JPS603389A - Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof - Google Patents

Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof

Info

Publication number
JPS603389A
JPS603389A JP10965083A JP10965083A JPS603389A JP S603389 A JPS603389 A JP S603389A JP 10965083 A JP10965083 A JP 10965083A JP 10965083 A JP10965083 A JP 10965083A JP S603389 A JPS603389 A JP S603389A
Authority
JP
Japan
Prior art keywords
conduit
resin
insulator
underground resources
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10965083A
Other languages
Japanese (ja)
Other versions
JPH0433958B2 (en
Inventor
一郎 高橋
岡本 五郎
岡橋 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10965083A priority Critical patent/JPS603389A/en
Priority to CA000447530A priority patent/CA1205008A/en
Publication of JPS603389A publication Critical patent/JPS603389A/en
Priority to US07/006,346 priority patent/US4794049A/en
Publication of JPH0433958B2 publication Critical patent/JPH0433958B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、炭化水素地下資源電気加熱用電極支持導管
に関するものであり、とりわけ、電気加熱法により炭化
水素地下資源を採取する際に用いられる電気絶縁体を被
覆した電気加熱用電極支持導管およびその製法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode supporting conduit for electric heating of hydrocarbon underground resources, and in particular to an electric insulating conduit used when extracting hydrocarbon underground resources by an electric heating method. The present invention relates to a heating electrode support conduit and a method for manufacturing the same.

本a明細書において、炭化水素地下資源とは、メイルサ
ンドまたはクールサンドに含まれるビチューメン(Bi
tumen )のことをいい、以下特記しない限りオイ
ルサンドという。
In this specification, hydrocarbon underground resources refer to bitumen (Bi) contained in mail sand or cool sand.
tumen), and hereinafter referred to as oil sands unless otherwise specified.

近年、石油資源の高騰にともない、カナダ、ベネズエラ
等の地下にWMされでいるオイルサンド層からオイル分
を採取することが、本格的に行なわれつつある。このオ
イルサンド層は通常地下数100mの地中に厚さ約SO
m程度の層をなして存在するが、このオイルサンドは粘
度が高いため常温で汲み上げて採取することができず、
それゆえ従来は、オイルサンド層に加熱水蒸気を注入し
てオイル分の温度を上昇さぜ、その粘度を低下させて汲
み上げる方法が採用されていた。しかしながら、この方
法では効率がわるくコスト高となるため、より生産性の
高い方法として、下端部に電極部を支持した鋼管または
ステンレス鋼管でなるl対の導管を、その電極部がオイ
ルサンド層に位置するように、かつ約3θ〜2θθmの
間隔で地中に埋設し、両電極間に数洒〜数千ボルトの電
圧を印加し、ジュール熱によりオイルサンド層の温度を
上昇させ、オイルサンドの粘度を低下させて採油する方
法が提案された。
In recent years, with the rise in the price of petroleum resources, extraction of oil from underground WM oil sand layers in countries such as Canada and Venezuela is being carried out in earnest. This oil sand layer is usually located several hundred meters underground and has a thickness of about SO
This oil sand exists in a layer of about 100 ft thick, but due to its high viscosity, it cannot be pumped up and collected at room temperature.
Conventionally, therefore, a method has been adopted in which heated steam is injected into the oil sand layer to raise the temperature of the oil, lower its viscosity, and then pump the oil. However, this method is inefficient and expensive, so as a more productive method, a pair of steel or stainless steel pipes with electrodes supported at the lower ends are connected to the oil sand layer. It is buried underground at a distance of approximately 3θ to 2θθm, and a voltage of several volts to several thousand volts is applied between both electrodes to raise the temperature of the oil sand layer using Joule heat. A method of extracting oil by lowering its viscosity was proposed.

