JPH04336235A - Fiber reinforced thermoplastic resin pipe - Google Patents

Fiber reinforced thermoplastic resin pipe

Info

Publication number
JPH04336235A
JPH04336235A JP3109206A JP10920691A JPH04336235A JP H04336235 A JPH04336235 A JP H04336235A JP 3109206 A JP3109206 A JP 3109206A JP 10920691 A JP10920691 A JP 10920691A JP H04336235 A JPH04336235 A JP H04336235A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
pipe
prepreg
core
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3109206A
Other languages
Japanese (ja)
Inventor
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP3109206A priority Critical patent/JPH04336235A/en
Publication of JPH04336235A publication Critical patent/JPH04336235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PURPOSE:To prevent the generation of electrolcorrosion in a metal joint when pipes are connected by the metal joint by forming an electric insulating layer composed of a thermoplastic resin to the inner surface and/or outer surface of the pipe. CONSTITUTION:A conductive prepreg containing a thermoplastic resin as a Matrix and an electric insulating prepreg composed of a thermoplastic resin are interposed between a thermally expansible core 3 and the cylindrical outer mold 1 arranged outside the core 3. The core 3 is thermally expanded to obtain a fiber reinforced thermoplastic resin pipe. As mentioned above, since an electric insulating layer composed of a thermoplastic resin is formed to the inner surface and/or outer surface of the pipe, a metal joint becomes the state coming into contact with the electric insulating layer when the metal joint is arranged to the end parts of the pipes to connect the pipes and, therefore, the metal joint can be prevented from being deteriorated by the generation of electrocorrosion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内面および外面のいず
れか又は両方に熱可塑性樹脂からなる電気絶縁層を有す
る繊維補強熱可塑性樹脂パイプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin pipe having an electrically insulating layer made of thermoplastic resin on either or both of its inner and outer surfaces.

【0002】0002

【従来の技術】一般に、熱可塑性樹脂であるポリエーテ
ルエーテルケトン(PEEK) に代表されるようない
わゆるエンジニアリングプラスチックスをマトリックス
とする連続繊維強化複合材料 (プリプレグ) は、靱
性、耐熱性、耐環境性がエポキシ樹脂等の熱硬化性樹脂
をマトリックスとする複合材料に比して格段に優れてい
る。そこで、近年、熱可塑性樹脂をマトリックスとする
プリプレグで繊維補強樹脂パイプをつくり、このパイプ
を例えば自転車の構造部材として用いる試みがなされる
ようになった。
[Prior Art] Continuous fiber-reinforced composite materials (prepregs) that have a matrix of so-called engineering plastics, such as polyetheretherketone (PEEK), which is a thermoplastic resin, generally have good toughness, heat resistance, and environmental resistance. The properties are much superior to composite materials whose matrix is thermosetting resin such as epoxy resin. Therefore, in recent years, attempts have been made to make fiber-reinforced resin pipes from prepreg having a thermoplastic resin matrix and use these pipes as structural members for bicycles, for example.

【0003】しかしながら、このパイプのプリプレグに
繊維として炭素繊維のような導電性繊維を用いた場合、
パイプ自体も導電性となるので、パイプ間を金属継手で
連結するとパイプの導電性に起因して金属継手が腐食す
るという電気腐食 (電食) の問題があった。
However, when conductive fibers such as carbon fibers are used in the prepreg of this pipe,
The pipes themselves are also conductive, so when pipes are connected using metal joints, there is a problem of electrical corrosion, where the metal joints corrode due to the conductivity of the pipes.

【0004】0004

【発明が解決しようとする課題】本発明は、上述した事
情にかんがみなされたものであって、金属継手に電食が
生じるのを防止した繊維補強熱可塑性樹脂パイプを提供
することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a fiber-reinforced thermoplastic resin pipe that prevents electrolytic corrosion from occurring in metal joints. .

【0005】[0005]

【課題を解決するための手段】本発明の繊維補強熱可塑
性樹脂パイプは、熱可塑性樹脂をマトリックスとする導
電性プリプレグと熱可塑性樹脂からなる電気絶縁性プリ
プレグとを熱膨張性の中子と該中子の外側に配された円
筒状外型との間に介在させ、該中子を熱膨張させてなる
内面および/又は外面に熱可塑性樹脂からなる電気絶縁
層を形成させたことを特徴とする。
[Means for Solving the Problems] The fiber-reinforced thermoplastic resin pipe of the present invention combines a conductive prepreg having a thermoplastic resin as a matrix and an electrically insulating prepreg made of a thermoplastic resin with a thermally expandable core. An electrically insulating layer made of a thermoplastic resin is formed on the inner and/or outer surface of the inner and/or outer surface formed by thermally expanding the inner core, which is interposed between the core and a cylindrical outer mold placed on the outside of the core. do.

