JPS6034481B2 - Ozone decomposition method and device - Google Patents

Ozone decomposition method and device

Info

Publication number
JPS6034481B2
JPS6034481B2 JP55101676A JP10167680A JPS6034481B2 JP S6034481 B2 JPS6034481 B2 JP S6034481B2 JP 55101676 A JP55101676 A JP 55101676A JP 10167680 A JP10167680 A JP 10167680A JP S6034481 B2 JPS6034481 B2 JP S6034481B2
Authority
JP
Japan
Prior art keywords
ozone
iron hydroxide
iron
decomposition
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101676A
Other languages
Japanese (ja)
Other versions
JPS5727903A (en
Inventor
昭 川村
光興 畑本
英幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP55101676A priority Critical patent/JPS6034481B2/en
Publication of JPS5727903A publication Critical patent/JPS5727903A/en
Publication of JPS6034481B2 publication Critical patent/JPS6034481B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は新規なオゾン分解方法及び装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel ozone decomposition method and apparatus.

オゾン(03)は発生基の酸素を有するフッ素的に次ぐ
酸化力のあるガスであり又その毒性も強い為、余剰オゾ
ンは分解し二次公害を防止しておく必要がある。
Ozone (03) is a gas that has oxygen as a generating group and has the second highest oxidizing power next to fluorine, and is also highly toxic, so it is necessary to decompose excess ozone to prevent secondary pollution.

オゾンガスの分解法としては種々あるが、大別して次の
4種となる。
There are various methods for decomposing ozone gas, but they can be roughly divided into the following four types.

a 酸化法(又は還元法) オゾンの活性酸素原子を他の物質(オゾンの活性酸素原
子・・・発生基の酸素ともいう・・・も含む)との酸化
・還元反応により、発生基の酸素が分離し酸素のみとな
る。
a Oxidation method (or reduction method) The active oxygen atoms of ozone are oxidized and reduced with other substances (including the active oxygen atoms of ozone, also called oxygen of the generating group). is separated, leaving only oxygen.

b 吸着法 オゾン(03)自体を吸着してしまうものと、吸着しな
がら徐々に反応してゆくものとがある。
b. Adsorption method There are methods that adsorb ozone (03) itself, and methods that gradually react while adsorbing it.

例えば水は、03ガスを酸素の15倍も溶解することが
出来(表1参照)、又活性炭は03ガスの吸着と同時に
炭素と徐々に化合し、炭素ガスになってゆく。C十20
3→C02十02 この反応式は発熱反応であるから冷却を兼ね、一般には
分解槽内の活性炭を水浸して用いるか、又は水を滴下等
して用いられている。
For example, water can dissolve 03 gas 15 times more than oxygen (see Table 1), and activated carbon gradually combines with carbon while adsorbing 03 gas, becoming carbon gas. C120
3→C02102 Since this reaction formula is an exothermic reaction, it is also used for cooling, and is generally used by soaking activated carbon in a decomposition tank with water or by adding water dropwise.

この為03の吸収効果は(水より活性炭の方が吸収量が
多い)減少する。
Therefore, the absorption effect of 03 decreases (activated carbon absorbs more than water).

表1 オゾン・酸素の水に対する溶解 c 熱分解法 熱分解法とは、オゾン03自体が不安定な為、加熱する
と容易に分解して幻3→の2となる。
Table 1 Dissolution of Ozone/Oxygen in Water (c) Pyrolysis Method Pyrolysis method is because ozone 03 itself is unstable, so it easily decomposes when heated to form Phantom 3 → No. 2.

この方法は、高濃度の03でも充分使用可能であるが、
オゾン自体酸化力の強い上、高温(300℃以上・・・
濃度・流量・流速により異る)が必要なので、ヒーター
等の熱源の腐食が激しく、又燃料・電力等が余分として
必要になる。d 自然分解法 03は不安定な為、放置しておいても他の03と反応し
て酸素となる。
Although this method can be used satisfactorily even with high concentrations of 03,
Ozone itself has strong oxidizing power and high temperatures (over 300℃...
(varies depending on concentration, flow rate, and flow velocity), heat sources such as heaters are severely corroded, and extra fuel, electricity, etc. are required. d Natural decomposition method 03 is unstable, so even if it is left alone, it will react with other 03 and become oxygen.

