JPS6034202B2 - High frequency power absorption element - Google Patents

High frequency power absorption element

Info

Publication number
JPS6034202B2
JPS6034202B2 JP12195076A JP12195076A JPS6034202B2 JP S6034202 B2 JPS6034202 B2 JP S6034202B2 JP 12195076 A JP12195076 A JP 12195076A JP 12195076 A JP12195076 A JP 12195076A JP S6034202 B2 JPS6034202 B2 JP S6034202B2
Authority
JP
Japan
Prior art keywords
weight
frequency power
power absorption
binder
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12195076A
Other languages
Japanese (ja)
Other versions
JPS5347999A (en
Inventor
己抜 篠原
秀男 由上
久仁於 鈴木
茂 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP12195076A priority Critical patent/JPS6034202B2/en
Publication of JPS5347999A publication Critical patent/JPS5347999A/en
Publication of JPS6034202B2 publication Critical patent/JPS6034202B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明は新種の高周波電力吸収素子(或は電力集中用加
熱素子、以下同じ)に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new type of high frequency power absorption element (or power concentration heating element, hereinafter the same).

マイクロ波回路においては、無反射終端器や擬似負荷ま
たは減衰素子として高周波電力吸収素子を使用する機会
は非常に多い。
In microwave circuits, there are many opportunities to use high-frequency power absorption elements as non-reflection terminators, pseudo loads, or attenuation elements.

この場合に吸収すべき電力が小さければ金属被膜抵抗な
どを使用しているが、電力が大きくなるにつれてカーボ
ンやフェライト等を便し、耐電力を増加して来た。マイ
クロ波帯においてはその周波数が高くなるにつれて、伝
送路である導波管や同軸管の断面寸法がづ・さくなるた
め、吸収電力が大きくなれば必然的に単位体積内の耐電
力の大きな材料を使用しなければならなくなる。従って
このような材料としては高周波において損失が大きく、
高温に耐え、熱伝送度も良好で、機械的強度も高いもの
が望ましい。第1図は導波管形擬似負荷の一例であって
、導波管1の外側には放熱用の金属ラシェー夕2を檀込
み、フランジ3によって伝送回路に取付ける。
In this case, if the power to be absorbed is small, a metal film resistor is used, but as the power increases, carbon, ferrite, etc. are used to increase the withstand power. In the microwave band, as the frequency increases, the cross-sectional dimensions of the waveguide and coaxial tube that serve as the transmission path become smaller, so if the absorbed power increases, it is inevitable that materials with higher power resistance within a unit volume will be used. will have to use. Therefore, such a material has a large loss at high frequencies,
It is desirable to have a material that can withstand high temperatures, has good thermal conductivity, and has high mechanical strength. FIG. 1 shows an example of a waveguide-type pseudo load, in which a metal lachet 2 for heat radiation is installed on the outside of a waveguide 1, and is attached to a transmission circuit by a flange 3.

導波管1の内部には第2図の如きふたまた状の竜力吸収
素子4を熱伝導性の良好な高温用接着剤で管壁にしっか
りと装着してある。このような電力吸収素子4として、
フェライトを使用した場合には、200℃前後以上の温
度に於て高周波電力吸収素子としての能力が極度に低下
し使用に耐えなくなる。
Inside the waveguide 1, a bifurcated force absorbing element 4 as shown in FIG. 2 is firmly attached to the tube wall with a high-temperature adhesive having good thermal conductivity. As such a power absorption element 4,
When ferrite is used, its ability as a high frequency power absorbing element is extremely reduced at temperatures of around 200° C. or higher, making it unusable.

