JPS603451A - Fuel injector of electronic control engine - Google Patents

Fuel injector of electronic control engine

Info

Publication number
JPS603451A
JPS603451A JP11099783A JP11099783A JPS603451A JP S603451 A JPS603451 A JP S603451A JP 11099783 A JP11099783 A JP 11099783A JP 11099783 A JP11099783 A JP 11099783A JP S603451 A JPS603451 A JP S603451A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
amount
calculates
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11099783A
Other languages
Japanese (ja)
Inventor
Yutaka Sawada
裕 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11099783A priority Critical patent/JPS603451A/en
Publication of JPS603451A publication Critical patent/JPS603451A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve starting performance by providing a fuel injection valve which injects fuel into an intake passage and fuel increasing and reducing means which increases and reduces the quantity of fuel to be injected during a cranking period. CONSTITUTION:A standard fuel injection quantity calculating means 90 calculates a standard quantity Tp of fuel to be injected on the bases of flow rate Q of intake air and engine rpm. N. A fuel increasing means 92 calculates a coefficient St of for-start fuel increase which is the function of the temperature of engine cooling water. A fuel reducing means 94 detects a specified lapse A from a point at which a clock 96 generates an output, and calculates a reduction coefficient K in the cranking period following the specified lapse A. The fuel injection quantity calculating means 98 computes the quantity Tau of fuel to be injected from the expression of Tau=TpXStXK and controls the opened period of a fuel injection valve 41. An ignition plug may be thereby prevented from smoking, hence improving starting performance.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、クランキンク期間の燃料噴射「11を改善す
る電子制御機関の燃料噴射装置11に関する。 燃料噴射弁から吸気通路へ燃料を噴射する電子制御機関
の従来の燃料噴射装置では、クランキング期間において
1燃料VA射弁からの燃料噴射i1にの増量を実施して
おり、増841による最終的な燃8噴射徂はクランキン
グ期間の全体に渡ってほぼ一定であった。したがってク
ランキング期間が長くなるさ燃焼室内の燃ね、量が適切
値を越えてな音増大するため点火プラグのくすぶりおよ
び燃料かぶりを引き起こし、始動性能が悪化している。 本発明の目的は、クランキング期間の燃料噴射量を適切
に制御して良好な始動性(ilEを7υるこ′とができ
る電子制御機関の燃料噴射装置を提供することである。 この目的を達成するために本発明の電子制御機関の燃料
噴射装置は、吸気通路へ燃料を噴射する燃料噴射弁、ク
ランキング1)Jri!jJでは燃2A噴射弁からの燃
′B噴射坦を増量させる増量手段、およびクランキンク
開始時刻から所定時間以上経過した後のクランキング期
間における燃料、噴側弁からの燃料噴射量を時間経過と
ともに徐々に減少させるg’J>手段をItl′Tえて
いる。 増量手段による燃料量u・I弁からの燃料噴射:1
The present invention relates to a fuel injection device 11 for an electronically controlled engine that improves fuel injection during the cranking period. In a conventional fuel injection device for an electronically controlled engine that injects fuel from the fuel injection valve to the intake passage, The amount of fuel injection i1 from the fuel VA injector was increased, and the final fuel injection amount due to increase 841 was almost constant throughout the cranking period.Therefore, the cranking period was long. The amount of combustion in the combustion chamber exceeds the appropriate value, increasing the noise and causing smoldering of the spark plug and fuel fogging, resulting in poor starting performance. An object of the present invention is to provide a fuel injection device for an electronically controlled engine that can properly control the amount of fuel and achieve good startability (i.e., 7υ'). The injection device includes a fuel injection valve that injects fuel into the intake passage, a fuel injection valve that injects fuel into the intake passage, an increasing means that increases the amount of fuel 'B injection from the fuel 2A injection valve in cranking 1) Jri!jJ, and a fuel injection valve that injects fuel into the intake passage. A means is provided to gradually reduce the amount of fuel injected from the injection side valve over time during the subsequent cranking period. Fuel injection from the fuel amount u/I valve by the amount increasing means: 1

