a to 6d.
一方、副燃料噴射弁7の開弁制御信号はTDC信号が入
力される毎に出力され、後述するように開成状態にある
アンド回路520及びオア回路525を介して駆動回路
530に供給される。この駆動回路530は開弁信号が
入力されている間駆動信号を出力して副燃料噴射弁7を
開弁制御する。On the other hand, the valve opening control signal for the auxiliary fuel injection valve 7 is output every time the TDC signal is input, and is supplied to the drive circuit 530 via the AND circuit 520 and the OR circuit 525 which are in the open state, as will be described later. This drive circuit 530 outputs a drive signal to control the opening of the auxiliary fuel injection valve 7 while the valve opening signal is being input.
電圧低下検知回路502は定電圧回路501の出力電圧
Vccが、主演算制御回路503内の図示しない中央処
理回路(以下CPtJという)が正常に作動し得る所定
電圧(作動電圧)以上であるか否かを検出し、所定電圧
以上であるときにはローレベルの信号を、所定電圧以下
のときにはハイレベルの信号を出力する。この電圧低下
検知回路502の出力信号は主演算制御回路503、ア
ンド回路511〜515の一方の入力端子及びインバー
タ508を介してアンド回路520〜524の一力の入
力端子に供給される。The voltage drop detection circuit 502 determines whether the output voltage Vcc of the constant voltage circuit 501 is equal to or higher than a predetermined voltage (operating voltage) at which a central processing circuit (not shown) (hereinafter referred to as CPtJ) in the main arithmetic and control circuit 503 can operate normally. When the voltage is above a predetermined voltage, a low level signal is output, and when the voltage is below a predetermined voltage, a high level signal is output. The output signal of this voltage drop detection circuit 502 is supplied to one input terminal of AND circuits 520 to 524 via a main operation control circuit 503, one input terminal of AND circuits 511 to 515, and an inverter 508.
しかして、アンド回路520〜524は電圧低下検知回
路502の出力がローレベルのとき即ち、定電圧回路5
01の出力電圧VccがCPUの作動電圧以上のときに
開成状態となり、ハイレベルのとき即ら、電圧Vccが
CPUの作動電圧以下のときには閉成状態となる。反対
にアンド回路511〜515は電圧低下検知回路502
の出力がハイレベルのとき即ら、定電圧回路501の出
力電圧VccがCPUの作動電圧以下のときに閉成状態
、ローレベルのときには開成状態となる。Therefore, when the output of the voltage drop detection circuit 502 is at a low level, the AND circuits 520 to 524 are operated by the constant voltage circuit 5
When the output voltage Vcc of 01 is higher than the operating voltage of the CPU, it is in an open state, and when it is at a high level, that is, when the voltage Vcc is lower than the operating voltage of the CPU, it is in a closed state. On the contrary, the AND circuits 511 to 515 are the voltage drop detection circuit 502
When the output of constant voltage circuit 501 is at a high level, that is, when the output voltage Vcc of the constant voltage circuit 501 is lower than the operating voltage of the CPU, it is in a closed state, and when it is at a low level, it is in an open state.
低電圧時制御回路505は前記CPIJの作動電圧より
も低い電圧で作動し得るように構成されており、遅延回
路505aはワンショット回路504から入力されるタ
イミング信号即ち、TDC信号を所定時間遅延させてワ
ンショット回路505b及び505cに供給する。ワン
ショット回路505bは低電圧時制御回路505の作動
時に始動後の副燃料噴射弁の開弁時間を設定するための
もので、遅延回路505aからパルス信号が入力される
と第6図の(c)に示すように始動後の副燃料噴射弁の
開弁時間に相当する時間幅のパルス信号を出力してアン
ト回路505kの一方の入力端子に供給する。The low-voltage control circuit 505 is configured to operate at a voltage lower than the operating voltage of the CPIJ, and the delay circuit 505a delays the timing signal, that is, the TDC signal input from the one-shot circuit 504, by a predetermined time. and supplies it to one-shot circuits 505b and 505c. The one-shot circuit 505b is used to set the opening time of the auxiliary fuel injection valve after startup when the low-voltage control circuit 505 is activated, and when a pulse signal is input from the delay circuit 505a, ), a pulse signal with a time width corresponding to the opening time of the auxiliary fuel injection valve after startup is output and supplied to one input terminal of the ant circuit 505k.