この後者の採油方法において、オイルサンド層の比抵抗
は上部地層の比抵抗よりも数倍高いため、導管の地層部
に埋設される部分を電気絶縁体で被覆し、電流が上部地
層を流れないようにしなければならない。もし、電気絶
縁体で被覆しないと電流は地J※部を流れ、オイルサン
ド層に埋設した電極間に電流が流れなくなる。したがっ
て、このような特殊な条件下での使用に耐えうる電気絶
縁体を被蔓した電極支持導管を開発する要求が急激に高
まってきている。
In this latter oil extraction method, the resistivity of the oil sand layer is several times higher than that of the upper stratum, so the part of the conduit buried in the stratum is coated with an electrical insulator to prevent current from flowing through the upper stratum. You must do so. If it is not covered with an electrical insulator, the current will flow through the ground J*, and no current will flow between the electrodes buried in the oil sand layer. Accordingly, there is a rapidly increasing need to develop electrode support conduits encased in electrical insulators that can withstand use under these special conditions.

かような電気絶縁体が具備していなければならない特性
としては、 (a) 常温はもちろんオイルサンド層のオイル粘度を
低下させつる約J O’0℃の温度においても数r〜数
千ボルトの耐電圧特性ならびにio”Ω−儂以上の体積
固有抵抗値を有すること、 (1)) オイルサンド層中に含まれている水がオイル
サンド層の粘度を低下させうる約300℃の温度に加熱
させるため、約300℃の熱水に耐えうろこと、および (C) 電、極を懸垂できる機械的強度ならびに導管の
下端に支持懸垂した電極を埋設穴を通してオイルサンド
層に埋設する際、穴壁に接触して破損を起こさない程度
の機械的衝撃強度を有すること。
The characteristics that such an electrical insulator must possess are as follows: (a) It can withstand voltages of several volts to several thousand volts not only at room temperature but also at temperatures of about 0°C, which can reduce the viscosity of the oil in the oil sand layer. (1) Water contained in the oil sand layer must be heated to a temperature of approximately 300°C that can reduce the viscosity of the oil sand layer. (C) Mechanical strength that allows the electrode to be suspended, and when the electrode supported and suspended at the lower end of the conduit is buried in the oil sand layer through the buried hole, the hole wall The material must have sufficient mechanical impact strength to avoid damage when it comes into contact with the material.

などが要求される〇 この発明は、以上の要求に応えるべくなされたもので、
耐電圧特性、耐熱性、機械的強度にすぐれた炭化水素地
下資源電気加熱用電極支持導管を提供するこ(!:ニラ
的とするものである0以下、この発明について詳しく述
べる。
etc. This invention was made to meet the above requirements.
An object of the present invention is to provide an electrode supporting conduit for electric heating of hydrocarbon underground resources that has excellent voltage resistance, heat resistance, and mechanical strength.

本発明者らは、前記(a)〜(e)のすべての特性を具
備する電気絶縁体を被覆した1u極支持導管を開発すべ
く鋭意研究を重ねた結果、金属導管の外周面lこ、ポリ
エーテルエーテルケトン樹脂のフィルムき、ポリエーテ
ルスルホン樹脂(以下、 PESと略称する)あるいは
ポリスルホン樹脂(以下、PSUと略称する)を含浸処
理したガラス繊維を交互に巻きつけ、その外周を金型を
用いて押さえ温度330−1130℃、圧力/θ〜λθ
OK9/crrL2の条件でポリエーテルエーテルケト
ン樹脂、およびPKs するいはPSU’i=加熱加圧
溶融して成形することにより、前記(a)〜(e)のす
べての特性を具備する電気絶縁体を被覆した電極支持導
管が得られることを見出し、この発明を完成するにいた
った。
The present inventors have conducted extensive research to develop a 1U pole support conduit coated with an electrical insulator that has all of the characteristics (a) to (e) above, and have found that the outer peripheral surface of the metal conduit is A film of polyether ether ketone resin is wrapped around the outer periphery of the glass fiber impregnated with polyether sulfone resin (hereinafter referred to as PES) or polysulfone resin (hereinafter referred to as PSU). Pressing temperature 330-1130℃, pressure/θ ~ λθ
An electrical insulator that has all the properties of (a) to (e) above by melting and molding polyetheretherketone resin and PKs or PSU'i under the conditions of OK9/crrL2. It was discovered that it was possible to obtain an electrode supporting conduit coated with the following, and this invention was completed.