【の
増量により燃焼室内の燃料量は適切値まで速やかに増大
するが、始動がなかなか成功せずりランキング期間が長
くなると、減少手段により燃料噴射弁からの燃料噴射量
が時間経過とともに徐々に減少し、燃焼室内の燃+B量
の増大が防止される。この結果、余剰燃料に因る燃焼室
の混合気の過濃(オーバリッチ)および点火プラグの燃
料かぶりが防止される。これにより筋切な点火火花が発
生し、クランキンク期間が長くなっても良好な始動性能
が保持される。なお所定時間経過後の燃料噴射量の減少
は燃料の節約となる。 燃料噴射量の減少開始時刻を決める所定時間、および燃
料噴射量の減少率はこの所定時間近辺において燃焼室の
空燃比が始動を最も起こし易い値にしばらく保持される
ように設定するのが好ましい。 図面を参照して本発明の詳細な説明する。 第1図は本発明が適用される電子制御装置の概略構成図
である。エアクリーナ1から吸入された空気はエアフロ
ーメータ2、絞り弁3、サージタンク4、吸気ボート5
、および吸気弁6を含む吸気道′F69を経て機関本体
7の燃焼室8へ送られる。絞り弁3は運啄室の加速ペダ
ル10に連動する。燃焼室8はシリンダヘッド11、シ
リンダブロック12、およびピストン13によって画定
され、燃焼室8の混合気は、点火プラグ14の着火によ
り燃焼してからIJ1気弁15.1;II気ボート+6
、till−気分岐管17、および排気管18を経て大
気へ放出される。バイパス通路21は絞り弁3の」電流
とサージタンク4とを接続し、ISC弁(アイドル回転
速度制御弁)22はバイパス通路21の流通断面積を制
御してアイドリング時のオ幾関回転速度を一定に甜1.
持する。吸気温センサ28はエアフローメータ2内に設
けられて吸気温を検出し、スロワ1〜ル位置センサ29
は、絞り弁3の開度を検出する。水温センサ30はシリ
ンダブロック】2にgy 4CJけられて冷却水温度、
すなわち機関温度を検出し、酸素センサ3】は抽気分岐
管17の集合部分に取(qけられて集合部分における酸
素膨圧を検出し、クランク角センサ32は、機関本体7
のクランク軸(図示せず)に結合する配電器33の軸3
4の回転からクランク軸のクランク角を検出し、クラン
ク角が30° 変化するごとにパルスを発生し、スター
タスイッチ35はスタータの作動期間はオン信号を、非
作動期間はオフ信号を発生する。 これらのセンサ2,28,29,30,3L32,35
の出力は電子制御装置40へ送られる。燃料噴射弁41
は各気筒に対応して各吸気ボート5の近傍にそれぞれ設
けられ、燃料を吸気ボート5へ向けて噴射する。電子制
御装置40は各センサの入力信号から燃料噴射量を計算
し、割算した燃料噴射量に対応したパルス幅の電気パル
スを燃料噴射弁41へ送る。電子制御装置40はまた、
isc弁22、および点火装置46を制御する。点火装
置46の二次電流は配電器33を経て点火プラク14へ
迦られる。 第2図は電子制御装置の内部のブロック図である。CP
U 56. ROM 57. RAM 58.バックア
ップRAM 59.マルチプレクサ付きA/D (アナ
ログ/デジタル変換器)60、および■10(入出力イ
ンタフェース)61は、バス62を介して互いに接続さ
れている。バックアップ17ΔM50は、補助電源へ接
続されており、点火スイッチがげ■かねて機関が停止し
ている期間も所定の゛4力を供給されて記憶を保持する
ことができる。エアフローメータ2、吸気温センサ28
、および水温センサ30からのアナログ信号は八/I)
 60へ送られる。スロツhル位置センリ29、酸素セ
ンサ31、クランク角センサ32、およびスタータスイ
ッチ35の出力はl106]へ送られ、ISC弁22、
燃料、噴側弁41.および点火装!とj4Ciはl10
6]から入力信号を送られる。 第3図はクランキンク期間の燃料、噴射量別算ルーチン
のフローチャ=1−である。このルーチンはクランク軸
の1回転につき1回、所定のクランク角で実行される。 クランキンク期間であるか百かはスタータスイッチ35
の1]1力から検出され、クランキング期間の燃料噴射
b”kTauは基本燃料噴射量Tp×始動増量係数St
×減少係数1(である。始動増量係数5tはクランキン
グ期間の全範囲に渡ってほぼ一定であるのに対し、減少
係数1(は所定時間Aが経過するまでは1に保持され、
所冗時間へが経過した後はクランク軸が1回帖するごと
に所定量ΔK (ただしΔ1(は正の値)ずつ減少する
ので、所定時間Aが経過した以降の燃ん噴射量T’au
は時fll)経過とともに徐々に減少する。各ステップ
をにγ述すると、ステップ66てはスタータスイッチ3
5がオンがオフかを判定し、オンであればステップ68
へ進み、オフであれはルーチンを終了する。ステップ6
8では深間回転速度Nが400 rpm以下か盃かを判
定し、判定か正であれはステップ70−\進み、否であ
ればルーチンを終了する。N>40 Orpmは始動が
成功したことを意未し、クランキング期間の終了をスタ
ータスイッチ35のオフから検出すれは、ステップ68
を省略できる。 ステップ70ではスタータスイッチ35がオンになって
から所定時間A (Aは例えば約10〜20秒)が経過
しているか杏かを判定し、判定が正であればステップ7
4へ、否であればステップ72へ進む。ステップ72で
は減少係数1(にIを代入する。ステップ771では1
(−Δ1(を1(に代入する。△I(は例えば帆001
である。ステップ7らでは吸入空気流量Qおよび遊間回
転速度Nを取込む。ステップ78ではQ/Nにノ;(づ
いて基本燃料噴射量Tpを計算する。ステップ80では
始動増量係数51を条間冷却水温度の関数としてLl算
する。ステップ82では’rp X’ Stを燃料噴射
量Tauに代入する。ステップ84では’rau X 
KをTauに代入する。 第4図は始動が成功しない場合のクランキング期間にお
ける燃料噴射量Tauおよび燃焼室8内の燃料量の時間
変化を示している。従来装置ではクランキング期間の全
範囲に渡って燃料噴射量Tauはほば一定に維持される
ため、燃焼室8内の燃′B量は時間経過とともに増大す
るのみであり、ついには7[着値を越え、これは点火プ
ラグ14の燃E、かぶり、くすぶりの原因となり、始動
性能を悪化させる。これに対し不発18)ではネ 所定時間AがM、過した後は燃躊噴射mT旧1は時間経
過とともに減少し、これにより燃焼室内の燃料量は一定
に保持され、あるいは減少し、点火プラク14のくすぶ
りが防止されて始動性能を良好に保持することができる
。なお所定時間Aおよび減少量Δには所定時間Aの近辺
において燃焼室8の空燃比が始動の最も起こり易い値に
しばらく保持されるように値を決められる。 第5図は本発明の機能ブロック図である。基本燃料噴射
量計算手段90は吸入空気流量Q/機関回転速度Nに基
づいて基本燃料@射量1’pを言1算し、増LTk手段
92は機関冷却水温度の関数である始動増量係数Stを
計算し、減少手段94はクロック96の出力から所定時
間Aの経過を検83 シ、所定時間Aの経過後のクラン
キンク期間ではクランク1lal+が1回転するごとに
所5」i−:IIΔ1(ずつ減少する減少係数1(をt
l算する。燃″B噴射fA計算手段98はTau =T
p X St X Kから燃料噴射量T a uを計算