ワンショット回路505cは低電圧時制御回路5()5
の作動時に始動用の主及び副燃料噴射弁の開弁時間、始
動後の主燃料噴側弁の開弁時間を設定するためのもので
第6図(d)に示すように所定時間幅のパルス信号を出
力して積分回路505d、505cに供給する。ワンシ
ョット回路505b、505cは出力時間がTDC信号
の間隔よりも長くなるときにはTDC信号で再スター1
〜さゼるためにワンショット回路504の出力パルスに
よりリセットされる。The one-shot circuit 505c is a low voltage control circuit 5()5
This is to set the opening time of the main and auxiliary fuel injection valves for starting during operation, and the opening time of the main fuel injection side valve after starting. A pulse signal is output and supplied to integration circuits 505d and 505c. The one-shot circuits 505b and 505c restart 1 with the TDC signal when the output time becomes longer than the interval of the TDC signal.
It is reset by the output pulse of the one-shot circuit 504 in order to reset.
積分回路505dは始動用の主及び副燃料噴射弁の開弁
時間を設定するためのもので、その開弁時間が主演算制
御回路503による順次噴射制御時における主燃料噴側
弁の開弁時間の気筒数分の1例えば1/4となるように
積分時定数が小さく設定されている(第6図(e))。The integral circuit 505d is for setting the opening time of the main and auxiliary fuel injection valves for starting, and the opening time is the opening time of the main fuel injection side valve during sequential injection control by the main calculation control circuit 503. The integral time constant is set to be small, for example, 1/4 of the number of cylinders (FIG. 6(e)).
積分回路505eは始動後用主燃料噴射時間を設定する
ためのもので、その積分定数は前記積分回路505dの
時定数に比して充分大きく例えは気筒数倍に設定されて
いる(第6図(f))。The integral circuit 505e is used to set the main fuel injection time after starting, and its integral constant is set to be sufficiently large compared to the time constant of the integral circuit 505d, for example, the number of cylinders (Fig. 6). (f)).
積分回路505d、505eの出力電圧は夫々電界効果
型トランジスタ(以下中にトランジスタという)505
f、505gを介して比較器505hの反転入力端子に
供給される。この比較器505hの非反転入力端子には
前述したようにエンジン水温センサ10の出力電圧が供
給される。これらの各トランジスタ505f、505g
の導通(オン)、非導通(オフ)はエンジンが始動中で
あるか、始動後であるかにより決定される。The output voltages of the integrating circuits 505d and 505e are respectively applied to field effect transistors (hereinafter referred to as transistors) 505.
f and 505g to the inverting input terminal of the comparator 505h. As described above, the output voltage of the engine coolant temperature sensor 10 is supplied to the non-inverting input terminal of the comparator 505h. Each of these transistors 505f, 505g
The conduction (on) or non-conduction (off) of the engine is determined depending on whether the engine is being started or after it has been started.
即し、キースイッチ16を操作してスタータスイッチ1
6bが投入され、スタータ18が作動してエンジン1が
始動中であるとき、レベル修正回路505の出力がハイ
レベルとなり、インバータ507により反転されてロー
レベルとなりトランジスタ505gをオフにすると共に
、インバータ505iで反転されてハイレベルとなりト
ランジスタ505fをオンにする。従って、エンジン始
動中は積分回路505dの出力電圧がトランジスタ50
5fを介して比較器505hに供給される。エンジンの
始動後キースイッチ16bを開成(オフ)させると、レ
ベル修正回路506の出力かローレベルとなり、上述と
は反対にトランジスタ505fがオフ、トランジスタ5
05gがオンとなる。従って、始動後は積分回路505
eの出力電圧がトランジスタ505gを介して比較器5
05hに供給される。Immediately, operate the key switch 16 to turn on the starter switch 1.
6b is turned on and the starter 18 is operating to start the engine 1, the output of the level correction circuit 505 becomes high level, is inverted by the inverter 507 and becomes low level, turning off the transistor 505g, and the output of the inverter 505i is inverted and becomes a high level, turning on the transistor 505f. Therefore, during engine starting, the output voltage of the integrating circuit 505d is the same as that of the transistor 50.
It is supplied to a comparator 505h via 5f. When the key switch 16b is opened (turned off) after starting the engine, the output of the level correction circuit 506 becomes low level, and contrary to the above, the transistor 505f is turned off and the transistor 5
05g is turned on. Therefore, after starting, the integration circuit 505
The output voltage of e is connected to the comparator 5 via the transistor 505g.
Supplied at 05h.