またカーボンの場合には酸化雰囲気中で高温にすると酸
化燃焼を起こす。又通常使用されるようにカーボン粉末
とセメントを適量混合して成形したものでは200oo
程度で機械的に著しく脆くなる。本発明は上記に鑑みて
、高電力・酸化雰囲気中においても1500qC程度ま
で安定に使用でき、急激な負荷変化に対する耐熱衝撃性
や熱伝導性も良好な新種の高周波電力吸収素子を提供す
ることを目的とする。
In the case of carbon, oxidative combustion occurs when heated to high temperatures in an oxidizing atmosphere. In addition, a molded product made by mixing an appropriate amount of carbon powder and cement, which is commonly used, has a diameter of 200 oo
It becomes extremely mechanically brittle. In view of the above, it is an object of the present invention to provide a new type of high-frequency power absorption element that can be used stably up to about 1500 qC even at high power and in an oxidizing atmosphere, and has good thermal shock resistance and thermal conductivity against sudden load changes. purpose.

即ち24〜3000メッシュ程度の粒度の炭化珪素粉末
(Q−SIC)を単一粒度処理し、または各種粒度を配
合し、この粉末100重量部に対して、一般式R′20
・R′○・R′′′203で表わされる酸化物及びSi
02の各群から選択される一種または二種以上の物質(
ガラス質または陶磁器質)を結合剤として3〜30重量
部(重量%換算で約3〜23重量%)添加して1200
〜150000において焼成したセラミック組成物を電
力吸収体として用いた高周波電力吸収素子である。ここ
でR′はNa・K・Li、R″はCa・Mg・欧・Sr
、R川はAI・Crの各元素から選択される一員を表わ
す。また高温における炭化珪素の酸化防止改善のために
酸化コバルト・酸化マンガン・酸化鋼・酸化鉛等の重金
属酸化物、または銅・マンガン・ニッケル・コバルト等
の重金属粉末を上記結合剤の添加量の0.5〜10重量
%の範囲で少量添加することも有効であった。
That is, silicon carbide powder (Q-SIC) with a particle size of about 24 to 3000 mesh is treated with a single particle size or mixed with various particle sizes, and with respect to 100 parts by weight of this powder, the general formula R'20
・Oxide and Si represented by R′○・R′''203
One or more substances selected from each group of 02 (
1200 by adding 3 to 30 parts by weight (approximately 3 to 23 weight % in terms of weight %) of vitreous or ceramic) as a binder.
This is a high frequency power absorbing element using a ceramic composition fired at a temperature of ~150,000 as a power absorber. Here, R' is Na, K, Li, R'' is Ca, Mg, Europe, Sr.
, R river represents a member selected from each element of AI and Cr. In addition, to improve the oxidation prevention of silicon carbide at high temperatures, heavy metal oxides such as cobalt oxide, manganese oxide, steel oxide, and lead oxide, or heavy metal powders such as copper, manganese, nickel, and cobalt are added to the additive amount of the above binder. It was also effective to add a small amount in the range of .5 to 10% by weight.

また上記セラミック組成物の結合強度をより強固にする
必要のある場合には、結合剤中の酸化珪素(Si02)
の一部に代えて酸化燐(P2Q)または酸化棚素(&0
3)を使用することもできる。
In addition, if it is necessary to strengthen the bonding strength of the ceramic composition, silicon oxide (Si02) in the binder may be used.
Phosphorus oxide (P2Q) or chlorine oxide (&0
3) can also be used.