し、’I”auに関係して燃料噴射弁41の開き期間を
制作1する。
The amount of fuel in the combustion chamber quickly increases to an appropriate value by increasing the amount of , an increase in the amount of fuel+B in the combustion chamber is prevented. As a result, over-rich air-fuel mixture in the combustion chamber and fuel fogging of the spark plug due to surplus fuel are prevented. This generates a steady ignition spark and maintains good starting performance even if the cranking period becomes long. Note that reducing the fuel injection amount after a predetermined period of time has elapsed saves fuel. It is preferable that the predetermined time period that determines the start time of reduction of the fuel injection amount and the reduction rate of the fuel injection amount are set so that the air-fuel ratio of the combustion chamber is maintained at a value that most easily causes startup for a while in the vicinity of this predetermined time period. The present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an electronic control device to which the present invention is applied. The air sucked from the air cleaner 1 is transferred to an air flow meter 2, a throttle valve 3, a surge tank 4, and an intake boat 5.
, and is sent to the combustion chamber 8 of the engine body 7 through an intake path 'F69 including the intake valve 6. The throttle valve 3 is linked to an accelerator pedal 10 in the driver's compartment. The combustion chamber 8 is defined by a cylinder head 11, a cylinder block 12, and a piston 13, and the air-fuel mixture in the combustion chamber 8 is combusted by the ignition of the spark plug 14, and then the IJ1 air valve 15.1;
, till-air branch pipe 17, and exhaust pipe 18 to the atmosphere. The bypass passage 21 connects the current of the throttle valve 3 and the surge tank 4, and the ISC valve (idle rotation speed control valve) 22 controls the flow cross-sectional area of the bypass passage 21 to control the engine rotation speed during idling. Constant sweetness 1.
hold The intake air temperature sensor 28 is provided in the air flow meter 2 to detect the intake air temperature, and the
detects the opening degree of the throttle valve 3. The water temperature sensor 30 is located in the cylinder block】2 gy 4CJ and the cooling water temperature is
That is, the engine temperature is detected, the oxygen sensor 3 is installed in the collecting part of the bleed air branch pipe 17 and detects the oxygen expansion pressure in the collecting part, and the crank angle sensor 32 is installed in the collecting part of the bleed air branch pipe 17.
The shaft 3 of the power distributor 33 is coupled to the crankshaft (not shown) of the
The crank angle of the crankshaft is detected from the rotation of 4, and a pulse is generated every time the crank angle changes by 30 degrees, and the starter switch 35 generates an on signal during the starter's operating period and an off signal during the non-operating period. These sensors 2, 28, 29, 30, 3L32, 35
The output of is sent to the electronic control unit 40. Fuel injection valve 41