この発明は、加熱加圧成形されたポリニーデルエーテル
ケトン樹脂フィルム層と、ポリエーテルスルホン樹脂ま
たはポリスルホン樹脂含浸ガラス繊維層との交番する複
数層からなる電気絶縁体を金属導管の外周面に備えるこ
とを特徴とする、炭化水素地下資源電気加熱用電極支持
導管に存する。
This invention provides an electrical insulator on the outer circumferential surface of a metal conduit, consisting of a plurality of alternating layers of polyneedleetherketone resin film layers molded under heat and pressure and glass fiber layers impregnated with polyethersulfone resin or polysulfone resin. An electrode support conduit for electric heating of hydrocarbon underground resources is characterized by the following.

この発明はまた、金属導管の外周面に、ポリエーテルエ
ーテルケトン樹脂フィルムと、ポリエーテルスルホン樹
脂丈たはポリスルポン樹脂で含浸処理されたガラス繊維
を交互に複数回巻きっ0、その外周を温度、yso〜ダ
50℃、圧力10〜λθθρ偏2で加熱加圧成形された
電気絶縁体を備えることを特徴とする、炭化水素地下資
源1d気加熱用電極支持導管の製法にも存する。
This invention also provides a method in which a polyetheretherketone resin film and glass fibers impregnated with polyethersulfone resin or polysulfone resin are alternately wrapped multiple times around the outer circumferential surface of the metal conduit, and the outer circumference is heated at a temperature of 0. There is also a method for manufacturing an electrode supporting conduit for heating an underground hydrocarbon resource 1d, characterized by comprising an electrical insulator that is heated and pressed at 50° C. and a pressure of 10 to λθθρ.

えは英国インベリアルケミカルインダストリーズ社によ
って開発された芳香族ポリエーテルエーテポリエーテル
エーテルケトン卵胛1は、厚さが0、θ/〜0.す01
1!、好ましくはo、q、2、〜・0.30vITAの
フィルムが用いられる。厚さがO0θ/鮎劣り小さいフ
ィルムの場合は、フィルムとフィルムの層間あるいはフ
ィルト、とガラス繊維の層間に隙間を生じないように巻
くためにかける張力によりフィルムが切断しでし才い、
フィルムを金属導管に巻きつけることができない。厚さ
がO,ダOwより厚いフィルトの場合は、フィルムの弾
性反発力が大きく、フィルムの層間を密着させて巻きつ
けることができないため、フィルムとフィルムの層間お
よびフィルムとカラス繊維の層間ζこ隙間を生じ、加熱
加圧成形時に、絶縁体内部に気泡をまきこみ、耐熱水性
および電気特性のすぐれた絶縁体を得ることができない
Aromatic polyether ether ketone shell 1 developed by British company Inverial Chemical Industries has a thickness of 0, θ/~0. Su01
1! , preferably a film of o, q, 2, to 0.30 v ITA is used. In the case of a small film with a thickness of O0θ/Ayu, the film can be easily cut by the tension applied to the winding so that there are no gaps between the layers of the film or between the layers of the filter and the glass fiber.
The film cannot be wrapped around metal conduits. If the thickness of the filter is thicker than O, DaOw, the elastic repulsion force of the film is large and it is not possible to wrap the film layers in close contact with each other. Gaps are formed, and air bubbles are incorporated into the insulator during hot-press molding, making it impossible to obtain an insulator with excellent hot water resistance and electrical properties.

ガラス繊維としては、クロス、テープ、ロービングおよ
びマットなど金属導管に巻回できる形状のものが用いら
れる。ガラス繊維に含浸処、I!T1するPESは次の
化学構造式で表わされ、 (商品名:ビクタレソクスP F、 S 、、英国工C
工社)また、PSUは次の化学構造式で表わされるご(
商品名ニューデルP/7θθ、米国Ucc社)(商品名
ニアステル31−θ、米国3M社)これらのPESある
いはP、S U :r、カラス繊維に含浸処理するため
、これらを溶剤に溶解し、ワニスとして用いる。前記ワ
ニスの溶剤としては、塩化メチレン、ジメチルポルムア
ミド、N−メチル−λ−ピロリドン、シクロヘキサノン
、トリクロルエチレン、/、、2−ジクロルエタン、ト
ルエン、キシレン、メチルエチルケトンおよびジオキサ
ンなどを適宜選択して用いる。
As the glass fiber, those having a shape that can be wound around a metal conduit, such as cloth, tape, roving, and mat, are used. Impregnated into glass fiber, I! PES with T1 is represented by the following chemical structural formula, (Product name: Victoresox PF, S, British Engineering C)
In addition, PSU is represented by the following chemical structural formula (
(Product name: Newdel P/7θθ, Ucc Co., USA) (Product name: Niastel 31-θ, 3M Co., USA) In order to impregnate glass fibers with these PES or P, S U:r, these are dissolved in a solvent and coated with varnish. used as As the solvent for the varnish, methylene chloride, dimethylpolamide, N-methyl-λ-pyrrolidone, cyclohexanone, trichloroethylene, 2-dichloroethane, toluene, xylene, methyl ethyl ketone, dioxane, etc. are appropriately selected and used.