(203→の2)費用が不要な利点があるが、時間がか
)り(濃度・温度により異るが、工業利用範囲の濃度で
は数時間以上)工業上では使用出来ない。
(203→2) It has the advantage of not being expensive, but it takes time (depending on the concentration and temperature, but takes several hours or more at concentrations in the industrial range) and cannot be used industrially.

上記4種から、実際工業上で利用可能なものは、a酸化
(還元)法とb吸着法である。ただし、a酸化(還元)
法は、オゾン03が酸素を与えるか又は酸素をもらうか
して安定な酸素02になる反応であるが、その時反応に
あずかる物質の量には限度があるので次第に効果が減少
し、遂には分解不能となり交換を要する。これは吸着式
でもいえる事で、やはりオゾンの吸収分解効果は次第に
減少し、交換を要する。
Of the four types mentioned above, those that can be actually used industrially are the oxidation (reduction) method (a) and the adsorption method (b). However, a oxidation (reduction)
The process is a reaction in which ozone 03 becomes stable oxygen 02 by giving or receiving oxygen, but since there is a limit to the amount of substances that can participate in the reaction, the effect gradually decreases and eventually decomposes. It becomes unusable and needs to be replaced. This also applies to the adsorption type, as the ozone absorption and decomposition effect gradually decreases, requiring replacement.

そこで本発明者らは長時間効率を低下させることなく良
好にオゾンを分解することができるオゾン分解方法又は
装置を提供することを目的として種々、実験、研究を重
ねた。そして工場における作業時に生じ容易に入手しう
る鋳鉄の切屑又は切削粉を用いてオゾンを分解すること
を試み、その際空気中放置での酸化を促進させるために
その切屑又は切削粉に水をかけたり水に浸潰したりして
水を作用させて用いたところ、はからずも長時間効率を
低下することなくオゾンを分解することができることが
見出されたものである。而して前記鋳鉄の切屑又は切削
粉に水を作用して実際にできたものは酸化鉄〔Fe0、
Fe203〕ではなく、水酸化鉄〔Fe(OH)2、F
e(OH)3〕であることが見出され、その結果、本発
明に到達したのである。かくて本発明によれば、水酸化
鉄を用いてオゾンを分解することにより特に鋳鉄の切屑
又は切削粉に水を作用させてえられた水酸化鉄を用いて
オゾンを分解することにより、前記目的が達成しうろこ
とが見出されたのである。本発明をその一実施例につい
て更に詳しく説明する。
Therefore, the present inventors conducted various experiments and research with the aim of providing an ozone decomposition method or apparatus that can satisfactorily decompose ozone without reducing efficiency over a long period of time. They attempted to decompose ozone using easily available cast iron chips or cutting dust generated during factory work, and in doing so, they sprinkled water on the chips or cutting dust to promote oxidation when left in the air. It was unexpectedly discovered that ozone can be decomposed over a long period of time without any loss in efficiency when used in the presence of water, such as by immersing it in water or by immersing it in water. What is actually produced by applying water to the cast iron chips or chips is iron oxide [Fe0,
Iron hydroxide [Fe(OH)2, F
e(OH)3], and as a result, the present invention was achieved. Thus, according to the present invention, by decomposing ozone using iron hydroxide, in particular, by decomposing ozone using iron hydroxide obtained by reacting water with cast iron chips or chips, the above-mentioned It was discovered that the purpose could be achieved. The present invention will be described in more detail with respect to one embodiment thereof.

図面第1図に示すオゾンの発生、分解の系統図について
いえば21はエアコンプレッサ、22は空気乾燥器、2
3はオゾナィザ−即ちオゾン発生装置を示す。24は水
酸化鉄を充填した例えば後述の如き構造を有する水酸化
鉄オゾン分解器であり、25は活性炭を充填した活性炭
オゾン分解器を示す。
Regarding the system diagram of ozone generation and decomposition shown in Figure 1 of the drawing, 21 is an air compressor, 22 is an air dryer, 2
3 indicates an ozonizer, that is, an ozone generator. 24 is an iron hydroxide ozonolyzer filled with iron hydroxide and has a structure as described later, and 25 is an activated carbon ozonolyzer filled with activated carbon.