are provided near each intake boat 5 in correspondence with each cylinder, and inject fuel toward the intake boat 5. The electronic control unit 40 calculates the fuel injection amount from the input signals of each sensor, and sends an electric pulse with a pulse width corresponding to the divided fuel injection amount to the fuel injection valve 41. The electronic control device 40 also
controls the isc valve 22 and the ignition device 46. The secondary current of the ignition device 46 is delivered to the ignition plaque 14 via the power distributor 33. FIG. 2 is a block diagram of the inside of the electronic control device. C.P.
U56. ROM 57. RAM 58. Backup RAM 59. A multiplexer-equipped A/D (analog/digital converter) 60 and 10 (input/output interface) 61 are connected to each other via a bus 62 . The backup 17ΔM50 is connected to an auxiliary power source, and even when the ignition switch is turned off and the engine is stopped, a predetermined power can be supplied and the memory can be maintained. Air flow meter 2, intake temperature sensor 28
, and the analog signal from the water temperature sensor 30 is 8/I)
Sent to 60. The outputs of the throttle position sensor 29, oxygen sensor 31, crank angle sensor 32, and starter switch 35 are sent to the ISC valve 22,
Fuel, injection side valve 41. And ignition equipment! and j4Ci is l10
An input signal is sent from [6]. FIG. 3 is a flowchart of the fuel and injection amount separate calculation routine during the cranking period = 1-. This routine is executed once per revolution of the crankshaft at a predetermined crank angle. Starter switch 35 determines whether it is in the cranking period or not.
1] 1), and the fuel injection b"kTau during the cranking period is calculated by the basic fuel injection amount Tp x starting increase coefficient St.
× reduction coefficient 1 (is).The starting increase coefficient 5t is almost constant over the entire range of the cranking period, whereas the reduction coefficient 1 (is held at 1 until a predetermined time A has elapsed,
After the predetermined time A has elapsed, the fuel injection amount T'au decreases by a predetermined amount ΔK (however, Δ1 (positive value)) each time the crankshaft moves once.
decreases gradually over time. To describe each step, step 66 is the starter switch 3.
5 determines whether it is on or off, and if it is on, step 68
If it is off, the routine ends. Step 6
In step 8, it is determined whether the deep rotational speed N is 400 rpm or less or if it is a cup, and if the determination is positive, proceed to step 70-\, and if not, the routine is terminated. N>40 Orpm does not realize that the start has been successful, and detects the end of the cranking period from turning off the starter switch 35 at step 68.
can be omitted. In step 70, it is determined whether a predetermined time A (A is approximately 10 to 20 seconds, for example) has elapsed since the starter switch 35 was turned on, and if the determination is positive, step 7
If not, the process proceeds to step 72. In step 72, I is substituted into the reduction coefficient 1. In step 771, 1
(Substitute -Δ1( to 1(. ΔI( is, for example, sail 001