金属導管さしては、耐食性にすぐれ、良好な電気伝導性
を有する鋼管またはステンレススチール管等が好適であ
る。導管の長さは地中のオイルサンド層の存在する深さ
に応じて定められるが、通常20θ〜乙θ0.程度が必
要である〇ついで、電極支持導管の製造工程について述
べる。まず、金属導管にポリエーテルエーテルケトン樹
脂のフィルムL1PルSあるいはPSUノ’7ニスを含
浸処理しPEBあるいはPBHの含有率が2θ〜50重
量%のガラス繊維を交互に巻きつけたのち、その外周面
を金型を用いてlo−20パμ♂ノ圧力で加圧するとと
もに、350〜1Iso℃の温度に加熱し、ポリエーテ
ルエーテルケトン樹脂と上記ppsあるいはPSU’E
溶融してカラス繊維と一体化することにより絶縁体を形
成することができる。加熱溶融温度が35θ℃より低い
場合は、ポリエーテルエーテルケトン樹脂の溶融粘度が
大きく、絶縁体内部の気泡がぬけず、耐熱水性および電
気特性のすぐれた絶縁体を得ることができない。加熱溶
融温度がqso℃より高い場合はポリエーテルエーテル
ケトン樹脂およびガラスR維に含浸したPEBあるいは
PSUの熱劣化がおこり、やはり耐熱水性、機械特性お
よび電気特性のすぐれた絶縁体を得ることができない。
As the metal conduit, it is preferable to use a steel pipe or a stainless steel pipe, which has excellent corrosion resistance and good electrical conductivity. The length of the conduit is determined depending on the depth of the underground oil sand layer, but is usually between 20θ and 00. Next, we will discuss the manufacturing process of the electrode support conduit. First, a metal conduit is impregnated with a polyetheretherketone resin film L1PLS or PSUno'7 varnish, and glass fibers with a PEB or PBH content of 2θ to 50% by weight are alternately wrapped around it. The surface is pressurized with a lo-20 μ♂ pressure using a mold and heated to a temperature of 350 to 1 Iso℃, and the polyether ether ketone resin and the above pps or PSU'E
An insulator can be formed by melting and integrating with glass fibers. When the heating melting temperature is lower than 35θ°C, the melt viscosity of the polyetheretherketone resin is high, and the bubbles inside the insulator cannot be removed, making it impossible to obtain an insulator with excellent hot water resistance and electrical properties. If the heating melting temperature is higher than qso°C, thermal deterioration of PEB or PSU impregnated with polyetheretherketone resin and glass R fiber will occur, and an insulator with excellent hot water resistance, mechanical properties, and electrical properties cannot be obtained. .

この発明によらないで、金属導管の外周面にポリエーテ
ルエーテルケトン樹脂のフィルムとガラス繊維を交互に
巻きつけ、その外周面を金型で押さえ、350−ダSO
℃の温度、lO〜200にム2の圧力で加熱加圧溶融さ
せてポリエーテルエーテルケトン樹脂とガラスR維の複
合材力)らなる絶縁体を形成させた場合は、ポリエーテ
ルエーテルケトン樹脂がガラス繊維の内部にまで含浸さ
れず、絶縁体内部に気泡を生じ、耐熱水性および電気特
性のすぐれた絶縁体を得ることができない。
Instead of this invention, polyetheretherketone resin films and glass fibers are alternately wound around the outer peripheral surface of a metal conduit, the outer peripheral surface is pressed with a mold, and 350-da SO
When an insulator consisting of a composite material of polyether ether ketone resin and glass R fibers is formed by melting under heating and pressure at a temperature of 10°C and a pressure of 200 m2, the polyether ether ketone resin The glass fibers are not impregnated into the interior of the insulator, causing bubbles inside the insulator, making it impossible to obtain an insulator with excellent hot water resistance and electrical properties.