比較器505bの出力は温度センサ10の出力電圧が積
分回路505d又は505eの出力電圧よりも高い間ハ
イレベルとなる。エンジン水温か低い程水温センサ10
の出力電圧が高くなり、これに応じて比較器505hの
ハイレベルの出力時間が長くなる。この比較器505h
の出力信号はワンショット回路505cの出力かハイレ
ベルである間開成状態となろアンド回路505mを介し
てアンド回路512〜515に供給され、ごれらのアン
ド回路512〜5]5を開成状態にずろと共に、トラン
シスタ505fがオンの間開成状態となるアンド回路5
05nを及びオア回路505pを介してアント回路51
1に供給される。The output of the comparator 505b remains at a high level while the output voltage of the temperature sensor 10 is higher than the output voltage of the integrating circuit 505d or 505e. The lower the engine water temperature, the lower the water temperature sensor 10
The output voltage of the comparator 505h increases, and the high level output time of the comparator 505h increases accordingly. This comparator 505h
The output signal of the one-shot circuit 505c is in the open state while the output is at a high level, and is supplied to the AND circuits 512 to 515 via the AND circuit 505m, and the AND circuits 512 to 5]5 are in the open state. Along with the shift, the AND circuit 5 remains open while the transistor 505f is on.
05n and the ant circuit 51 via the OR circuit 505p.
1.
また、ワンショット回路505hの出力はしベル修正回
路506の出力がローレベルとなりトランジスタ505
eがオンのとき、即ち、始動後に開成状態となるアンド
回路505k及びオア回路505pを介してアンド回路
511に供給される。Further, the output of the one-shot circuit 505h and the output of the bell correction circuit 506 become low level, and the transistor 505
When e is on, that is, after starting, the signal is supplied to the AND circuit 511 via the AND circuit 505k and the OR circuit 505p, which are open.
エンジン始動時において定電圧回路501の出力電圧V
ccが前述したようにCPUの作動電圧以上のときには
、電圧低下検知回路502の出力がローレベルとなり、
アンド回路520〜524が開成状態となる。従って、
主演算制御回路503から出力される副燃料噴射弁7の
開弁信号かアンド回路520、オア回路525を介して
副燃料噴射弁駆動回路530に供給され、各主燃料噴射
弁の開弁信号がアンド回路521〜524、オア回路5
26〜529を介して主燃料噴側弁駆動回路531〜5
34に供給される。The output voltage V of the constant voltage circuit 501 when starting the engine
As described above, when cc is equal to or higher than the operating voltage of the CPU, the output of the voltage drop detection circuit 502 becomes low level,
AND circuits 520 to 524 are opened. Therefore,
The valve opening signal of the auxiliary fuel injection valve 7 output from the main calculation control circuit 503 is supplied to the auxiliary fuel injection valve drive circuit 530 via the AND circuit 520 and the OR circuit 525, and the valve opening signal of each main fuel injection valve is AND circuits 521 to 524, OR circuit 5
Main fuel injection side valve drive circuits 531 to 5 via 26 to 529
34.
主演算制御回路503は始動時にはタイミンク信号TD
Cが入力される毎に前述した(3)式で示す開弁時間を
演算して対応する開弁信号を出力し、副及び主燃料噴射
弁駆動回路503及び531〜534に供給して全燃料
噴射弁を斉次哨射させる(第4図(e))。The main arithmetic control circuit 503 receives a timing signal TD at the time of starting.
Each time C is input, the valve opening time shown by the above-mentioned formula (3) is calculated, the corresponding valve opening signal is output, and the signal is supplied to the sub and main fuel injection valve drive circuits 503 and 531 to 534 to inject all the fuel. The injection valves are sent out simultaneously (Fig. 4(e)).
主演算制御回路503は始J+後最初のシリンダ判別信
号CYLが入力されるまでの間は前記斉次噴射を行う。The main calculation control circuit 503 performs the simultaneous injection until the first cylinder discrimination signal CYL is input after the start J+.
始動後最初のCYL信号CYL1(第4図(a))か入
力された直後から当該最初のCYL1信号の直後に入力
されるタイミング信号TDC(第4図(b))か入力さ
れる毎に順次主燃料噴射弁の動作数を漸減させる(第4
図(e))。そして、第2番目のCYL信号CYL2(
第4図(a))の入力後から夫々のタイミンク信号TD
Cに対応した燃料噴射弁を順次開弁制御させ、順次噴射
制御を行う(第4図(e))。Immediately after the first CYL signal CYL1 (Fig. 4 (a)) is input after starting, the timing signal TDC (Fig. 4 (b)) input immediately after the first CYL1 signal is inputted sequentially. Gradually reduce the number of operations of the main fuel injection valve (4th
Figure (e)). Then, the second CYL signal CYL2(
After the input of Fig. 4(a), each timing signal TD
The fuel injection valves corresponding to C are sequentially opened and injection control is performed sequentially (FIG. 4(e)).