即ちこの系統図に示すものはエアコンプレッサ21から
の空気は乾燥器22で乾燥されてオゾナィザー23に送
られ、ここで発生されたオゾンはまず水酸化鉄を用いる
オゾン分解器24で分解される。この空気は次いで活性
炭オゾン分解器25に通し、後大気中に放出される。尚
オゾンナィザー23を出た点26で濃度測定が行なわれ
る。今、この系統図に示す装置についてオゾンの発生、
分解テストを行なった。
That is, in this system diagram, air from an air compressor 21 is dried in a dryer 22 and sent to an ozonizer 23, and the ozone generated here is first decomposed in an ozone decomposer 24 that uses iron hydroxide. This air is then passed through an activated carbon ozonolyzer 25 before being discharged to the atmosphere. The concentration is measured at a point 26 exiting the ozonizer 23. Now, regarding the equipment shown in this system diagram, ozone generation,
I did a disassembly test.

オゾナィザー23によるオゾン発生量は毎時10〜1斑
、濃度は数千〜1万ppm′volでありこれで合計2
00畑時間にわたりテストした。この際用いた水酸化鉄
は鋳鉄の切屑又は切削粉に水を霧状又は滴状にしてふり
かけてつくられたものであるが、水中に浸潰しても良好
に得られる。因みにこの切屑の大きさは通常平均的に厚
さ約1側、縦約3脚、横約4肋程度である。分解状況の
テストは、水酸化鉄約15kg、活性炭約17k9を用
い又、大気解放時のオゾン濃度はオゾン特有の刺激臭を
人間が確認する事により測定したが、人間の鼻はオゾン
に対して敏感で最低0.01ppm/volまで確認出
来る事を利用した。
The amount of ozone generated by the ozonizer 23 is 10 to 1 spot per hour, and the concentration is several thousand to 10,000 ppm'vol, which is a total of 2
Tested over 00 field hours. The iron hydroxide used in this case was made by sprinkling cast iron chips or chips with water in the form of mist or droplets, but it can also be obtained satisfactorily by immersing them in water. Incidentally, the size of these chips is usually about 1 side thick, about 3 feet long, and about 4 feet wide on average. The decomposition state test used approximately 15 kg of iron hydroxide and approximately 17 kg of activated carbon, and the ozone concentration when released into the atmosphere was measured by humans observing the pungent odor characteristic of ozone, but the human nose is sensitive to ozone. We took advantage of the fact that it is sensitive and can confirm down to a minimum of 0.01 ppm/vol.

即ち、刺激臭を確認する事により、数千〜1方ppm′
volが0.01ppm/volに変化したとすれば殆
ど完全に分解されたと考えてよいからである。(刺激臭
は全く無かった)又、水酸化鉄オゾン分解器について位
置する活性炭オゾン分解器では、所々に窓を設け、活性
炭の特性からオゾンを吸収すると黒色から白色化する過
程を観察しが、10〜1髭/hのオゾン発生に於て白色
変化を起した活性炭は全く事られなかった。
In other words, by checking the irritating odor, it is possible to detect a concentration of several thousand to one ppm'
This is because if the vol changes to 0.01 ppm/vol, it can be considered that it has been almost completely decomposed. (There was no irritating odor at all.) Also, in the activated carbon ozonolyzer, which is located next to the iron hydroxide ozonolyzer, windows were installed here and there to observe the process of the activated carbon changing from black to white when it absorbed ozone due to its characteristics. Activated carbon, which caused a white change when ozone was generated at a rate of 10 to 1 h/h, did not change at all.

活性炭17k9では完全に白色化させるには10〜15
g/hのオゾ/ンでは100〜150時間程度であるが
、200畑時間を経てもわずか白色・・…・と確認され
る活・性炭も全く見る事は出来なかった。
Activated carbon 17k9 requires 10-15 for complete whitening.
With ozone/g/h, it takes about 100 to 150 hours, but even after 200 field hours, I could not see any activated carbon, which was confirmed to be slightly white.

即ち、活性炭によることなく水酸化鉄によりほぼ完全に
オゾン分解されていた事になる。
In other words, ozone was almost completely decomposed by iron hydroxide without using activated carbon.

しかも200斑時間(断続テストの為約2年間)のテス
ト後、水酸化鉄の変化は殆ど見られなかった。
Furthermore, after testing for 200 hours (approximately 2 years due to intermittent testing), almost no change in iron hydroxide was observed.