It is. In step 7, the intake air flow rate Q and idle rotational speed N are acquired. In step 78, the basic fuel injection amount Tp is calculated based on Q/N. In step 80, the starting increase coefficient 51 is calculated as a function of the interrow cooling water temperature. In step 82, 'rp Substitute the fuel injection amount Tau.In step 84, 'rau
Substitute K for Tau. FIG. 4 shows temporal changes in the fuel injection amount Tau and the amount of fuel in the combustion chamber 8 during the cranking period when starting is not successful. In the conventional device, the fuel injection amount Tau is maintained almost constant over the entire range of the cranking period, so the amount of fuel 'B in the combustion chamber 8 only increases over time, and finally reaches 7 This causes combustion, fogging, and smoldering of the spark plug 14, which deteriorates the starting performance. On the other hand, in misfire 18), after the predetermined time A has passed, the fuel injection mT old 1 decreases over time, and as a result, the amount of fuel in the combustion chamber remains constant or decreases, and the spark plug 14 is prevented from smoldering, and good starting performance can be maintained. Note that the predetermined time A and the reduction amount Δ are determined so that, around the predetermined time A, the air-fuel ratio in the combustion chamber 8 is maintained for a while at a value at which starting is most likely to occur. FIG. 5 is a functional block diagram of the present invention. The basic fuel injection amount calculating means 90 calculates the basic fuel injection amount 1'p based on the intake air flow rate Q/engine rotational speed N, and the increasing LTk means 92 calculates the starting amount increase coefficient which is a function of the engine cooling water temperature. St is calculated, and the reducing means 94 detects the elapse of a predetermined time A from the output of the clock 96 (83). During the cranking period after the elapse of the predetermined time A, the reduction means 94 calculates a predetermined value of 5"i-:IIΔ1( The reduction coefficient 1 (t
Count l. The fuel B injection fA calculation means 98 calculates Tau=T.
The fuel injection amount T au is calculated from p X St X K and the opening period of the fuel injection valve 41 is created in relation to 'I'au.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御装置の概略図、第
2図は第1図の電子制御装置のブロック図、第3図はク
ランキング期間の燃料噴射量計算ルーチンのフローチャ
ー1−1第4図は始動が成功しない場合のクランキング
期間における燃料噴射量等の時間然化を示す図、第5図
は本発明の機能ブロック図である。 9・・・吸気通路、35・・・スタータスイッチ、41
・・・燃料噴射弁、92・・・増IIL手段、94・・
・減少手段。 特許出願人 トヨタ自動車株式会社 4\ 代理人弁理士 中 平 治 1、−
FIG. 1 is a schematic diagram of an electronic control device to which the present invention is applied, FIG. 2 is a block diagram of the electronic control device of FIG. 1. FIG. 4 is a diagram showing the temporal evolution of fuel injection amount, etc. during the cranking period when starting is not successful, and FIG. 5 is a functional block diagram of the present invention. 9... Intake passage, 35... Starter switch, 41
...Fuel injection valve, 92...Increasing IIL means, 94...
・Reduction means. Patent applicant: Toyota Motor Corporation 4\ Representative patent attorney: Osamu Naka 1, -