また、カラス繊維に含浸される熱可塑性樹脂として、ポ
リアミド、ポリカーボネート、ポリフ゛チレンテレフタ
レート、 ABS、 As、ポリスチレン樹脂を用いた
場合は絶縁体が300″Cの熱水により劣化し、機械特
性および電気特性のすぐれた絶縁体を得ることができな
い。
Furthermore, when polyamide, polycarbonate, polyethylene terephthalate, ABS, As, or polystyrene resin is used as the thermoplastic resin impregnated into the glass fibers, the insulator deteriorates due to hot water at 300"C, resulting in poor mechanical and electrical properties. It is not possible to obtain an excellent insulator.

しかし、金属導管の外周面に、ポリエーテルエーテルケ
トン樹脂フィルムと、耐熱水性熱可塑性樹脂のpbsあ
るいはPSUを含浸したガラス繊維を交互に巻きつけ、
その外周面を金型でおさえ所定の温度と圧力で加熱加圧
成形したこの発明による絶縁体は、?3縁縁内部に気泡
がなく、3θo℃の熱水試験に耐えるもの、であり、オ
イルサンド層の電気加熱用t?T、極支持導管の電気絶
縁体として好適なものとなる。
However, polyetheretherketone resin films and glass fibers impregnated with PBS or PSU, which are hot water-resistant thermoplastic resins, are alternately wrapped around the outer circumferential surface of the metal conduit.
What is the insulator according to this invention whose outer peripheral surface is held in a mold and heated and press-molded at a predetermined temperature and pressure? 3.There are no air bubbles inside the rim, and it can withstand a hot water test at 3θo℃, and is used for electrical heating of oil sand layers. T is suitable as an electrical insulator for pole support conduits.

つぎにこの発明の電気絶縁体で被覆された電極支持導管
の実#U態様について図面を参照して述べる0 第1図は電気絶縁体で被色された電極支持導管の下端部
を示し、電極/を結合支持した金属導管ユの外周面に前
記の方法により形成された絶縁体3を設けてなるもので
ある。
Next, the actual #U embodiment of the electrode support conduit coated with an electrical insulator of the present invention will be described with reference to the drawings. Figure 1 shows the lower end of the electrode support conduit coated with an electrical insulator, and shows the electrode support conduit coated with an electrical insulator. The insulator 3 formed by the method described above is provided on the outer circumferential surface of a metal conduit unit which is coupled and supported.

才だ、一般に金属導管スの長さは約コθ0−AOOtn
が必要であるが、通常の鋼管やステンレス管などの7本
あたりの長さは!r −!; Omであるため、導管単
体を順次接合しながら挿入する。第2図は電気絶縁体で
被覆された金属導管の接合部を示し、P3縁体3aを被
層した金属導管2aと絶縁体3bを被覆した金属導管2
bを接合する場合、金属導管2aおよび、2bそれぞれ
の端部にテーパネジSを切り、カップリングILt7.
.用いて接合する。その場合、接合部からの漏電を防止
するために接合部、すなわちカップリングダの表面と金
属導管端部にわたって、さらに絶縁体3”c設け、被覆
する。
In general, the length of a metal conduit is approximately θ0−AOOtn.
is required, but what is the length of regular steel pipes, stainless steel pipes, etc.? r-! ; Since it is Om, insert the individual conduits while joining them one after another. FIG. 2 shows a joint of metal conduits covered with an electrical insulator, a metal conduit 2a coated with a P3 edge 3a and a metal conduit 2 coated with an insulator 3b.
When joining the metal conduits 2a and 2b, taper screws S are cut at the ends of each of the metal conduits 2a and 2b, and the couplings ILt7.
.. Use to join. In that case, an insulator 3''c is further provided and coated over the joint, that is, the surface of the coupler and the end of the metal conduit, in order to prevent electrical leakage from the joint.