【0006】このように本発明では、内面および/又は
外面に熱可塑性樹脂からなる電気絶縁層を形成させたた
めに、パイプの端部に金属継手を配してパイプ間を金属
継手で連結する場合に金属継手が電気絶縁層と接するこ
とになるので電食が生じて金属継手が劣化するのを防ぐ
ことが可能となる。以下、本発明の構成につき詳しく説
明する。
[0006] As described above, in the present invention, since the electrical insulating layer made of thermoplastic resin is formed on the inner and/or outer surfaces, it is possible to arrange metal joints at the ends of the pipes and connect the pipes with the metal joints. Since the metal joint comes into contact with the electrically insulating layer, it is possible to prevent the metal joint from deteriorating due to electrolytic corrosion. Hereinafter, the configuration of the present invention will be explained in detail.

【0007】■  従来、熱可塑性樹脂をマトリックス
とするプリプレグでパイプを製造する場合、例えば、帯
状のプリプレグシートを金属製等のマンドレルに巻き付
けることによるワインディング法によっていた。しかし
、熱可塑性樹脂をマトリックスとするプリプレグは、室
温においてタック性や可塑性がないばかりでなく、薄い
シート状の形態にしても繊維で補強された硬い板状物に
変わりはないため剛性が高い。このため、ワインディン
グ法でパイプをつくる場合、プリプレグシートの積層プ
ライ間を密着させることが難しく、積層プライ間にボイ
ドが形成され易いので得られるパイプの品質にバラツキ
が生じるという問題があった。
[0007] Conventionally, when manufacturing a pipe using prepreg having a thermoplastic resin as a matrix, a winding method was used, for example, by winding a strip-shaped prepreg sheet around a mandrel made of metal or the like. However, prepregs with thermoplastic resin as a matrix not only have no tackiness or plasticity at room temperature, but also have high rigidity because even when formed into a thin sheet, they are still hard plate-like materials reinforced with fibers. For this reason, when making a pipe by the winding method, it is difficult to bring the laminated plies of the prepreg sheet into close contact with each other, and voids are likely to be formed between the laminated plies, resulting in variations in the quality of the resulting pipe.

【0008】そこで、本発明では、このような問題を解
消して品質の安定化をはかるために、下記(a) の熱
可塑性樹脂をマトリックスとする導電性プリプレグと下
記(b) の熱可塑性樹脂からなる電気絶縁性プリプレ
グとを熱膨張性の中子と該中子の外側に配された円筒状
外型との間に介在させ、該中子を熱膨張させることによ
り繊維補強熱可塑性樹脂パイプを得ている。この繊維補
強熱可塑性樹脂パイプとしては、断面が円形で真っ直ぐ
な直管ばかりでなく、曲がり管、長手方向において部分
的に潰れた管、断面が偏平な管、先細り管などの異形管
、これらの組み合わされた形状のものであってもよい。
[0008] Therefore, in the present invention, in order to solve such problems and stabilize the quality, the following (a) conductive prepreg having a thermoplastic resin as a matrix and the following (b) thermoplastic resin are used. A fiber-reinforced thermoplastic resin pipe is produced by interposing an electrically insulating prepreg consisting of I am getting . This fiber-reinforced thermoplastic resin pipe includes not only straight pipes with a circular cross section, but also bent pipes, pipes that are partially collapsed in the longitudinal direction, pipes with flat cross sections, tapered pipes, and other irregularly shaped pipes. It may also be a combination of shapes.

【0009】(a) 熱可塑性樹脂をマトリックスとす
る導電性プリプレグ。 熱可塑性樹脂をマトリックスとする導電性プリプレグは
 (以下、プリプレグAという) は、具体的には、複
数本の連続繊維を引き揃えて一方向に帯状に配列した一
般にトウと呼ばれる繊維束にマトリックスの熱可塑性樹
脂を含浸させたもの(一方向引き揃えのプリプレグ (
UDプリプレグ)) などである。シート状又は短冊状
 (スリットテープ) をしている。このプリプレグを
構成する繊維束に用いる繊維としては、炭素繊維等の導
電性繊維である。
(a) Conductive prepreg having a thermoplastic resin as a matrix. Conductive prepreg with a thermoplastic resin as a matrix (hereinafter referred to as prepreg A) is made by forming a matrix into a fiber bundle generally called a tow, which is made up of multiple continuous fibers arranged in a band shape in one direction. Impregnated with thermoplastic resin (unidirectionally aligned prepreg (
UD prepreg)). It is in the form of a sheet or strip (slit tape). The fibers used in the fiber bundle constituting this prepreg are conductive fibers such as carbon fibers.