かくて水酸化鉄により長時間効率を低下させることなく
オゾンを分解しうろことが明かになった。尚実験中、実
験開始2〜3時間後室温と水酸化鉄分解器外壁との温度
差は約10qoであり、分解器外壁の方が高く、従って
内部熱反応を伴っている事は確実である。
It has thus been shown that iron hydroxide can decompose ozone over a long period of time without reducing efficiency. During the experiment, 2 to 3 hours after the start of the experiment, the temperature difference between the room temperature and the outer wall of the iron hydroxide decomposer was about 10 qo, and the outer wall of the decomposer was higher, so it is certain that an internal thermal reaction was involved. .

オゾン発生は吸熱反応であり、分解は発熱反応である。
由K約2←−−→の3 伍吸熱、e発熱、 eK k=34.1Kcal′mol 従って、10〜15g/hのオゾン分解量では発熱量は
7.1〜10.7Kcal/h(8.3〜12.4W)
となり、分解器の自然放熱或はオゾン含有空気への放熱
を考慮すると、分解器自体の温度上昇はオゾン分解によ
る発熱と大体同様になるものと思われる。
Ozone generation is an endothermic reaction and decomposition is an exothermic reaction.
yK approx. 2←--→3 5 heat absorption, e heat generation, eK k = 34.1 Kcal'mol Therefore, at an ozone decomposition amount of 10 to 15 g/h, the calorific value is 7.1 to 10.7 Kcal/h (8 .3~12.4W)
Considering the natural heat radiation of the decomposer or the heat radiation to the ozone-containing air, the temperature rise in the decomposer itself is thought to be roughly the same as the heat generated by ozone decomposition.

尚、分解剤として単なる水酸化鉄ぐなく鋳鉄とした場合
炭素含有量が純鉄・炭素鋼の0〜0.8%に比べ、鋳鉄
の場合2〜4%と非常に多く、この炭素もオゾン分解反
応に徐々ではあるが影響するものと思われる。
In addition, when cast iron is used instead of iron hydroxide as a decomposition agent, the carbon content is extremely high at 2 to 4% in the case of cast iron, compared to 0 to 0.8% in pure iron and carbon steel, and this carbon is also absorbed by ozone. It seems that it affects the decomposition reaction, albeit gradually.

水酸化鉄・炭素のオゾン03との反応は次の事が考えら
れる。
The reaction of iron hydroxide/carbon with ozone 03 can be considered as follows.

‘a’がe(OH)2十03→Fe203十がLO十0
2‘b’がe(OH)3十403一Fe203十知日2
0十302【c} ぬ一の2【d} C+203→C0
3十02 {e’Fe(〇H)2十。
'a' is e (OH) 2003 → Fe2030 is LO10
2'b' is e (OH) 314031 Fe203 10th day 2
01302 [c} Nuichi no 2 [d} C+203→C0
3002 {e'Fe(〇H)20.

3→Fe十日20十幻まぜ雌総繋畑;き・・・(el)
.・・(e2)【f1がe(〇H)3十。
3 → Fe 10th 20th Gen mix female total connection field; Ki... (el)
.. ...(e2) [f1 is e(〇H) 30.

3→がe十が20十ぬき俊雌総397紙ジ・・・(fl
).・・(f2) (注)‘e}、‘f}はそれぞれ次の様に書き換えられ
る。
3 → ga e ten ga 20 tenuki shunmei total 397 papers... (fl
). ...(f2) (Note) 'e} and 'f} can be rewritten as follows.