つぎに、電気絶縁体3,3a、3bまたは3cの被僚方
法およびその性質について実施例および比較例のデータ
をあげてさらに詳細に説明するが、この発明はそれらの
実施例のみに限定されるものではない。
Next, the method and properties of the electrical insulator 3, 3a, 3b, or 3c will be explained in more detail with reference to data of Examples and Comparative Examples, but the present invention is limited only to these Examples. It's not a thing.

実施例 厚さ0.10m、@ 30 trrnのポリエーテルエ
ーテルケトン樹脂フィルムでなるテープを半重ね巻きで
7回、金属導管外周面上に巻回し、その上に厚さ0.2
0鮎、幅30vsでポリエーテルスルボン樹脂(p、h
s)の含有率が30重量%のガラス繊維テープを半重ね
巻きで1回巻回した。このポリエーテルエーテルケトン
樹脂フィルムのテープとポリエーテルスルホン樹脂(F
Es)の含有率が30重量%のガラス繊維テープの巻回
操作をさらにダ回、合計5回繰り返し行い、さらにその
上に厚さ。、10mm、幅30mのポリエーテルエーテ
ルケトン樹脂フィルムを半重ね巻きで7回巻回し、厚さ
3.2間のポリエーテルエーテルケトン樹脂々ポリエー
テルスルポン樹脂(PEA)を含浸したガラス繊維の複
合層を金属導管外周面に形成させた。ついでこの複合層
を巻回した金属4管をqつ割の金型内に入れて押さえ、
3gθ℃に加熱して、lθOK9/、L2の圧力を加え
、導管上にポリエーテルエーテルケトン(+?J脂さポ
リエーテルスルホン樹脂(PFiS)を含浸したガラス
繊維の複合絶縁体の被’9f形成さぜた。
Example A tape made of a polyetheretherketone resin film with a thickness of 0.10 m @ 30 trrn was wound 7 times in a half-overlap manner on the outer peripheral surface of a metal conduit, and then a tape with a thickness of 0.2
0 Ayu, width 30vs, polyether sulfone resin (p, h
A glass fiber tape having a content of s) of 30% by weight was wound once in a half-overlap manner. This polyetheretherketone resin film tape and polyethersulfone resin (F
The winding operation of the glass fiber tape containing 30% by weight of Es) was repeated a total of 5 times, and then the thickness was further increased. A composite of glass fiber impregnated with polyether ether ketone resin and polyether sulfone resin (PEA) is prepared by winding a polyether ether ketone resin film of 10 mm and width 30 m 7 times in a half-overlap manner to a thickness of 3.2 mm. A layer was formed on the outer circumferential surface of the metal conduit. Next, the four metal tubes wound with this composite layer were placed in a q-part mold and held down.
Heating to 3gθ℃ and applying a pressure of lθOK9/, L2, a composite insulator of glass fiber impregnated with polyetheretherketone (+?J fat polyethersulfone resin (PFiS)) was formed on the conduit. It was cold.

こうして得られた絶縁体の25℃における付着強度(α
偏2)と耐電圧値(Kソー及びその絶縁体を水中に入れ
300℃ζこ加熱し、300℃の熱水中でSOO時間の
熱水試験後、25℃で測定した付着強度と血j電圧値を
表の実施例/の欄に示す。
The adhesion strength (α
Bias 2) and withstand voltage value (K saw and its insulator were placed in water and heated to 300℃, and after a hot water test of SOO time in 300℃ hot water, adhesion strength and blood resistance measured at 25℃ The voltage values are shown in the Example column of the table.

実施例 2〜/2 複合絶縁層の構成および成形条件をそれぞれ表に示すも
のに代え、他は実施例1と同様にして実験を行い、金属
導管外周面に電気絶縁体を形成させ、得られた絶縁体の
特性を表に実施例ス〜12として示す。
Example 2~/2 An experiment was conducted in the same manner as in Example 1, except that the composition and molding conditions of the composite insulating layer were changed to those shown in the table, and an electrical insulator was formed on the outer peripheral surface of the metal conduit. The properties of the obtained insulators are shown in the table as Examples 1 to 12.