【0010】マトリックスの熱可塑性樹脂としては、特
に限定されるものではないが、例えば、ポリエーテルエ
ーテルケトン (PEEK)、ポリフェニレンサルファ
イド (PPS)、ポリエーテルイミド (PEI)、
ポリエーテルスルフォン (PES)、ポリアリレンケ
トン、ポリアリレンサルファイド、ポリアリルイミド、
ポリアミドイミド、ポリイミド、ポリイミドスルフォン
、ポリスルフォン、ポリエステル等の高融点又は高軟化
点の熱可塑性樹脂である。
The thermoplastic resin of the matrix is not particularly limited, but includes, for example, polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyetherimide (PEI),
Polyether sulfone (PES), polyarylene ketone, polyarylene sulfide, polyallylimide,
It is a thermoplastic resin with a high melting point or a high softening point, such as polyamideimide, polyimide, polyimide sulfone, polysulfone, and polyester.

【0011】(b) 熱可塑性樹脂からなる電気絶縁性
プリプレグ (以下、プリプレグBという) 。 熱可塑性樹脂単独又は熱可塑性樹脂とガラス繊維、アラ
ミド繊維 (芳香族ポリアミド繊維) 、炭化珪素繊維
、ボロン繊維、アルミナ繊維等の電気絶縁性の繊維から
なるプリプレグである。熱可塑性樹脂は、上記(a) 
のプリプレグAにおけると同様のものである。このプリ
プレグもまた、シート状又は短冊状をしている。
(b) Electrically insulating prepreg made of thermoplastic resin (hereinafter referred to as prepreg B). It is a prepreg made of a thermoplastic resin alone or a thermoplastic resin and electrically insulating fibers such as glass fiber, aramid fiber (aromatic polyamide fiber), silicon carbide fiber, boron fiber, alumina fiber, etc. The thermoplastic resin is the above (a)
This is similar to that in prepreg A. This prepreg is also in the form of a sheet or strip.

【0012】本発明の繊維補強熱可塑性樹脂パイプは下
記■のようにして得ることができる。 ■  まず、プリプレグAおよびプリプレグBを図1に
示すような円筒状外型1に横断面が中空形状となるよう
に装填する。この場合、短冊状のプリプレグAで編組し
た筒状のプリフォームの内面および/又は外面に、すな
わち内面および外面のいずれか又は両方に、短冊状のプ
リプレグBで編組した筒状のプリフォームを配置して複
合プリプレグとし、この複合プリプレグを円筒状外型1
内に挿入すればよい。また、シート状のプリプレグAお
よびBを重ね合わせて渦巻状に巻回して筒状の複合プリ
プレグとし、これを円筒状外型1内に挿入してもよい。 円筒状外型1は、成形時の加工温度に耐え得る耐熱性に
優れたものがよく、例えば銅パイプ等の金属パイプであ
る。
The fiber-reinforced thermoplastic resin pipe of the present invention can be obtained as described in (2) below. (2) First, prepreg A and prepreg B are loaded into a cylindrical outer mold 1 as shown in FIG. 1 so that the cross section thereof becomes hollow. In this case, a cylindrical preform braided with strips of prepreg B is placed on the inner and/or outer surface of the cylindrical preform braided with strips of prepreg A, that is, on either or both of the inner and outer surfaces. This composite prepreg is made into a cylindrical outer mold 1.
Just insert it inside. Alternatively, the sheet-like prepregs A and B may be stacked and spirally wound to form a cylindrical composite prepreg, and this may be inserted into the cylindrical outer mold 1. The cylindrical outer mold 1 is preferably one having excellent heat resistance that can withstand processing temperatures during molding, and is, for example, a metal pipe such as a copper pipe.

【0013】つぎに、図2に示すように複合プリプレグ
2の中空部に中子3を挿入する。中子3は、熱膨張性の
ものであって、具体的にはフッ素系樹脂からなる中実又
は中空のマンドレルである。フッ素系樹脂としては、ポ
リテトラフルオロエチレン (PTFE、商品名テフロ
ン) 、ポリ弗化アルコキシエチレン樹脂 (PFA)
、弗化エチレンプロピレンエーテル共重合体樹脂 (F
EP)等の熱膨張性が大で耐熱性の高い樹脂を例示する
ことができる。
Next, as shown in FIG. 2, the core 3 is inserted into the hollow part of the composite prepreg 2. The core 3 is thermally expandable, and specifically is a solid or hollow mandrel made of fluororesin. Examples of fluororesins include polytetrafluoroethylene (PTFE, trade name Teflon) and polyfluoroalkoxyethylene resin (PFA).
, fluorinated ethylene propylene ether copolymer resin (F
Examples include resins with high thermal expansion and high heat resistance such as EP).