上記のセラミック組成物は電力吸収素子として高電力・
酸化雰囲気中においても1500oo程度まで安定に使
用でき、急激な負荷変化に対する耐熱衝撃性や熱伝導性
も極めて良好なものであることが物性試験により確かめ
られた。従って該材料を第2図の如き形状の素子4とし
て第1図のように導波管1内に装着すれば良好な高電力
用擬似負荷ができる。また短冊状の薄片としたものを多
数導波管壁に取付け、適宜冷却すれば高電力用の減衰器
を製作することができる。又同軸管・高周波加熱炉等に
於ける高周波電力吸収素子として使用する。また電子レ
ンジなどのマイクロ波加熱炉においては本質的に被加熱
物の内部から発熱させるために通常は被加熱物に焦目を
生じない。
The above ceramic composition can be used as a power absorption element for high power and
It was confirmed through physical property tests that it can be used stably up to about 1500 oo even in an oxidizing atmosphere, and has extremely good thermal shock resistance and thermal conductivity against sudden load changes. Therefore, if this material is installed in the waveguide 1 as shown in FIG. 1 as an element 4 having a shape as shown in FIG. 2, a good high-power pseudo load can be obtained. Furthermore, by attaching a large number of strip-shaped thin pieces to the waveguide wall and cooling them appropriately, it is possible to manufacture a high-power attenuator. It is also used as a high-frequency power absorption element in coaxial tubes, high-frequency heating furnaces, etc. Furthermore, in a microwave heating furnace such as a microwave oven, heat is generated essentially from within the object to be heated, so that the object to be heated does not usually have a focal point.

そのため対象によっては何らかの方法で焦目をつける必
要があり、このために焦自発熱体(加熱素子)としてフ
ェライト製の絹・格子・皿状等のものが使用されている
が、前述の如くフェライト製では耐熱性が劣るため、本
発明によるセラミック組成物を使用した方がよい。この
場合本発明によるセラミック組成物は誘電率も大きいの
でマイクロ波電力の集中が起り、これに接触する被加熱
物部分に良好に焦目を作ることができる。又フェライト
よりも高温に耐え、機械的にも堅牢であるために非常に
効果的である。上記に於て結合剤を3〜3の重量部に限
定した理由は、結合剤が3重量部以下の場合製品の機械
的強度が弱くなり、また3の重量部以上とすると、炭化
珪素混入率が低下するために高周波電力吸収素子として
の機能を低下させ、電気的性能が劣化するためである。
Therefore, depending on the object, it is necessary to focus in some way, and for this purpose, ferrite silk, lattice, plate shape, etc. are used as pyrostatic spontaneous heating elements (heating elements), but as mentioned above, ferrite Since the ceramic composition of the present invention has poor heat resistance, it is better to use the ceramic composition according to the present invention. In this case, since the ceramic composition according to the present invention has a large dielectric constant, the microwave power is concentrated, and a good focus can be created on the part of the object to be heated that comes into contact with the microwave power. Furthermore, it is extremely effective because it can withstand higher temperatures than ferrite and is mechanically robust. The reason for limiting the binder to 3 to 3 parts by weight in the above is that if the binder is less than 3 parts by weight, the mechanical strength of the product will be weakened, and if it is more than 3 parts by weight, the silicon carbide content will increase. This is because the function as a high-frequency power absorbing element is lowered, and the electrical performance is deteriorated.

また高温における炭化珪素の酸化防止剤として混入する
重金属粉末も結合剤添加量の0.5重量%以下では酸化
防止の効果が上らず、1の重量%以上とすると、結合剤
の融点を低下せしめることになり酸化防止の効果を弱め
、且、高周波電力吸収素子の高温特性を劣化させること
になる。
In addition, heavy metal powder mixed in as an antioxidant for silicon carbide at high temperatures will not be effective in preventing oxidation if it is less than 0.5% by weight of the binder, and if it is more than 1% by weight, it will lower the melting point of the binder. This weakens the oxidation prevention effect and deteriorates the high-temperature characteristics of the high-frequency power absorption element.

焼成温度の適温を1200〜1500o0の範囲として
いるのは、1200午0以下の場合本焼成品の機械的強
度が弱くなり、150000以上においては炭化珪素の
酸化が激しくなってSi02の発生が起り、高周波電力
吸収素子としての電機的性能が劣化するためである。
The reason why the suitable firing temperature is set in the range of 1200 to 1500o0 is that if the temperature is less than 1200o0, the mechanical strength of the fired product will be weak, and if it is more than 150000000, the oxidation of silicon carbide will become intense and Si02 will be generated. This is because the electrical performance as a high frequency power absorption element deteriorates.