始動後前記順次噴射制御に移行するまでの間の主燃料噴
射弁の開弁時間は始動時における開弁時間と同一に制御
され、その開弁時間即ち、燃料噴射量は順次噴射時にお
ける燃料噴射量の1/4であり、1サイクルの合計が通
常噴射されるべき量に一致する。従って、斉次噴射時に
各気筒に供給する燃料量が過多となることかない。The valve opening time of the main fuel injection valve after startup until the transition to the sequential injection control is controlled to be the same as the valve opening time at startup, and the valve opening time, that is, the fuel injection amount, is controlled to be the same as the fuel injection amount during sequential injection. 1/4 of the amount, and the total for one cycle corresponds to the amount that should normally be injected. Therefore, the amount of fuel supplied to each cylinder during simultaneous injection does not become excessive.
ところで、エンジン始動時に定電圧回路501の出力電
圧VccがCPUの作動電圧以下(ある場合には、電圧
低下検知回路502の出力がハイレベルとなり、アンド
回路511〜515が開成状態となり、アント回路52
0〜524が開成状態となる。一方、始動時にはトラン
ジスタ505fがオンとなり積分回路505dの積分電
圧が比較器505hに供給され、当該比較器505hの
出力は当該積分電属が水温センサ10の出力電圧よりも
低い間(第6図(e))ハイレベルとなる(第6図(g
))。この比較器505hの出力はアンド回路505m
が開成状態にある間当該アンド回路505mからアンド
回路512〜515及びオア回路526〜529を介し
て各主燃料噴射弁駆動回路531〜534に供給される
(第6図(h))。同時に前記アンド回路505mの出
力はアンド回路505n、オア回路505p、アント回
路511及びオア回路525を介して副燃料噴射弁駆動
回路530にも供給される。By the way, when the output voltage Vcc of the constant voltage circuit 501 is lower than the operating voltage of the CPU when the engine is started (in some cases, the output of the voltage drop detection circuit 502 becomes high level, the AND circuits 511 to 515 are opened, and the ant circuit 52
0 to 524 are in the open state. On the other hand, at startup, the transistor 505f is turned on and the integrated voltage of the integrating circuit 505d is supplied to the comparator 505h. e)) reaches a high level (Fig. 6 (g)
)). The output of this comparator 505h is the AND circuit 505m
While in the open state, the fuel is supplied from the AND circuit 505m to the main fuel injection valve drive circuits 531 to 534 via the AND circuits 512 to 515 and the OR circuits 526 to 529 (FIG. 6(h)). At the same time, the output of the AND circuit 505m is also supplied to the auxiliary fuel injection valve drive circuit 530 via the AND circuit 505n, the OR circuit 505p, the ant circuit 511, and the OR circuit 525.
しかして、比較器505hの出力がハイレベルの間主燃
料噴射弁6a〜6d及び副燃料噴射弁7が同時に且つ同
一時間開弁制御される。即ち、全燃料噴射弁が斉次噴射
される。このときの開弁時間は前述したように通常運転
時における主燃料噴射弁の開弁時間の1/4である。Thus, while the output of the comparator 505h is at a high level, the main fuel injection valves 6a to 6d and the auxiliary fuel injection valve 7 are controlled to open simultaneously and for the same period of time. That is, all the fuel injection valves inject simultaneously. As described above, the valve opening time at this time is 1/4 of the valve opening time of the main fuel injection valve during normal operation.
従って、始動中に同期的に定電圧電源回路501の出力
電圧VccがCPUの動作電圧以下になる場合でも開弁
時間が1/4となっているので燃料過多を生じるごとか
ない。Therefore, even if the output voltage Vcc of the constant voltage power supply circuit 501 becomes equal to or lower than the operating voltage of the CPU synchronously during startup, excess fuel will not occur because the valve opening time is 1/4.