【0014】ついで、複合プリプレグ2を構成する熱可
塑性樹脂の可塑化温度以上の温度に複合プリプレグ2お
よび中子3を加熱して複合プリプレグ2の中空部内で中
子3を熱膨張させ、熱可塑性樹脂を溶融させると共に中
子3の熱膨張による押圧力で複合プリプレグ2を型締め
する。この後、円筒状外型1と共に複合プリプレグ2お
よび中子3を冷却し、中子3を複合プリプレグ2の中空
部から引き抜くと共に円筒状外型1を除去することによ
り、図3に示すような形状の内面および/又は外面に熱
可塑性樹脂からなる電気絶縁層を形成させたパイプ4を
得ることができる。異形管を得るには、例えば、図2に
示すように複合プリプレグ2の中空部に中子3を挿入し
た後に全体を塑性変性させればよい。具体的には、例え
ば、円筒状外型1の長手方向において全体を湾曲させれ
ばよく、これにより曲がり管を得ることができる。この
ように中子3の熱膨張による押圧力で複合プリプレグ2
を型締めするために、積層プライ間にボイドが形成され
ないので品質の安定した繊維補強熱可塑性樹脂パイプが
得られる。
Next, the composite prepreg 2 and the core 3 are heated to a temperature higher than the plasticizing temperature of the thermoplastic resin constituting the composite prepreg 2, and the core 3 is thermally expanded within the hollow part of the composite prepreg 2. The composite prepreg 2 is mold-clamped by the pressing force caused by the thermal expansion of the core 3 while melting the resin. Thereafter, the composite prepreg 2 and the core 3 are cooled together with the cylindrical outer mold 1, and the core 3 is pulled out from the hollow part of the composite prepreg 2 and the cylindrical outer mold 1 is removed, thereby creating a structure as shown in FIG. A pipe 4 can be obtained in which an electrically insulating layer made of thermoplastic resin is formed on the inner and/or outer surface of the shape. In order to obtain a deformed tube, for example, as shown in FIG. 2, a core 3 may be inserted into a hollow portion of a composite prepreg 2, and then the entire prepreg may be subjected to plastic deformation. Specifically, for example, the entire cylindrical outer mold 1 may be curved in the longitudinal direction, thereby making it possible to obtain a bent pipe. In this way, the pressing force due to the thermal expansion of the core 3 causes the composite prepreg 2 to
Since no voids are formed between the laminated plies, a fiber-reinforced thermoplastic resin pipe with stable quality can be obtained.

【0015】■  図4に図3のパイプ4の長手方向断
面を示す。図4において5はパイプ4の肉厚部である。 図5および図6にそれぞれ図4の肉厚部5の一部を拡大
して示す。図5ではプリプレグAからなる導電性層6の
外側にプリプレグBからなる電気絶縁層7が形成されて
いる。図6では導電性層6の内側に電気絶縁層7が形成
されている。電気絶縁層7の形成は、図5に示すように
導電性層6の外側であっても図6に示すように内側であ
ってもいずれでもよく、また、内側および外側の両方で
あってもよい。
■ FIG. 4 shows a longitudinal section of the pipe 4 of FIG. 3. In FIG. 4, 5 is a thick wall portion of the pipe 4. 5 and 6 each show a part of the thick portion 5 of FIG. 4 in an enlarged manner. In FIG. 5, an electrically insulating layer 7 made of prepreg B is formed on the outside of a conductive layer 6 made of prepreg A. In FIG. 6, an electrically insulating layer 7 is formed inside the conductive layer 6. The electrical insulating layer 7 may be formed either on the outside of the conductive layer 6 as shown in FIG. 5 or on the inside as shown in FIG. 6, or on both the inside and outside. good.

【0016】図5に示す肉厚部5を有するパイプの端部
の外側に金属継手を嵌めた場合を図7に、図6に示す肉
厚部5を有するパイプの端部の内側に金属継手を嵌めた
場合を図8に示す。図7および図8に示すように、金属
継手8は電気絶縁層7に接しているので電食が生じるお
それがない。ここで、金属継手8は、鉄製又はアルミニ
ウム製のものである。
FIG. 7 shows a case in which a metal joint is fitted on the outside of the end of a pipe having a thick wall portion 5 as shown in FIG. Fig. 8 shows the case where it is fitted. As shown in FIGS. 7 and 8, since the metal joint 8 is in contact with the electrical insulating layer 7, there is no risk of electrolytic corrosion occurring. Here, the metal joint 8 is made of iron or aluminum.

【0017】電気絶縁層7は、導電性層6の内側および
外側の全面に亘って必ずしも形成されていなくともよく
、少くとも金属継手8と接する部分に形成されていれば
よい。
The electrically insulating layer 7 does not necessarily need to be formed over the entire inner and outer surfaces of the conductive layer 6, but may be formed at least in the portion that contacts the metal joint 8.