(e′){Fe(OH)2十処一Fe(OH)2十ぬ…
(ei)L班eのH)2十のヅがeのH)3げe+ぬ…
(e2)(f′) がe(〇H)3十03→がe(〇H
)2十日20十幻圭…(fi)がe(〇H)3十幻3→
がe(〇H)3十紅圭…(f2)反応は以上のところで
あるが、それぞれについての説明は【a} 水酸化第1
鉄〔Fe(OH)2〕にオゾン〔03〕が直接反応し、
酸化鉄が出来る場合‘b} 水酸化第2鉄〔Fe(OH
)3〕にオゾン〔03〕が直後反応し、酸化鉄が出来る
場合‘cー 水酸化鉄がオゾンの触媒として作用する場
合側 鋳鉄中の炭素〔C〕とオゾンの3〕とが反応する
場合(e′)水酸化第1鉄とオゾンが反応し、鉄と水と
を生成し、鉄と水とが反応して水酸化鉄が出来る場合で
、(ei)は水酸化第1鉄が出釆、結果的に触媒となっ
ている。
(e') {Fe(OH) 20 places 1 Fe(OH) 20...
(ei) L group e's H) 20 zugae's H) 3gee+nu...
(e2) (f') is e(〇H) 3003 → is e(〇H
) 20th 20th Kei Jugen...(fi) is e(〇H)3 Jugen 3 →
is e (〇H) 3 Juku Kei... (f2) The reactions are above, but the explanation for each is [a} Hydroxide 1st
Ozone [03] directly reacts with iron [Fe(OH)2],
When iron oxide is produced'b} Ferric hydroxide [Fe(OH
) When ozone [03] immediately reacts with 3] to form iron oxide 'c - When iron hydroxide acts as a catalyst for ozone When carbon [C] in cast iron and ozone 3] react (e') Ferrous hydroxide and ozone react to produce iron and water, and iron and water react to form iron hydroxide; (ei) is a case in which ferrous hydroxide is produced. As a result, it becomes a catalyst.

(e2)は水酸化第2鉄と鉄を生成。(f′)水酸化第
2鉄とオゾンが反応し、鉄と水とを生成し、その鉄と水
とが反応して水酸化鉄が出来る場合で、(fi)は水酸
化第1鉄と水を生成、(f2)は水酸化第2鉄が出来、
結果的に触媒となっている。
(e2) produces ferric hydroxide and iron. (f') In the case where ferric hydroxide and ozone react to produce iron and water, the iron and water react to form iron hydroxide, and (fi) is the case where ferrous hydroxide and ozone react. Produces water, (f2) produces ferric hydroxide,
As a result, it becomes a catalyst.

ところでテストの後、分解装置を解体し調べてみると、
色等では全く実験前と比べ変化が無かったところから、
【c}、(ei)、(f2)の触媒或は結果的に触媒の
役目を果しているものと考えられる。
By the way, after the test, I dismantled the disassembly device and examined it.
Since there was no change in color etc. compared to before the experiment,
It is thought that it acts as a catalyst for [c}, (ei), and (f2) or as a result.

しかし活性炭等と比べ、発火の必配も無く、又交換する
必要も無いのでその効果は絶大なものと考えられる。
However, compared to activated carbon, etc., there is no risk of ignition, and there is no need to replace it, so it is considered to be extremely effective.

かくて本発明方法により水酸化鉄、特の鋳鉄の切屑又は
切削粉に水を作用させてえられた水酸化鉄を用いてオゾ
ンを分解するときは長時間変換の要なく、発火の必配も
なく良好に実施することができるとともにいわばただ同
然の安価な費用で入手しうる原料によるためきわめて経
済的であり、有効である。
Thus, when decomposing ozone using the method of the present invention using iron hydroxide, especially iron hydroxide obtained by reacting water with cast iron chips or chips, there is no need for long-term conversion, and there is no need for ignition. It is extremely economical and effective because it can be carried out without any problems, and it uses raw materials that can be obtained at virtually no cost.

尚本発明においては水酸化鉄として特に鋳鉄の切屑又は
切削粉に水を作用させたものについてかかれているが、
鋳鉄に限るものではなく他の鉄鋼材料からも同様に水酸
化鉄がえられるものであり従って他の材料からえられた
水酸化鉄を用いる場合も本発明の範囲に含まれること勿
論である。
In the present invention, the iron hydroxide is particularly referred to as cast iron chips or cutting dust treated with water.
Iron hydroxide is not limited to cast iron, and iron hydroxide can be obtained from other steel materials as well, so it goes without saying that the use of iron hydroxide obtained from other materials also falls within the scope of the present invention.