実施例 13 実施例1のガラス繊維テープの半重ね巻きに代え、ポリ
エーテルスルホン樹脂(FEB)含有率が30重量%で
太さがθ、ダO頭のガラスロービングを用い、ポリエー
テルエーテルケトン樹脂フィルムの上に平行巻きした他
は、実施例1と同様−こして実験を行い、導管外周面に
電気絶縁体を形成させ、得られた絶縁体の特性を表に実
施例13として示す0 比較例 / 、 9 複合絶縁層の構成または成形条件を代え、他は実施例1
と同様にして実験を行い、金属導管外周面にこの発明の
@回外の条件で電気絶縁体を形成させ、得られた絶縁体
の特性を表に比較例/−9として示す。
Example 13 Instead of half-wrapping the glass fiber tape in Example 1, a glass roving with a polyether sulfone resin (FEB) content of 30% by weight, a thickness of θ, and an O-head was used, and polyether ether ketone resin was used. An experiment was conducted in the same manner as in Example 1, except that the film was wound parallel to the film, and an electrical insulator was formed on the outer peripheral surface of the conduit, and the properties of the obtained insulator are shown in the table as Example 13.0 Comparison Example / 9 The composition or molding conditions of the composite insulating layer were changed, and the other conditions were as in Example 1.
An experiment was conducted in the same manner as above, and an electrical insulator was formed on the outer circumferential surface of a metal conduit under the @supination conditions of the present invention, and the characteristics of the obtained insulator are shown in the table as Comparative Example/-9.

/′/ 表に記載した結果から明らかなように、この発明によっ
て電気絶縁体を形成した電極支持導管は、その絶縁体が
電気的性質、機械的性質及び耐熱水性に優れており、電
気加熱法により炭化水素系地下資源を採取するために用
いる電極支持導管として好適なものが得られる効果があ
る。
/'/ As is clear from the results listed in the table, the electrode support conduit in which an electrical insulator is formed according to the present invention has excellent electrical properties, mechanical properties, and hot water resistance, and is suitable for electrical heating. This has the effect of providing a suitable electrode support conduit for use in extracting hydrocarbon underground resources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による電極支持導管下端部
の部分縦断面図、第2図は第1図の電極支持導管の接続
格造を示1°縦断面図である。 /・・電極、2..2a、、21)−金属2!ン、管1
.?、、?a。 30.3C・・電気絶J1体、l・・ノlツブリング、
S・・テーパネジ。 なお、各図中、同一符号は同−又は相当141(分を示
す。 代理人 大 岩 増 ガ1; 第1図 第2図
FIG. 1 is a partial vertical cross-sectional view of the lower end of an electrode support conduit according to an embodiment of the present invention, and FIG. 2 is a 1° vertical cross-sectional view showing the connecting structure of the electrode support conduit in FIG. /...electrode, 2. .. 2a,,21)-Metal 2! tube 1
.. ? ,,? a. 30.3C...Electric Zetsu J1 body, l...Nol Tsubring,
S...Taper screw. In addition, the same reference numerals in each figure indicate the same number or the equivalent 141 (minute).

Claims (1)