【0018】[0018]

【実施例】【Example】

実施例1 PEEKをマトリックスとし、炭素繊維を補強繊維とす
るプリプレグ (APC−2/AS4;ICI−Fib
erite社製、1プライ当りの厚さは 0.125m
m) を8プライおよび、同じくPEEKをマトリック
スとし、ガラス繊維を補強繊維とするプリプレグ (A
PC−2/D/S2Glass:ICI−Fiberi
te社製、1プライ当りの厚さは 0.125mm) 
を電気絶縁層として2プライ積層し、パイプ内面がガラ
スを含む2プライと成るようにして成形して繊維補強熱
可塑性樹脂パイプ(以下、 TPCパイプという) を
得た。成形は、先ずプリプレグを所定の積層構成となる
様に巻いてプリフォームとし、そのプリフォームを銅パ
イプからなる外型に入れ、プリフォームの中には、PT
FE製のマンドレルを挿入して、それらを380℃に熱
した後、冷水中に投じて固化して行った。
Example 1 Prepreg with PEEK as matrix and carbon fiber as reinforcing fiber (APC-2/AS4; ICI-Fib
Manufactured by erite, thickness per ply is 0.125m
m) with 8 plies and prepreg (A
PC-2/D/S2Glass:ICI-Fiberi
(manufactured by TE, thickness per ply is 0.125mm)
A fiber-reinforced thermoplastic resin pipe (hereinafter referred to as TPC pipe) was obtained by laminating two plies of the same as an electrical insulating layer and molding the pipe so that the inner surface of the pipe consisted of two plies containing glass. In the molding process, the prepreg is first rolled into a preform to form a predetermined laminated structure, then the preform is placed in an outer mold made of copper pipe, and inside the preform, PT
After inserting an FE mandrel and heating them to 380°C, they were poured into cold water and solidified.

【0019】このパイプは、諸元としては、外径が28
.6mm、肉厚が1.25mmであり、繊維配向がパイ
プの軸に対して±30°の所謂ハイブリッドパイプであ
る。このパイプの内面及び外面に銀ペーストを塗布して
、幅20mmのパイプの肉を隔てて向かい合う帯状電極
を形成し、その間の絶縁抵抗を 500V、DC1分法
にて測定した。
[0019] As for the specifications of this pipe, the outer diameter is 28
.. It is a so-called hybrid pipe with a diameter of 6 mm, a wall thickness of 1.25 mm, and a fiber orientation of ±30° with respect to the axis of the pipe. Silver paste was applied to the inner and outer surfaces of this pipe to form band-shaped electrodes facing each other across the 20 mm wide pipe, and the insulation resistance between them was measured at 500 V using the DC 1 minute method.

【0020】測定は、成形後に環境負荷を加える前、2
0℃の海水に24時間漬けて取り出した時、更に沸騰水
に24時間漬けて取り出した時の3回行った。結果は他
の例とともに一括して表1に示すが、殆ど絶縁性の低下
は見られず、充分な電気腐食への抵抗力が確認された。 比較例1 PEEKをマトリックスとし、ガラス繊維を補強繊維と
するプリプレグ (APC−2/D/S2Glass;
ICI−Fiberite社製、1プライ当りの厚さは
 0.125mm) を10プライ積層し、あとは実施
例1と同様にしてパイプを成形した。
[0020] Measurement was carried out after molding and before applying environmental load.
The test was carried out three times: when it was soaked in seawater at 0°C for 24 hours and then taken out, and again when it was soaked in boiling water for 24 hours and taken out. The results are shown in Table 1 together with other examples, and there was hardly any decrease in insulation properties, and sufficient resistance to electrical corrosion was confirmed. Comparative Example 1 Prepreg with PEEK as the matrix and glass fiber as the reinforcing fiber (APC-2/D/S2Glass;
10 plies (manufactured by ICI-Fiberite, each ply having a thickness of 0.125 mm) were laminated, and a pipe was then formed in the same manner as in Example 1.

【0021】寸法や積層角度・総プライ数などは、実施
例1と全く同じである。此のパイプは実施例1に較べて
比重が2.1と大きく (実施例1では比重1.6)、
然も、強度、剛性ともに実施例1よりも低いため、強度
及び剛性を比重で割った値すなわち比強度、比剛性が著
しく見劣りする。実施例1と同様に、本例でも電気絶縁
性の測定を行った。
The dimensions, lamination angle, total number of plies, etc. are exactly the same as in Example 1. This pipe has a higher specific gravity of 2.1 than that of Example 1 (specific gravity of 1.6 in Example 1),
However, since both the strength and rigidity are lower than those of Example 1, the values obtained by dividing the strength and rigidity by the specific gravity, that is, the specific strength and specific rigidity, are significantly inferior. As in Example 1, electrical insulation was measured in this example as well.