本発明はまた水酸化鉄を用いてオゾンを分解する方法を
実施するに適当な装置を提供することを目的とするもの
であり、本発明によれば、水平方向に長い筒状をなし、
内部に水酸化鉄を充填せしめた分解筒からなり、その内
部にドーナツ状のりングを1個又は数個設けるか、又は
その軸万向に水酸化鉄充填部と空間部を交互に設け、そ
の境界に金網を有するリングを設けてなるオゾン分解装
置により、前記目的が達成されることが見出された。本
発明にかかるオゾン分解装置を図面に示す実施例につい
て更に詳しく説明すれば、第2図における例の水平方向
に長い筒型のオゾン分解装置はフランジ2を有する入口
側キャップ1とフランジ7を有する出口側キャップ8を
両端とし、夫々フランジ2,2′と7,7′とによって
両キャップ1,8と連結している胸部6を中央に有して
いる。
Another object of the present invention is to provide an apparatus suitable for carrying out a method of decomposing ozone using iron hydroxide.
It consists of a decomposition cylinder whose interior is filled with iron hydroxide, and one or several donut-shaped rings are provided inside the cylinder, or iron hydroxide filled parts and spaces are provided alternately in all directions of the axis. It has been found that an ozone decomposition device comprising a ring with a wire mesh at the boundary achieves this object. To explain in more detail the embodiment of the ozone decomposition apparatus according to the present invention shown in the drawings, the horizontally long cylindrical ozone decomposition apparatus shown in FIG. It has an outlet side cap 8 at both ends and a chest 6 in the center connected to both caps 1 and 8 by flanges 2, 2' and 7, 7', respectively.

これら胴部6の両端のフランジ2′,7′にはいずれも
内側に金網4,4′を有するリング3,3′が取着けら
れている。前記胸部6内部、金網4,4間の適当個所に
、内壁に密着するドーナツ状の数個のりング5が取付け
られている。而してこの胴部6には所要量の好ましくは
水に浸潰した又は水を階霧滴下された鋳鉄の切屑又は切
削粉からなる水酸化鉄11が充填されている。図面では
水酸化鉄11は便宜上黒い点で示されている。今オゾン
を含む気体を入口から導入するとこの気体は入口側キャ
ップ1から金網4を経て水酸化鉄11が充填されている
胸部6に入れられこの水酸化鉄11に接触してオゾンが
分解される。その際適当個所、図においてはほぼ等間隔
に取着けられている数個のりング5によって気体は流路
9の如く流れる。即ち通常8同部内壁面に沿って流れ易
い気体はリング5によって流路が強制的に変更されて中
心部にも流れるようになり、胴部内に広く充填されてい
る水酸化鉄11と接触しやすくなる。このようにして胴
部6にて水酸化鉄11に接触して分解された気体は出口
側キャップ3を経て流出される。かくてこの装置による
ときはオゾン含有気体と水酸化鉄とがよく接触してオゾ
ン分解効率をとみに向上させることができる。第3図は
本発明に係る他の実施例のオゾン分解装置を示すもので
あり、第2図と共通の部分は共通の符号で表されている
。この場合は胴部6には軸方向に交互に水酸化鉄11を
充填している水酸化鉄充填部12と水酸化鉄を充填して
いない空間部13とが設けられている。境界には金網リ
ング10が設けられている。実際上、この空間部13は
、内側に金網14をはり外径が筒の内壁に密着するりン
グ10の二つを両端とする中空円筒状に構成されている
。この空間部13の軸万向の長さは水酸化鉄充填部12
のそれよりも短くなっている。かかるオゾン分解装置に
オゾン含有気体を通すと、この気体は金網リング10に
よって隔てられている水酸化鉄充填部12と空間部13
とを交互に通る。
Rings 3, 3' having wire meshes 4, 4' inside are attached to the flanges 2', 7' at both ends of the body 6. Several donut-shaped rings 5 are attached to the inside of the chest 6 at appropriate locations between the wire meshes 4, 4, and are in close contact with the inner wall. The body 6 is filled with a required amount of iron hydroxide 11, which preferably consists of cast iron chips or chips soaked in water or dripped with water. In the drawing, iron hydroxide 11 is shown as a black dot for convenience. When gas containing ozone is introduced from the inlet, this gas passes through the inlet cap 1, wire mesh 4, and enters the chest 6 filled with iron hydroxide 11, where it comes into contact with the iron hydroxide 11 and decomposes the ozone. . At this time, the gas flows in a flow path 9 by means of several rings 5 installed at appropriate locations, approximately equally spaced in the figure. In other words, the gas which normally flows easily along the inner wall surface of the same part 8 is forcibly changed in its flow path by the ring 5, so that it also flows to the center, making it easier to come into contact with the iron hydroxide 11 widely filled in the body. Become. The gas thus decomposed in contact with the iron hydroxide 11 in the body 6 is discharged through the outlet side cap 3. Thus, when this device is used, the ozone-containing gas and iron hydroxide come into good contact, and the ozone decomposition efficiency can be greatly improved. FIG. 3 shows an ozone decomposition apparatus according to another embodiment of the present invention, and parts common to those in FIG. 2 are designated by common symbols. In this case, the body 6 is provided with iron hydroxide filling portions 12 filled with iron hydroxide 11 and spaces 13 not filled with iron hydroxide, alternately in the axial direction. A wire mesh ring 10 is provided at the border. In reality, this space 13 is formed into a hollow cylindrical shape with two ends of the ring 10 having a wire mesh 14 on the inside and the outer diameter of which is in close contact with the inner wall of the cylinder. The length of this space 13 in all axial directions is the length of the iron hydroxide filling part 12.
It is shorter than that of . When an ozone-containing gas is passed through such an ozone decomposition device, this gas passes through the iron hydroxide filling section 12 and the space section 13 which are separated by the wire mesh ring 10.
and alternately.