Claims (1)

【特許請求の範囲】[Claims] 吸気通路へ燃料を噴射する燃料噴射弁、クランキンク期
間では燃料噴射弁からの燃″B噴射量を増量させる増量
手1投、およびクランキンク開始時刻から所定時間以上
経過した後のクランキング期間における燃お口n側弁か
らの燃料噴射量を時間経過とともに徐々に減少させる減
少手段を備えていることを特徴とする、電子制御機関の
燃料噴射装置。
A fuel injection valve that injects fuel into the intake passage, an increase hand that increases the amount of fuel B injected from the fuel injection valve during the cranking period, and a fuel injection valve that injects fuel into the intake passage during the cranking period after a predetermined time has elapsed from the cranking start time. 1. A fuel injection device for an electronically controlled engine, comprising a reducing means for gradually reducing the amount of fuel injected from an n-side valve over time.
JP11099783A 1983-06-22 1983-06-22 Fuel injector of electronic control engine Pending JPS603451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11099783A JPS603451A (en) 1983-06-22 1983-06-22 Fuel injector of electronic control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11099783A JPS603451A (en) 1983-06-22 1983-06-22 Fuel injector of electronic control engine

Publications (1)

Publication Number Publication Date
JPS603451A true JPS603451A (en) 1985-01-09

Family

ID=14549775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11099783A Pending JPS603451A (en) 1983-06-22 1983-06-22 Fuel injector of electronic control engine

Country Status (1)

Country Link
JP (1) JPS603451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456932A (en) * 1987-08-25 1989-03-03 Honda Motor Co Ltd Fuel feed controller for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456932A (en) * 1987-08-25 1989-03-03 Honda Motor Co Ltd Fuel feed controller for internal combustion engine

Similar Documents

Publication Publication Date Title
US6274943B1 (en) Engine-starting discrimination system for hybrid vehicle
JP2857660B2 (en) Air-fuel ratio control method for internal combustion engine having spark plug with heater
JPS6324140B2 (en)
US4389996A (en) Method and apparatus for electronically controlling fuel injection
EP0279360A2 (en) Start control system for internal combustion engine
JPH0211729B2 (en)
JPH03493B2 (en)
US4747386A (en) Method and apparatus for augmenting fuel injection on hot restart of engine
JP3675035B2 (en) Fuel injection amount control device for internal combustion engine
JP3859733B2 (en) Fuel injection control device for internal combustion engine
JP3758235B2 (en) Intake control device for internal combustion engine
JPH09256887A (en) Fuel injection control device for outboard engine
JPS5944494B2 (en) Electronically controlled fuel injection system for internal combustion engines
JPS59549A (en) Method of digitally controlling internal-combustion engine
JPS603451A (en) Fuel injector of electronic control engine
JP2002030981A (en) Atmospheric pressure detecting device
JP3552575B2 (en) Intake control device for internal combustion engine
JP3931490B2 (en) Control device for internal combustion engine
JPS59147832A (en) Fuel injection volume control device of electronic- controlled fuel injection engine
JPH06317228A (en) Fuel supply device for internal combustion engine
JPS611841A (en) Fuel injection device for internal-combustion engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JPS58195057A (en) Assist air control method for internal-combustion engine
JP3784628B2 (en) Engine idle speed control device
JPH06307270A (en) Starting fuel injection controller for internal combustion engine