【0022】結果は他の例とともに一括して表1に示す
が、殆ど絶縁性の低下は見られず、充分な電気腐食への
抵抗力が確認された。本例では、実施例1に較べ、機械
的性質が劣り、電気絶縁性については同等の性能を示し
ている。 比較例2 実施例1のガラスを含む層の代わりに、他の層と同じA
PC−2/AS4を用いる他は、全く実施例1と同様に
して、全て炭素繊維補強のPLYで構成するTPCパイ
プ。結果は他の例とともに一括して表1に示すが、炭素
繊維同士の接触によると思われる導電性が、最初から認
められた。ただ、環境負荷による導電性の増加は認めら
れず、PEEKマトリックスが水等による変質を受けに
くい事を裏付ける結果となった。
The results are summarized in Table 1 together with other examples, and it was confirmed that there was almost no deterioration in insulation properties, and sufficient resistance to electrical corrosion was observed. In this example, the mechanical properties are inferior to those in Example 1, but the electrical insulation properties are equivalent. Comparative Example 2 Instead of the glass-containing layer of Example 1, the same A as the other layers was used.
A TPC pipe made entirely of carbon fiber-reinforced PLY in the same manner as in Example 1 except for using PC-2/AS4. The results are shown in Table 1 together with other examples, and conductivity was observed from the beginning, which was thought to be due to the contact between the carbon fibers. However, no increase in conductivity due to environmental loads was observed, confirming that the PEEK matrix is not susceptible to deterioration due to water, etc.

【0023】比較例3 比較例2と、マトリックスがエポキシ樹脂である点を除
いて同じ構成のパイプ。結果は他の例ととともに一括し
て表1に示すが、炭素繊維同士の接触によると思われる
導電性が、最初から認められた。然も、環境負荷による
導電性の著しい増加が認められ、エポキシ樹脂マトリッ
クスの水等によって変質を受けやすいことを改めて示す
結果となった。
Comparative Example 3 A pipe having the same structure as Comparative Example 2 except that the matrix was an epoxy resin. The results are shown in Table 1 together with other examples, and conductivity was observed from the beginning, which was thought to be due to the contact between the carbon fibers. However, a significant increase in electrical conductivity due to environmental loads was observed, demonstrating once again that the epoxy resin matrix is susceptible to deterioration due to water, etc.

【0024】比較例4 実施例1と、マトリックスがエポキシ樹脂である点を除
いて同じ構成のパイプ結果は他の例とともに一括して表
1に示すが、環境負荷を加える以前は実施例1と同様に
、優れた絶縁性を示したが、環境負荷後はかなりの劣化
を示し、とりわけ海水に漬けてから沸水に漬けた後は殆
ど絶縁性が失われ、全く電気腐食に抵抗を示せない状況
であった。
Comparative Example 4 The results of a pipe having the same structure as Example 1 except that the matrix was epoxy resin are shown in Table 1 together with other examples, but before adding the environmental load, Similarly, although it showed excellent insulating properties, it showed considerable deterioration after being exposed to environmental loads, and especially after being immersed in seawater and then boiling water, almost all insulating properties were lost, resulting in no resistance to electrical corrosion at all. Met.

【0025】実施例2 比較例2の最外層に厚さ 100μm のPEEKフィ
ルムを巻いて成形した TPCパイプ。パイプの最外層
は、補強層の炭素繊維が含まれない80〜120 μm
 のPEEKだけから成るスキン層が確認された。結果
は他の例とともに一括して表1に示すが、実施例1同様
に環境負荷以前も優れた絶縁性を示した。                          
         表  1            
    初  期      海水に漬けた後    
  沸騰水に漬けた後  実施例1        1
08             108       
            107   実施例2   
     108             108 
                  107   比
較例1        109           
  109                   1
08   比較例2        102     
        101              
     101   比較例3        10
2             10−1       
           10−3  比較例4    
    107             105  
                 101     
        単位は (×104Ω) 実施例3 実施例1で得られたのと同じパイプの内側にアルミニウ
ム製のリングを挿入し、エポキシ系接着剤で固定して接
着継手を作製した。尚、接着剤の厚みは 200μm 
と成る様調整してある。
Example 2 A TPC pipe was formed by wrapping a 100 μm thick PEEK film around the outermost layer of Comparative Example 2. The outermost layer of the pipe is 80 to 120 μm, which does not include the carbon fiber reinforcing layer.
A skin layer consisting only of PEEK was confirmed. The results are shown in Table 1 together with other examples, and as in Example 1, excellent insulation was exhibited even before environmental load.
Table 1
Initial stage After soaking in seawater
After soaking in boiling water Example 1 1
08 108
107 Example 2
108 108
107 Comparative Example 1 109
109 1
08 Comparative example 2 102
101
101 Comparative Example 3 10
2 10-1
10-3 Comparative example 4
107 105
101
The unit is (×104Ω) Example 3 An aluminum ring was inserted inside the same pipe as obtained in Example 1 and fixed with an epoxy adhesive to produce an adhesive joint. In addition, the thickness of the adhesive is 200μm
It has been adjusted so that