そしてこの気体は流路9の如く中心部に流れやすくなる
こと第2図の場合と同じであるが、特に第3図の場合前
記の如く構成された各空間部13にいて流路9に乱流部
15が生じて、中心部への流路の強制変更、気体と水酸
化鉄との接触効率をより一層効果的に向上せることがで
きて有効である。このように本発明のこれら二つのオゾ
ン分解装置によるときはオゾン含有気体の流路を装置内
壁のみでなく中心部にももたらすことができて内部に広
く充填されている水酸化鉄との接触が容易となり、前記
気体中のオゾンの分解をより光果的たらしめることがで
きる。
This gas tends to flow toward the center like the flow path 9, which is the same as in the case of FIG. 2, but especially in the case of FIG. The flow portion 15 is formed, which is effective because the flow path is forced to change to the center and the contact efficiency between the gas and iron hydroxide can be further effectively improved. In this way, when using these two ozone decomposition apparatuses of the present invention, the flow path of the ozone-containing gas can be provided not only on the inner wall of the apparatus but also in the center of the apparatus, thereby preventing contact with the iron hydroxide widely filled inside the apparatus. This makes the decomposition of ozone in the gas more efficient.

以上、詳細に述べてきたところから明らかなように、本
発明はオゾン分解方法及び装置として誠に有効なものを
提供しうるものである。
As is clear from the above detailed description, the present invention can provide a truly effective ozone decomposition method and apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を試験するに当り構成されたオゾ
ンの発生−分解系統図、第2図は本発明の装置の一例の
説明図、第3図は同装置の他の例の説明図である。 1・・・オゾン化空気入口側キャップ、2,2′・・・
フランジ(入口側)、3…金網付リング(入口側)、3
′…金網付リング(出口側)、4…金網(入口側)、4
′…金網(出口側)、5…流離変更リング、6・・・分
解筒胴、7,7′・・・フランジ(出口側)、8…空気
出口側キャップ、9・・・空気流路、10・・・空気部
作成用金網付リング、11・・・水酸化鉄、12・・・
水酸化鉄充填部、13・・・空間部、14…金網、15
・・・乱流部、21・・・エアコンプレツサ−、22・
・・空気乾燥器、23・・・オゾナィザー、24・・・
水酸化鉄オゾン分解器、25・・・活性炭オゾン分解器
、26・・・濃度測定点。 漆‐z図 券2図 務3図
Figure 1 is an ozone generation-decomposition system diagram configured for testing the method of the present invention, Figure 2 is an explanatory diagram of an example of the apparatus of the present invention, and Figure 3 is an illustration of another example of the same apparatus. It is a diagram. 1... Ozonized air inlet side cap, 2, 2'...
Flange (inlet side), 3... Ring with wire mesh (inlet side), 3
'...Ring with wire mesh (outlet side), 4...Wire mesh (inlet side), 4
'... Wire mesh (outlet side), 5... Separation change ring, 6... Decomposition cylinder body, 7, 7'... Flange (outlet side), 8... Air outlet side cap, 9... Air flow path, 10... Ring with wire mesh for creating air section, 11... Iron hydroxide, 12...
Iron hydroxide filling part, 13... Space part, 14... Wire mesh, 15
...turbulent flow section, 21... air compressor, 22.
...Air dryer, 23...Ozonizer, 24...
Iron hydroxide ozonolyzer, 25...Activated carbon ozonolyzer, 26...Concentration measurement point. Urushi-z drawing ticket 2 office work 3 drawing