また、エンジン始動後の運転時に何らかの異常により定
電圧回路501の出力電圧VccがCPUの作動電圧以
下に低下したときには、トランジスタ505gがオンと
なり積分回路505eの積分電圧が比較器505に供給
される。比較器505hの出カは積分電圧が水温センサ
出力電圧よりも低い間(第6図(f))ハイレベルとな
る(第6図(g)に破線で示す)。この比較器505h
の出力はアンド回路505mが開成状態にある間当該ア
ンド回路505mから出力され(第6図(h)に破線で
示す)、アンド回路512〜515、オア回路526〜
529を介して各主燃料噴射弁駆動回路531〜534
に供給され、各主燃料噴射弁6a〜6dを斉次噴射させ
る。このときの王燃料噴射弁6a〜6bの噴射時間ば辿
當運転時におりる開弁時間と略等しい。Furthermore, when the output voltage Vcc of the constant voltage circuit 501 drops below the operating voltage of the CPU due to some abnormality during operation after starting the engine, the transistor 505g is turned on and the integrated voltage of the integrating circuit 505e is supplied to the comparator 505. The output of the comparator 505h remains at a high level while the integrated voltage is lower than the water temperature sensor output voltage (FIG. 6(f)) (as shown by the broken line in FIG. 6(g)). This comparator 505h
is output from the AND circuit 505m while the AND circuit 505m is in the open state (shown by a broken line in FIG. 6(h)), and the AND circuits 512 to 515 and the OR circuits 526 to
529 to each main fuel injection valve drive circuit 531 to 534
is supplied to each main fuel injection valve 6a to 6d to cause simultaneous injection. The injection time of the main fuel injection valves 6a to 6b at this time is approximately equal to the valve opening time during the reciprocating operation.
一方、ワンショント回路505bの出力パルス信号は通
常運転時に開成状態にあるアンド回路505k、オア回
路505p、アンド回路511及びオア回路525を介
して副燃料噴射弁駆動側弁530に供給され、当該ワン
ショット回路505bの出力パルスがハイレベルの間(
第6図(c))副燃料噴射弁7を開弁制御する。このと
きの開弁時間即ち、ワンショット回路505bのパルス
時間は前記通常運転時における副燃料噴射弁の開弁時間
と略等しい時間に設定されている。On the other hand, the output pulse signal of the one-shot circuit 505b is supplied to the auxiliary fuel injection valve driving side valve 530 via the AND circuit 505k, the OR circuit 505p, the AND circuit 511, and the OR circuit 525, which are in an open state during normal operation. While the output pulse of the circuit 505b is at a high level (
FIG. 6(c)) Opening control of the auxiliary fuel injection valve 7 is performed. The valve opening time at this time, that is, the pulse time of the one-shot circuit 505b, is set to be approximately equal to the valve opening time of the auxiliary fuel injection valve during the normal operation.
しかして、運転中に定電圧回路501の出力電圧Vcc
がCPUの作動電圧以下に低下した場合にもエンジンを
継続して運転させることかできる。Therefore, during operation, the output voltage Vcc of the constant voltage circuit 501
Even if the voltage drops below the operating voltage of the CPU, the engine can continue to operate.
尚、比較器505hの非反転入力端子には水温センザ1
1の出力信号に代えて他の信号例えば、吸入空気量を代
表するスロットル弁開度信号或いは吸気管内絶対圧信号
等のパラメータ信号を使用してもよい。In addition, the water temperature sensor 1 is connected to the non-inverting input terminal of the comparator 505h.
Instead of the output signal 1, other signals such as a throttle valve opening signal representative of the amount of intake air or a parameter signal such as an intake pipe absolute pressure signal may be used.
更に、低電圧時作動回路505の作動時においてエンジ
ン始動後の副燃料噴射弁の開弁時間をエンジン水温に関
係なく一定とするようにしたが、始動後もエンジン水温
、前記吸入空気量を代表するパラメータ値等に対応して
前記開弁時間を設定するようにしてもよい。Furthermore, when the low-voltage operation circuit 505 is activated, the opening time of the auxiliary fuel injection valve after the engine starts is set to be constant regardless of the engine water temperature. The valve opening time may be set in accordance with a parameter value or the like.