【0026】この継手を継手部分が上になる様に立てて
、塩水噴霧2000時間の負荷を加えた後、継手を壊し
てアルミニウムの腐食具合を調べた。結果は、外気に触
れる部分がうっすらと腐食して白化していた他は、殆ど
腐食が認められなかった。 比較例5 比較例4で用いたのと同じパイプの内側に、実施例3と
同様にして、接着継手を作製した。
[0026] This joint was erected with the joint part facing up, and after applying a load of salt water spray for 2000 hours, the joint was broken and the degree of corrosion of the aluminum was examined. As a result, almost no corrosion was observed except for a slight corrosion and whitening in the areas exposed to the outside air. Comparative Example 5 An adhesive joint was made inside the same pipe as used in Comparative Example 4 in the same manner as in Example 3.

【0027】実施例3と同様に塩水噴霧2000時間の
負荷を加えた後、継手を壊してアルミニウムの腐食具合
を調べた。結果は、外気に触れる部分も形状が判らぬ程
に白い腐食物が堆積し、接着面においては、1mm程度
の腐食による孔が多数生じている他接触面積の約30%
が腐食していた。
After applying a load of salt water spray for 2000 hours in the same manner as in Example 3, the joint was broken and the degree of corrosion of the aluminum was examined. As a result, white corrosive substances were deposited on the parts that were in contact with the outside air to the extent that the shape was unrecognizable, and on the adhesive surface, there were many holes due to corrosion of about 1 mm, which accounted for about 30% of the contact area.
was corroded.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、内
面および/又は外面に熱可塑性樹脂からなる電気絶縁層
を形成させたために、パイプ間を金属継手で連結する場
合に金属継手に電食が生ずるのを防止することができる
。また、本発明の TPCパイプは、強度・剛性面では
、全体が炭素繊維強化の TPCパイプに較べて殆ど遜
色なく、また、全体がガラス繊維強化の TPCパイプ
に較べても電気絶縁性の点からは実用上殆ど遜色がなく
て、高比強度・高比剛性および高い耐電食性を具備して
いる。
Effects of the Invention As explained above, according to the present invention, an electrical insulating layer made of thermoplastic resin is formed on the inner and/or outer surfaces, so that when connecting pipes with a metal joint, there is no electric charge in the metal joint. Eclipse can be prevented from occurring. In addition, the TPC pipe of the present invention is comparable in strength and rigidity to TPC pipes that are entirely reinforced with carbon fibers, and has better electrical insulation than TPC pipes that are entirely reinforced with glass fibers. It has almost no inferiority in practical terms, and has high specific strength, high specific rigidity, and high electrolytic corrosion resistance.

【0029】さらに、マトリックスがエポキシ樹脂等の
場合に較べれば、同一の構造であっても耐電食性におい
ては、環境負荷後のレベルが高く、劣化の少ない信頼性
の高いものと成っている。従って、本発明の TPCパ
イプは、屋外の腐食を受けやすい環境で使用される機会
の多い用途にたいし、商品寿命が長くなるなど信頼性の
高くなる利点がある。
Furthermore, compared to the case where the matrix is made of epoxy resin or the like, even if the structure is the same, the level of electrolytic corrosion resistance after environmental load is high, and the reliability is high with little deterioration. Therefore, the TPC pipe of the present invention has the advantage of increased reliability, such as a longer product life, for applications where it is often used outdoors in environments susceptible to corrosion.

【0030】[0030]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明で用いる円筒状外型を示す斜視説明図で
ある。
FIG. 1 is a perspective explanatory view showing a cylindrical outer mold used in the present invention.

【図2】円筒状外型と複合プリプレグと中子との位置関
係を示す斜視説明図である。
FIG. 2 is a perspective explanatory view showing the positional relationship among a cylindrical outer mold, a composite prepreg, and a core.

【図3】繊維補強熱可塑性樹脂パイプの一例を示す斜視
説明図である。
FIG. 3 is a perspective explanatory view showing an example of a fiber-reinforced thermoplastic resin pipe.

【図4】図3に示すパイプの長手方向断面図である。FIG. 4 is a longitudinal cross-sectional view of the pipe shown in FIG. 3;

【図5】図4の肉厚部の一部の拡大図である。FIG. 5 is an enlarged view of a portion of the thick portion of FIG. 4;

【図6】図4の肉厚部の一部の拡大図である。FIG. 6 is an enlarged view of a portion of the thick portion of FIG. 4;

【図7】図5に示す肉厚部を有するパイプの端部の外側
に金属継手を嵌めた様子を示す説明図である。
7 is an explanatory diagram showing a state in which a metal joint is fitted to the outside of the end of the pipe having the thick wall portion shown in FIG. 5; FIG.