Claims (1)

【特許請求の範囲】 1 水酸化鉄を用いてオゾンを分解することを特徴とす
るオゾン分解方法。 2 水酸化鉄として、鋳鉄の切屑又は切削粉に水を作用
してえられた水酸化鉄を用いてオゾンを分解することを
特徴とする特許請求の範囲第1項記載の方法。 3 水平方向に長い筒状をなし内部に水酸化鉄を充填せ
しめた分解筒からなり、その内部にリングを1個又は数
個設けるか又はその軸方向に水酸化鉄充填部と空間部を
交互に設けその境界に金網を有するリングを設けてなる
オゾン分解装置。 4 水酸化鉄として、鋳鉄の切屑又は切削又は切削粉に
水を作用してえられた水酸化鉄を用いることを特徴とす
る特許請求の範囲第3項記載の装置。
[Claims] 1. An ozone decomposition method characterized by decomposing ozone using iron hydroxide. 2. The method according to claim 1, characterized in that ozone is decomposed using iron hydroxide obtained by acting water on cast iron chips or chips as the iron hydroxide. 3. Consists of a decomposition cylinder that is horizontally long and filled with iron hydroxide, and one or more rings are provided inside the cylinder, or iron hydroxide filled parts and spaces are arranged alternately in the axial direction. An ozone decomposition device comprising a ring provided in a ring and having a wire mesh on the boundary thereof. 4. The apparatus according to claim 3, wherein iron hydroxide obtained by applying water to cast iron chips or cuttings or cutting powder is used as the iron hydroxide.
JP55101676A 1980-07-24 1980-07-24 Ozone decomposition method and device Expired JPS6034481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55101676A JPS6034481B2 (en) 1980-07-24 1980-07-24 Ozone decomposition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55101676A JPS6034481B2 (en) 1980-07-24 1980-07-24 Ozone decomposition method and device

Publications (2)

Publication Number Publication Date
JPS5727903A JPS5727903A (en) 1982-02-15
JPS6034481B2 true JPS6034481B2 (en) 1985-08-09

Family

ID=14306952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55101676A Expired JPS6034481B2 (en) 1980-07-24 1980-07-24 Ozone decomposition method and device

Country Status (1)

Country Link
JP (1) JPS6034481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820575B2 (en) 2005-05-09 2011-11-24 東洋紡績株式会社 Ozonolysis agent
JP4711012B2 (en) * 2009-10-06 2011-06-29 東洋紡績株式会社 Ozonolysis agent

Also Published As

Publication number Publication date
JPS5727903A (en) 1982-02-15

Similar Documents

Publication Publication Date Title
CA2312652C (en) Reduction of toxic substances in waste gas emissions
US5260036A (en) Method and apparatus for use in photochemically oxidizing gaseous halogenated organic compounds
CA2192048C (en) Exhaust air cleaning method
Skalska et al. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
JP2002301335A (en) Apparatus and method for desulfurization
GB1586515A (en) Denitration of exhaust gas
US5180502A (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
JPS6034481B2 (en) Ozone decomposition method and device
US4049777A (en) Method of waste gas treatment
US5082645A (en) Waste acid recovery process
JPH022825A (en) Electrolytic ozonizer having waste gas decomposing function and method for decomposing waste gas with the same ozonizer
JPH06123406A (en) Removal of nitrogen monoxide in combustion gas
EP0416631A1 (en) Method for removing harmful gas from refuse combustion exhaust gas
Ray et al. THE OXIDATION OF CARBON MONOXIDE BY PASSAGE WITH OXYGEN OR AIR THROUGH THE SILENT DISCHARGE AND OVER OZONE DECOMPOSING CATALYSTS.
JP3790890B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
JP2008136932A (en) Selective removing method of fluorocarbon having unsaturated bond, treatment unit and sample treatment system using treatment unit
RU2411065C1 (en) Method of removing nitrogen oxides from flue gases
US1237884A (en) Ammonia-oxidation process.
JPH0975668A (en) Exhaust gas treatment apparatus
JPS5995922A (en) Denitration method of gas containing nox
JPS5750529A (en) Method for purification of gas containing nitrogen oxide
CN107215854A (en) A kind of devices and methods therefor for producing nitric acid
JPS6026041B2 (en) oxygen generation method
JP2004105903A (en) Treatment method for hydrazine-containing wastewater