以上説明したように本発明によれは、電子コント口ール
ユニットの中央処理装置によりエンジンのクランク軸の
所定位置で該エンジンの1サイクルに1回発生されるシ
リンダ判別信号により噴射順序を決定し、各気筒の噴射
タイミングに対応する前記クランク軸の所定位置を示す
タイミング信号の発生毎に各気筒に順次燃料を噴射供給
する多気筒内燃エンジンの燃料供給制御方法において、
前記中央処理装置に供給される電圧を検出し、該電圧が
所定電圧以上のときには始動後前記シリンダ判別信号が
最初に入力されるまでの間は前記タ 1イミング信号の
入力毎に全燃料噴射弁を同時に開弁させ、前記最初のシ
リンダ判別信号の入力後から前記タイミング信号の入力
毎に燃料噴射弁の動作数を漸減させ、第2番目のシリン
ダ判別信号の入力後の前記タイミング信号から夫々のタ
イミング信号に対応した燃料噴射弁を順次開弁させるよ
うにしたので、始動時における燃料噴射量の過多を防止
することができる。As explained above, according to the present invention, the injection order is determined by the cylinder discrimination signal that is generated once per cycle of the engine at a predetermined position on the crankshaft of the engine by the central processing unit of the electronic control unit. A fuel supply control method for a multi-cylinder internal combustion engine in which fuel is sequentially injected into each cylinder each time a timing signal indicating a predetermined position of the crankshaft corresponding to the injection timing of the cylinder is generated,
The voltage supplied to the central processing unit is detected, and when the voltage is equal to or higher than a predetermined voltage, all fuel injection valves are activated every time the timing signal is input until the cylinder discrimination signal is input for the first time after starting. are opened at the same time, the number of operations of the fuel injection valve is gradually decreased every time the timing signal is input after the input of the first cylinder discrimination signal, and the number of operations of the fuel injection valve is gradually decreased from the timing signal after the input of the second cylinder discrimination signal. Since the fuel injection valves corresponding to the timing signals are sequentially opened, it is possible to prevent an excessive amount of fuel injection at the time of starting.
更に、前記中央処理装置に供給される作動電圧を検出し
、該作動電圧か所定電圧以上のときには、始動後前記シ
リンダ判別信号が最初に入力されるまでの間は前記タイ
ミンク信号の入力毎に全燃料噴射弁を同時に開弁させ、
前記最初のシリンダ判別信号の入力後から前記タイミン
ク信号の入力毎に燃料噴射弁の動作数を漸減させ、第2
番目のシリンダ判別信号の入力後の前記タイミング信号
から夫々のタイミンク信号に対応した燃料噴射弁を順次
開弁させ、前記作動電圧か所定電圧に達しないときには
定電圧時作動回路により前記タイミンク信号に応じて各
タイミング信号毎に全燃料噴射弁を同時に開弁させるよ
うにしたので、バッテリの電圧降下に対しても良好な始
動性を得ることができると共に、運転中におけるバッテ
リ電圧の低下時においてもエンジンの運転を継続させる
ことができる。Furthermore, the operating voltage supplied to the central processing unit is detected, and when the operating voltage is equal to or higher than a predetermined voltage, the entire operation is performed every time the timing signal is input from the start until the cylinder discrimination signal is input for the first time. Open the fuel injection valves at the same time,
After the input of the first cylinder discrimination signal, the number of operations of the fuel injection valve is gradually decreased every time the timing signal is input, and a second cylinder discrimination signal is input.
The fuel injection valves corresponding to the respective timing signals are sequentially opened from the timing signal after the input of the th cylinder discrimination signal, and when the operating voltage does not reach a predetermined voltage, the constant voltage operating circuit operates in response to the timing signal. Since all fuel injection valves are opened at the same time for each timing signal, it is possible to obtain good starting performance even in the event of a battery voltage drop, and the engine can be maintained even when the battery voltage drops during operation. can continue to operate.
第1図は本発明を適用した燃料供給制御装置の全体構成
図、第2図及び第3図は本発明の制御方法の手順を示す
フローチャート、第4図(a)〜(e)は第2図及び第
3図のフローチャートに基づく燃料供給制御方法の動作
を示すタイミングチャート、第5図は第1図の電子コン
トロールユニット(ECU)の内部構成の一実施例を示
すブロック図、第6図(a)〜(h)は第5図の各部出
力信号のタイミンクチャートである。
1・・・内燃エンジン、5・・・電子コントロールユニ
ット、6、6a〜6d・・・主燃料噴射弁、7・・・副
燃料噴射弁、10・・・水温センサ、11・・・エンジ
ン回転数センサ、12・・・気筒判別センサ、16・・
・キースイッチ、17・・・バッテリ、502・・・電
圧低下検知回路、503・・・主演算制御回路、505
・・・低電圧時作動回路。
出願人 本田技研工業株式会社
代理人 弁理士 渡 部 敏 彦
手 続 浦 正 書 (方 式)
昭和58年特許願第1 ] 166832、発明の名称
多気筒内燃エンジンの炊イ:1供給制御方法3、補正を
する、15
・11代理人
340−FIG. 1 is an overall configuration diagram of a fuel supply control device to which the present invention is applied, FIGS. 2 and 3 are flowcharts showing the procedure of the control method of the present invention, and FIGS. FIG. 5 is a block diagram showing an example of the internal configuration of the electronic control unit (ECU) of FIG. 1, and FIG. a) to (h) are timing charts of output signals of each part in FIG. 5. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 5... Electronic control unit, 6, 6a-6d... Main fuel injection valve, 7... Sub-fuel injection valve, 10... Water temperature sensor, 11... Engine rotation Number of sensors, 12... Cylinder discrimination sensor, 16...