実施例 表1の組成表中、組成Aの混合粉末体を約1400℃で
焼成したセラミック組成物を高周波電力吸収素子として
長さ500肋のWRJ−2形方形導波管内に装着して製
作した高電力導波管形擬似負荷は、強制空冷形としたと
き、5けVの高電力を印加した場合に、1.7〜2.6
0HZの周波数帯域に亘ってVSWR(電圧定在波比、
Volta袋SondingWaveRatio)1.
沙〆内の好成績が得られた。
In the composition table of Example Table 1, a ceramic composition obtained by firing the mixed powder of composition A at about 1400 ° C. was installed as a high frequency power absorption element in a WRJ-2 rectangular waveguide with a length of 500 ribs. When a high power waveguide type pseudo load is a forced air cooling type and a high power of 5 volts is applied, the output voltage is 1.7 to 2.6
VSWR (voltage standing wave ratio,
Volta bagSondingWaveRatio)1.
Good results were obtained in Sajinai.

又上記の擬似負荷に於て高周波電力吸収素子として表1
の他の組成B〜Gのセラミック組成物(何れも組成温度
約1400qo)を装着使用した場合も各場合何れも上
記組成Aのセラミック組成物を用いた場合と同様にVS
WRI.2以内の好成績が得られた。尚表1の各組成に
於て使用した主粉末たるSICは粒径約150ミクロン
以上のもの約6の重量%に、粒蓬約60ミクロン以下の
微粒のものを約4の重量%混合したものである。
In addition, Table 1 shows the high frequency power absorbing element in the above pseudo load.
When other ceramic compositions of compositions B to G (composition temperature of about 1400 qo) are installed and used, in each case, VS is the same as when using the ceramic composition of composition A above.
WRI. A good score of 2 or less was obtained. The main powder SIC used in each composition in Table 1 was a mixture of about 6% by weight of particles with a particle size of about 150 microns or more and about 4% by weight of fine particles with a particle size of about 60 microns or less. It is.

微粒のものを適当量混合した方が焼成セラミック組成物
肉質内空隙が満たされるために諸特性が向上する。その
適量は使用結合剤の種類や配合比などによって異なるの
で予備試験により求める。素子の高温度特性を重視する
場合には前述したように酸化防止剤として重金属酸化物
或は重金属の粉末を配合した結合剤粉末量の0.5〜1
の重量%添加すると高温における酸化を防止でき有効で
あるが、表1に例示した各組成A〜Gの素子の場合はそ
の必要度が弱く、酸化防止剤(Coの酸化物、Mnの酸
化物)の添加は徴量に止めてある。
When an appropriate amount of fine particles are mixed, the voids within the flesh of the fired ceramic composition are filled, thereby improving various properties. The appropriate amount varies depending on the type of binder used and the blending ratio, so it is determined through preliminary tests. When the high temperature characteristics of the device are important, as mentioned above, the amount of binder powder mixed with heavy metal oxide or heavy metal powder as an antioxidant may be 0.5 to 1.
It is effective to prevent oxidation at high temperatures by adding % by weight of oxidation inhibitors (Co oxide, Mn oxide, ) is added only in small quantities.

表1 組成表(重量孫)又上記組成A〜Gの素子は全て
結合剤粉末の主粉末10の重量部に対する配合割合を本
発明で特定した範囲3〜30重量部内の9.9〜15部
にしてあるから機械的強度は全て実用上支障のないもの
であった。
Table 1 Composition table (weight scale) Also, for all the elements of the above compositions A to G, the blending ratio of the binder powder to the main powder 10 parts by weight is 9.9 to 15 parts within the range of 3 to 30 parts by weight specified in the present invention. Therefore, the mechanical strength was sufficient for practical use.