【特許請求の範囲】 (1)加熱加圧成形されたポリエーテルエーテルケトン
樹脂フィルム層と、ポリエーテルスルホン樹脂法たはポ
リスルホン樹脂含浸ガラス繊維層との交番する複数層か
らなる電気絶縁体を金属導管の外周面ζこ(Iifiえ
ることをl待機とする、炭化水素地下資源電気加熱用電
極支持導管。 (ス) ポリエーテルエーテルケトン樹脂フィルム層の
厚さがo、oi〜0.QOrrmの範囲である特許請求
の範囲第1項記載の炭化水素地下資源電気加熱用電極支
持導管。 (3)金属導管の外周面に、ポリエーテルエーテルケト
ン樹脂フィルムと、ポリエーテルスルホン樹脂法たはポ
リスルホン樹脂で含浸処理されたガラス繊維を交互に複
数回巻きつけ、その外周を温度3、りθ〜ダ5θ℃、圧
力lθ〜20θ5偏2で加熱加圧成形された電″気絶縁
体を備えることを特徴とする、炭化水素地下資源電気加
熱用電極支持導管の製法◇
[Scope of Claims] (1) An electrical insulator consisting of a plurality of alternating layers of polyetheretherketone resin film layers molded under heat and pressure and glass fiber layers impregnated with polyethersulfone resin or polysulfone resin. Electrode supporting conduit for electrical heating of hydrocarbon underground resources, with the outer circumferential surface of the conduit (Iifi) as a standby. (S) The thickness of the polyether ether ketone resin film layer is in the range of o, oi to 0. An electrode supporting conduit for electric heating of hydrocarbon underground resources according to claim 1. (3) A polyether ether ketone resin film and a polyether sulfone resin method or a polysulfone resin are applied to the outer peripheral surface of the metal conduit. It is characterized by having an electrical insulator formed by heating and press-molding impregnated glass fibers alternately wound multiple times at a temperature of 3 degrees, a temperature of θ to 5θ degrees Celsius, and a pressure of 1θ to 20θ5 degrees. A method for manufacturing an electrode support conduit for electric heating of hydrocarbon underground resources◇
JP10965083A 1983-02-16 1983-06-17 Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof Granted JPS603389A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10965083A JPS603389A (en) 1983-06-17 1983-06-17 Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof
CA000447530A CA1205008A (en) 1983-02-16 1984-02-15 Electrode supporting conduit tube for electrical heating of underground hydrocarbon resources
US07/006,346 US4794049A (en) 1983-02-16 1987-01-14 Electrode supporting conduit tube for electrical heating or underground hydrocarbon resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10965083A JPS603389A (en) 1983-06-17 1983-06-17 Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof

Publications (2)

Publication Number Publication Date
JPS603389A true JPS603389A (en) 1985-01-09
JPH0433958B2 JPH0433958B2 (en) 1992-06-04

Family

ID=14515660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10965083A Granted JPS603389A (en) 1983-02-16 1983-06-17 Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof

Country Status (1)

Country Link
JP (1) JPS603389A (en)

Also Published As

Publication number Publication date
JPH0433958B2 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
US2312652A (en) Cable joint and process
JPS603389A (en) Conduit for supporting electrode for electrical heating of hydrocarbon underground resources and production thereof
US4798769A (en) Electrode supporting conduit tube for electrical heating of underground hydrocarbon resources
JPS5864715A (en) Electrically insulatingly coated conduit of electrode unit for electrically heating hydrocarbon underground resources
US4794049A (en) Electrode supporting conduit tube for electrical heating or underground hydrocarbon resources
US3539409A (en) Method of making long lengths of epoxy resin insulated wire
CA1191744A (en) Conduct pipe covered with electrically insulating material
JPS59150898A (en) Electrode support conduit for electrical heating of underground hydrocarbon resources
JPH02182B2 (en)
JPS59199993A (en) Electrode apparatus for electrically heating hydrocarbon underground resources
CN113725804A (en) Cable, cable flexible joint, insulation recovery method, mold and detection method thereof
JPH0118318B2 (en)
JPS5952092A (en) Manufacture of electrode support conduit for electrically heating underground resource of hydrocarbon
EP1070906A1 (en) Deep sea insulation material
JPS6240515B2 (en)
Akatsuka et al. Delamination mechanism of high‐voltage coil insulators made from mica flakes and thermosetting epoxy resin
JPS59145896A (en) Electrode support conduit for electrical heating of underground hydrocarbon resources
JPS6210702B2 (en)
RU2320100C1 (en) Electric heater in form of a body of revolution
JPH04336235A (en) Fiber reinforced thermoplastic resin pipe
US1017759A (en) Electric conduit.
JPS6016696A (en) Electric heating electrode apparatus of underground hydrocarbon resources and production thereof
JPS5864714A (en) Conduit insulator for electrode unit of electrically heating hydrocarbon underground resources
JPS59161590A (en) Conduit of electrode device for electrically heating hydrocarbon underground resource
JPS61201980A (en) Manufacture of high-stiffness pipe