・Key switch, 17... Battery, 502... Voltage drop detection circuit, 503... Main calculation control circuit, 505
...Low voltage operating circuit. Applicant Honda Motor Co., Ltd. Agent Patent Attorney Toshihikote Watanabe Masashi Ura (Method) Patent Application No. 1, 1981] 166832, Title of Invention Cooking of multi-cylinder internal combustion engine: 1 Supply control method 3 , make amendments, 15 ・11 agent 340-
Claims (1)
ンジンのクランク軸の所定位置で該エンジンの1サイク
ルに1回発生されるシリンダ判別信号により噴射順序を
決定し、各気筒の噴射タイミングに対応する前記クラン
ク軸の所定位置を示すタイミング信号の発生毎に各気筒
に順次燃料を噴射供給する多気筒内燃エンジンの燃料供
給制御方法において、前記中央処理装置に供給される作
動電圧を検出し、該作動電圧が所定電圧以上のときには
始動後前記シリンダ判別信号が最初に入力されるまでの
間は前記タイミング信号の入力毎に全燃料噴射弁を同時
に開弁させ、前記最初のシリンダ判別信号の入力後から
前記タイミング信号の入力毎に燃料噴射弁の動作数を漸
減させ、第2番目のシリンダ判別信号の入力後の前記タ
イミング信号から夫々のタイミング信号に対応した燃料
噴射弁を順次開弁させることを特徴とする多気筒内燃エ
ンジンの燃料供給制御方法。 2、電子コントロールユニットの中央処理装置によりエ
ンジンのクランク軸の所定位置で該エンジンの1サイク
ルに1回発生されるシリンダ判別信号により噴射順序を
決定し、各気筒の噴射タイミングに対応する前記クラン
ク軸の所定位置を示すタイミング信号の発生毎に各気筒
に順次燃料を噴射供給する多気筒内燃エンジンの燃料供
給制御方法において、前記中央処理装置に供給される作
動電圧を検出し、該作動電圧が所定電圧以上のときには
、始動後前記シリンダ判別信号が最初に入力されるまで
の間は前記タイミング信号の入力毎に全燃料噴射弁を同
時に開弁させ、前記最初のシリンダ判別信号の入力後か
ら前記タイミング信号の入力毎に燃料噴射弁の動作数を
漸減させ、第2番目のシリンダ判別信号の入力後の前記
タイミング信号から夫々のタイミング信号に対応した燃
料噴射弁を順次開弁させ、前記作動電圧が所定電圧に達
しないときには低電圧時作動回路により前記タイミング
信号に応じて各タイミング信号毎に全燃料噴射弁を同時
に開弁させることを特徴とする多気筒内燃エンジンの燃
料供給制御方法。[Claims] 1. The central processing unit of the electronic control unit determines the injection order based on a cylinder discrimination signal that is generated once per cycle of the engine at a predetermined position on the crankshaft of the engine, and determines the injection timing for each cylinder. A fuel supply control method for a multi-cylinder internal combustion engine in which fuel is sequentially injected into each cylinder each time a timing signal indicating a predetermined position of the crankshaft corresponding to the crankshaft is generated, the method comprising detecting an operating voltage supplied to the central processing unit. When the operating voltage is equal to or higher than a predetermined voltage, all fuel injection valves are opened simultaneously every time the timing signal is input until the cylinder discrimination signal is input for the first time after starting, and the first cylinder discrimination signal is After the input, the number of operations of the fuel injection valves is gradually decreased every time the timing signal is input, and the fuel injection valves corresponding to each timing signal are sequentially opened from the timing signal after the second cylinder discrimination signal is input. A fuel supply control method for a multi-cylinder internal combustion engine, characterized in that: 2. The central processing unit of the electronic control unit determines the injection order based on a cylinder discrimination signal that is generated once per cycle of the engine at a predetermined position on the crankshaft of the engine, and In a fuel supply control method for a multi-cylinder internal combustion engine in which fuel is sequentially injected into each cylinder each time a timing signal indicating a predetermined position is generated, an operating voltage supplied to the central processing unit is detected, When the voltage is higher than the voltage, all fuel injection valves are opened at the same time every time the timing signal is input until the cylinder discrimination signal is input for the first time after starting, and the timing is changed after the input of the first cylinder discrimination signal. The number of operations of the fuel injection valves is gradually decreased each time a signal is input, and the fuel injection valves corresponding to each timing signal are sequentially opened from the timing signal after the input of the second cylinder discrimination signal, and the operation voltage is increased. A fuel supply control method for a multi-cylinder internal combustion engine, characterized in that when a predetermined voltage is not reached, all fuel injection valves are simultaneously opened for each timing signal in accordance with the timing signal by a low voltage operating circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11166883A JPS603456A (en) | 1983-06-21 | 1983-06-21 | Fuel feed controlling method for multicylinder internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11166883A JPS603456A (en) | 1983-06-21 | 1983-06-21 | Fuel feed controlling method for multicylinder internal-combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS603456A true JPS603456A (en) | 1985-01-09 |