前述したように結合剤の配合割合が3重量部以下では素
子の機械的強度が著しく不足する。又3の重量部以上の
過大な割合にすると電気的性能が低下する。導波管内に
素子を適切な形状で装荷した場合、組成A・C・Dの素
子の割合は1〜5昨日Zの範囲内で、導波管の使用周波
数全帯城に亘つてVSWRを1.2内に保ち得た。
As mentioned above, if the blending ratio of the binder is less than 3 parts by weight, the mechanical strength of the device will be significantly insufficient. Furthermore, if the proportion is too large, exceeding 3 parts by weight, the electrical performance will deteriorate. When the elements are loaded in the waveguide in an appropriate shape, the ratio of elements with compositions A, C, and D is within the range of 1 to 5, and the VSWR is 1 over the entire frequency band used by the waveguide. I was able to keep it within .2.

組成B及びEの素子の場合は若干電気的性能が落ち、周
波数帯は2〜3的日2でVSWRI.2以内であった。
組成F・Gの素子の場合は2〜2昨日2でVSWRI.
沙〆内であった。
In the case of elements with compositions B and E, the electrical performance is slightly degraded, and the frequency band is VSWRI. It was within 2.
In the case of an element with composition F/G, VSWRI.
It was in the sand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導波管形擬似負荷の一例の縦断平面図、第2図
はその導波管内に装着した擬似負荷用電力吸収体素子の
一例の斜面図。 1は方形導波管、2は放熱用ラジェータ、3は取付用フ
ランジ、4は高周波電力吸収素子。 第l図※Z図
FIG. 1 is a longitudinal sectional plan view of an example of a waveguide type pseudo load, and FIG. 2 is a perspective view of an example of a power absorber element for the pseudo load installed in the waveguide. 1 is a rectangular waveguide, 2 is a heat dissipation radiator, 3 is a mounting flange, and 4 is a high frequency power absorption element. Figure l *Figure Z

Claims (1)

【特許請求の範囲】 1 単一粒度または粒度配合を行つた炭化珪素粉末を主
体としこの粉末100重量部に対して、下記一般式(a
)・(b)・(c)で表わされる酸化物及びSiO_2
の各群から選択される一種または二種以上の物質を結合
剤として3〜30重量部添加してなる混合粉末体を12
00〜1500℃の温度で焼成したセラミツク組成物を
電力吸収体として用いた高周波電力吸収素子。 (a)R′_2O、(b)R″O、(c)R′″_2O
_3 ただし、R′はNa・K・Li、R″はCa・M
g・Ba・Sr、R′″はAl・Crの各元素から選択
される一員を表わす。 2 単一粒度または粒度配合を行つた炭化珪素粉末を主
体としこの粉末100重量部に対し、下記一般式(a)
・(b)・(c)で表わされる酸化物及びSiO_2の
各群から選択される一種又は二種以上の物質を結合剤と
して3〜30重量部添加し、更にこれに重金属酸化物或
は重金属の粉末を上記結合剤の添加量の0.5〜10重
量%の範囲で添加してなる混合粉末体を1200〜15
00℃の温度で焼成したセラミツク組成物を電力吸収体
として用いた高周波電力吸収素子。 (a)R′_2O、(b)R″O、(c)R′″_2O
_3 ただし、R′はNa・K・Li、R″はCa・M
g・Ba・Sr、R′″はAl・Crの各元素から選択
される一員を表わす。
[Scope of Claims] 1 Mainly composed of silicon carbide powder with a single particle size or a particle size combination, and based on 100 parts by weight of this powder, the following general formula (a
), (b), (c) and SiO_2
12. A mixed powder obtained by adding 3 to 30 parts by weight of one or more substances selected from each group as a binder.
A high frequency power absorption element using a ceramic composition fired at a temperature of 00 to 1500°C as a power absorber. (a) R′_2O, (b) R″O, (c) R′″_2O
_3 However, R' is Na, K, Li, R'' is Ca, M
g, Ba, Sr, and R'' represent a member selected from each element of Al and Cr. Formula (a)
・Add 3 to 30 parts by weight of one or more substances selected from the groups of oxides and SiO_2 represented by (b) and (c) as a binder, and further add heavy metal oxides or heavy metals to this. A mixed powder obtained by adding powder of 0.5 to 10% by weight of the amount of the binder added is
A high frequency power absorption element using a ceramic composition fired at a temperature of 0.000C as a power absorption body. (a) R′_2O, (b) R″O, (c) R′″_2O
_3 However, R' is Na, K, Li, R'' is Ca, M
g, Ba, Sr, and R''' represent members selected from each element of Al and Cr.
JP12195076A 1976-10-13 1976-10-13 High frequency power absorption element Expired JPS6034202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12195076A JPS6034202B2 (en) 1976-10-13 1976-10-13 High frequency power absorption element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12195076A JPS6034202B2 (en) 1976-10-13 1976-10-13 High frequency power absorption element