【図8】図6に示す肉厚部を有するパイプの端部の内側
に金属継手を嵌めた様子を示す説明図である。
8 is an explanatory view showing a state in which a metal joint is fitted inside the end of the pipe having the thick wall portion shown in FIG. 6; FIG.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  熱可塑性樹脂をマトリックスとする導
電性プリプレグと熱可塑性樹脂からなる電気絶縁性プリ
プレグとを熱膨張性の中子と該中子の外側に配された円
筒状外型との間に介在させ、該中子を熱膨張させてなる
内面および/又は外面に熱可塑性樹脂からなる電気絶縁
層を形成させた繊維補強熱可塑性樹脂パイプ。
Claim 1: A conductive prepreg having a thermoplastic resin as a matrix and an electrically insulating prepreg made of a thermoplastic resin are placed between a thermally expandable core and a cylindrical outer mold disposed outside the core. A fiber-reinforced thermoplastic resin pipe in which an electrically insulating layer made of a thermoplastic resin is formed on the inner and/or outer surface formed by thermally expanding the core.
JP3109206A 1991-05-14 1991-05-14 Fiber reinforced thermoplastic resin pipe Pending JPH04336235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109206A JPH04336235A (en) 1991-05-14 1991-05-14 Fiber reinforced thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109206A JPH04336235A (en) 1991-05-14 1991-05-14 Fiber reinforced thermoplastic resin pipe

Publications (1)

Publication Number Publication Date
JPH04336235A true JPH04336235A (en) 1992-11-24

Family

ID=14504290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109206A Pending JPH04336235A (en) 1991-05-14 1991-05-14 Fiber reinforced thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPH04336235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174839A (en) * 2011-03-02 2011-09-07 王建军 Interlayer heat-insulating structural slab and manufacturing method thereof
JP2012111090A (en) * 2010-11-23 2012-06-14 Takagi Seiko Corp Structure for connecting cfrp body with metal body
JP2022543915A (en) * 2019-09-27 2022-10-14 スリーエム イノベイティブ プロパティズ カンパニー Push-in earplug and method of manufacturing a push-in earplug using a mandrel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111090A (en) * 2010-11-23 2012-06-14 Takagi Seiko Corp Structure for connecting cfrp body with metal body
CN102174839A (en) * 2011-03-02 2011-09-07 王建军 Interlayer heat-insulating structural slab and manufacturing method thereof
CN102174839B (en) * 2011-03-02 2016-03-23 王建军 Interlayer heat-insulating structural slab and manufacture method thereof
JP2022543915A (en) * 2019-09-27 2022-10-14 スリーエム イノベイティブ プロパティズ カンパニー Push-in earplug and method of manufacturing a push-in earplug using a mandrel
US11786408B2 (en) 2019-09-27 2023-10-17 3M Innovative Properties Company Push-in earplug and method of making the same using a mandrel

Similar Documents

Publication Publication Date Title
US6539171B2 (en) Flexible spirally shaped heating element
US7789620B2 (en) Heater assembly for deicing and/or anti-icing a component
US2783173A (en) Method of making laminated tubing
FI78575B (en) ISOLERBAND AV OSINTRAD, FINT STRUKTURERAD PLAST MED FLUORPOLYMERATBASIS.
US4193180A (en) Method of forming a heat exchanger
US20140183180A1 (en) Spiral Tube-Like Heater
PT1589270E (en) Multi-layer duct
US20150123760A1 (en) Method and design for stabilizing conductors in a coil winding
TW201940320A (en) Assembled wire, method of manufacturing assembled wire and segment coil
US20230250234A1 (en) Resin composition, self-fusing insulated electric wire and wire bundle
JPH04336235A (en) Fiber reinforced thermoplastic resin pipe
JP3143754B2 (en) Method for producing deformed tube made of fiber-reinforced thermoplastic resin
CN113053573A (en) High-temperature and high-pressure resistant submersible motor winding wire and manufacturing process thereof
JP4835410B2 (en) Superconducting coil
JP3822979B2 (en) Spiral tubular heater and manufacturing method thereof
US3539409A (en) Method of making long lengths of epoxy resin insulated wire
JP3822967B2 (en) Spiral tubular heater and manufacturing method thereof
JPH05116233A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH07241920A (en) Fiber-reinforced thermoplastic resin pipe and manufacture thereof
JPH05131555A (en) Molding die for fiber-reinforced thermoplastic resin hollow body
WO1990009272A1 (en) Production of hollow article of fiber reinforced thermoplastic resin
JP3693417B2 (en) Corrosion resistant wire
JPH115264A (en) Spiral tubular product and its manufacture
JPH0645137A (en) Coil for electromagnet and manufacturing method thereof
JPH11176562A (en) Spiral tubular heater and manufacture thereof