JPH0569977B2 JPH0569977B2 (en) | 1993-10-04 |
Family
ID=14567149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11166883A Granted JPS603456A (en) | 1983-06-21 | 1983-06-21 | Fuel feed controlling method for multicylinder internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603456A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503248A (en) * | 1986-07-09 | 1989-11-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Fuel injection method |
JPH02211844A (en) * | 1989-02-10 | 1990-08-23 | House Food Ind Co Ltd | Preparation of mustard paste |
KR100775327B1 (en) | 2006-12-27 | 2007-11-08 | 지멘스 오토모티브 주식회사 | First engine starting method for car |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512271A (en) * | 1978-07-13 | 1980-01-28 | Nippon Denso Co Ltd | Electronically controlled fuel injection device |
JPS5759032A (en) * | 1980-09-29 | 1982-04-09 | Japan Electronic Control Syst Co Ltd | Electronic control fuel injection process |
JPS57137626A (en) * | 1981-02-17 | 1982-08-25 | Honda Motor Co Ltd | Control method of fuel injection |
-
1983
- 1983-06-21 JP JP11166883A patent/JPS603456A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512271A (en) * | 1978-07-13 | 1980-01-28 | Nippon Denso Co Ltd | Electronically controlled fuel injection device |
JPS5759032A (en) * | 1980-09-29 | 1982-04-09 | Japan Electronic Control Syst Co Ltd | Electronic control fuel injection process |
JPS57137626A (en) * | 1981-02-17 | 1982-08-25 | Honda Motor Co Ltd | Control method of fuel injection |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503248A (en) * | 1986-07-09 | 1989-11-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Fuel injection method |
US4941449A (en) * | 1986-07-09 | 1990-07-17 | Robert Bosch Gmbh | Fuel injection process |
JPH02211844A (en) * | 1989-02-10 | 1990-08-23 | House Food Ind Co Ltd | Preparation of mustard paste |
KR100775327B1 (en) | 2006-12-27 | 2007-11-08 | 지멘스 오토모티브 주식회사 | First engine starting method for car |
Also Published As
Publication number | Publication date |
---|---|
JPH0569977B2 (en) | 1993-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4253613B2 (en) | Fuel injection control device for internal combustion engine | |
US4739741A (en) | Fuel supply control method for internal combustion engines at starting | |
EP2405118A1 (en) | Control device for internal combustion engine | |
JPH0211729B2 (en) | ||
US4844039A (en) | Fuel supply control system for internal combustion engines | |
JPS603456A (en) | Fuel feed controlling method for multicylinder internal-combustion engine | |
US7316210B2 (en) | Control apparatus and control method for variable valve actuation mechanism of internal combustion engine | |
WO1994011632A1 (en) | Knocking noise avoiding device for an engine with a variable valve driving mechanism | |
JP2779159B2 (en) | Engine fuel control device | |
JPH0134294B2 (en) | ||
JPH0615829B2 (en) | Electronically controlled fuel injection device for internal combustion engine | |
JPH06146956A (en) | Internal combustion engine stopping time estimating device and fuel supply device | |
JP2536297B2 (en) | Fuel control method for starting internal combustion engine | |
JP3991685B2 (en) | Fuel injection control device for internal combustion engine | |
JPS6371539A (en) | Controller for internal combustion engine | |
JPS60108547A (en) | Fuel feeding control on cold start of internal- combustion engine | |
JP2002242735A (en) | Fuel injection control device for internal combustion engine | |
JP2694654B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2004183502A (en) | Fuel injection controller of engine | |
JPS63106340A (en) | Starting fuel injection quantity control method for internal combustion engine | |
JPH0229853B2 (en) | ||
JPH1047123A (en) | Throttle opening control device of engine | |
JPH06146957A (en) | Fuel control device of engine | |
JPH0281936A (en) | Starting fuel control device for engine | |
JPS5848722A (en) | Method of starting electronic control fuel injection engine |