Publications (2)

Publication Number Publication Date
JPS5347999A JPS5347999A (en) 1978-04-28
JPS6034202B2 true JPS6034202B2 (en) 1985-08-07

Family

ID=14823922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12195076A Expired JPS6034202B2 (en) 1976-10-13 1976-10-13 High frequency power absorption element

Country Status (1)

Country Link
JP (1) JPS6034202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020814A1 (en) 2018-07-25 2020-01-30 Covestro Deutschland Ag Polymer blends containing thermoplastic and cross-linked reaction product from polyaddition or polycondensation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510785A (en) * 1978-07-10 1980-01-25 Sanyo Electric Co Radio wave absorber for high frequency heater
JP4690845B2 (en) * 2005-10-07 2011-06-01 株式会社豊田中央研究所 Microwave exothermic composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020814A1 (en) 2018-07-25 2020-01-30 Covestro Deutschland Ag Polymer blends containing thermoplastic and cross-linked reaction product from polyaddition or polycondensation

Also Published As

Publication number Publication date
JPS5347999A (en) 1978-04-28

Similar Documents

Publication Publication Date Title
JPS6034202B2 (en) High frequency power absorption element
US5640136A (en) Voltage-dependent nonlinear resistor
US6054403A (en) Semiconductive ceramic and semiconductive ceramic element using the same
US3671275A (en) Lossy dielectric structure for dissipating electrical microwave energy
JP5065624B2 (en) Current-voltage non-linear resistors and lightning arresters
JPWO2012056797A1 (en) Semiconductor ceramic and resistance element
US3765912A (en) MgO-SiC LOSSY DIELECTRIC FOR HIGH POWER ELECTRICAL MICROWAVE ENERGY
JPH0463526B2 (en)
JP2001006916A (en) Low loss oxide magnetic material
JP2530769B2 (en) Low loss oxide magnetic material for magnetic elements used in high frequency power supplies
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP3407725B2 (en) Oxide magnetic material, method of manufacturing the same, and multilayer chip inductor
JPH0218353A (en) Microwave resistor and production thereof
JPS6359241B2 (en)
JPH0147039B2 (en)
JPS6030076B2 (en) Sheathed heater and its manufacturing method
JPS644651B2 (en)
JPS6020923B2 (en) radio wave absorber
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPH07201531A (en) Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain
JP4395864B2 (en) Heating element for microwave firing furnace
JPH0633190B2 (en) Porous microwave resistor and method for manufacturing the same
JP4036267B2 (en) Method for manufacturing electromagnetic wave absorbing heating element
JP2015118869A (en) Lithium-based ferrite for microwave-absorption heating element and manufacturing method thereof, and lithium-based ferrite powder for microwave-absorption heating element, lithium-based ferrite sintered compact for microwave-absorption heating element, and microwave-absorption heating element
RU2619616C2 (en) Paste for aluminium nitride ceramics metallization