JP3822979B2 - Spiral tubular heater and manufacturing method thereof - Google Patents

Spiral tubular heater and manufacturing method thereof Download PDF

Info

Publication number
JP3822979B2
JP3822979B2 JP15302398A JP15302398A JP3822979B2 JP 3822979 B2 JP3822979 B2 JP 3822979B2 JP 15302398 A JP15302398 A JP 15302398A JP 15302398 A JP15302398 A JP 15302398A JP 3822979 B2 JP3822979 B2 JP 3822979B2
Authority
JP
Japan
Prior art keywords
tape
adhesive
resistant resin
resin film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15302398A
Other languages
Japanese (ja)
Other versions
JPH1174066A (en
Inventor
浩 井上
誠一郎 高林
忠雄 村松
卓二 高橋
研二 園山
勝勇 北形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP15302398A priority Critical patent/JP3822979B2/en
Publication of JPH1174066A publication Critical patent/JPH1174066A/en
Application granted granted Critical
Publication of JP3822979B2 publication Critical patent/JP3822979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Details Of Indoor Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、パイプとの密着性が良く、熱効率の良好なヒーターなどの用途に好適で、特に半導体製造装置や分析機器などのパイプの保温などの目的に使用できる形状保持性のスパイラル管状ヒーターおよびその製造方法に関する。
さらに詳しくは、この発明は、絶縁層の間に可とう性の導電性基材、例えばテープ状ヒーターのような平面状基材を挟んで一体として設けた形状保持性のスパイラル状物で、絶縁層として剛性が0.80kg以上のテープ状耐熱性樹脂フィルムを用いたスパイラル管状ヒーターに関する。
また、この発明は、接着剤を外側にしてスパイラル状に巻いた内側層となる接着剤付きのテープ状耐熱性樹脂フィルムと、その上に接着剤を内側にしてスパイラル状に巻いた外側層となる接着剤付きのテープ状耐熱性樹脂フィルムとの間に、可とう性の導電性基材を挟んで積層一体化して形成した形状保持性のスパイラル状物で、内側層および外側層のテープ状耐熱性樹脂フィルムの少なくとも一方の剛性が0.80kg以上であるスパイラル管状ヒーターに関する。
さらに、この発明は、スパイラル状に巻いた内側層となるテープ状耐熱性樹脂フィルムと外側層となるテープ状耐熱性樹脂フィルムとの間に、接着剤および可とう性の導電性基材を配置し、接着剤を硬化して積層一体化させるスパイラル管状ヒーターの製造方法に関する。
【0002】
【従来の技術】
従来、液体クロマトグラフ装置あるいは質量分析装置などの分析機器におけるパイプや医療用機器における薬液等の搬送路を構成するパイプへの搬送対象物質の凝固や付着を防止するためにパイプを加熱して保温することが必要であり、また内面に付着した物質を蒸発させて真空度を確保するためにパイプを加熱する場合がある。さらには、水道管の凍結防止のために水道管を保温・加熱する場合がある。
このような場合、従来は、リボンヒーターのような可とう性の面状発熱体を帯状にしてパイプに巻き付けることが一般的に行われている。
【0003】
【発明が解決しようとする課題】
しかし、上記のパイプの配管系は一般的に装置と装置との間の狭いところに設けられる場合が多く、パイプに面状発熱体を巻き付けて装着することが困難であり、しかも面状発熱体はパイプとの密着性が悪い。このため熱効率が低く、従って温度の制御も正確に行うことができない。
この発明の目的は、被加熱体に装着が容易で密着性が良く、長手方向の両端間に可とう性の導電性基材が一体として設けられているヒーターおよびその製造方法を提供することである。
【0004】
この発明は、スパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムA、中間層を形成する接着剤層および外側層を形成するテープ状耐熱性樹脂フィルムBの構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与える可とう性の導電性基材が一体として設けられており、テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBの少なくとも一方の剛性が0.80kg以上である、形状保持性のスパイラル管状ヒーターに関する。
また、この発明は、内側層となる接着剤付きのテープ状耐熱性樹脂フィルムAを接着剤を外側にして長尺の形状付与部材にスパイラル状に巻き付け、その上に可とう性の導電性基材を巻き付け、さらにその上に外側層となる接着剤付きのテープ状耐熱性樹脂フィルムBを接着剤を内側にしてスパイラル状に重ねて巻き付け、接着剤を硬化して積層一体化し、形成された積層体を長尺の形状付与部材から外して得られるスパイラル状物からなり、テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBの少なくとも一方の剛性が0.80kg以上である、形状保持性のスパイラル管状ヒーターに関する。
また、この発明は、上記のスパイラル管状ヒーターを製造する方法であって、内側層となる接着剤付きのテープ状耐熱性樹脂フィルムAを接着剤を外側にして長尺の形状付与部材にスパイラル状に巻き付け、その上に可とう性の導電性基材を巻き付け、さらにその上に外側層となる接着剤付きのテープ状耐熱性樹脂フィルムBを接着剤を内側にしてスパイラル状に重ねて巻き付け、被加熱体と同一外形状を有する長尺の形状付与部材に巻いた内側層となるテープ状耐熱性樹脂フィルムAと外側層となるテープ状耐熱性樹脂フィルムBとの間に、接着剤および長手方向の両端間に導電性を与える可とう性の導電性基材を配置し、フィルムの内側層と外側層とを重ねたまま接着剤を硬化して積層一体化させることを特徴とするスパイラル管状ヒーターの製造方法に関する。
【0005】
【発明の実施の形態】
以下に本発明の好ましい態様を列記する。
1)スパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムAおよび外側層を形成するテープ状耐熱性樹脂フィルムBがそれぞれ厚み35〜200μmである上記のスパイラル管状ヒーター。
2)可とう性の導電性基材がテープ状ヒーターのような平面状基材である上記のスパイラル管状ヒーター。
3)テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBがテープ状芳香族ポリイミドフィルムである上記のスパイラル管状ヒーター。
4)接着剤中の溶媒を乾燥除去して接着剤をBステージの段階で硬化させる上記のスパイラル管状ヒーターの製造方法。
【0006】
以下、この発明について、図面も参考にして、詳しく説明する。
図1は、この発明のスパイラル管状ヒーターの一例をスパイラル芯に平行に切断した一部断面図である。
図2は、この発明のスパイラル管状ヒーターの一例を示す斜視図である。
図3は、この発明のスパイラル管状ヒーターの一例の使用例を示す一部斜視図である。
図4は、この発明のスパイラル管状ヒーターを長手方向に押し拡げた状態を示す斜視図である。
【0007】
図1において、形状保持性のスパイラル管状ヒーター1は、スパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムAである2、中間層を形成する接着剤層3(内側層に接する接着剤層3aと外側層に接する接着剤層3bとからなる)および外側層を形成するテープ状耐熱性樹脂フィルムBである4の構成を有する積層体のいずれかの層の間、好適には接着剤層3aと接着剤層3bとの間に長手方向の両端間に導電性を与える可とう性の導電性基材5が一体として設けられている。
【0008】
図2において、形状保持性のスパイラル管状ヒーター1は、スパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムAである2、中間層を形成する接着剤層3および外側層を形成するテープ状耐熱性樹脂フィルムBである4の構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与える可とう性の導電性基材5が一体として設けられている。
【0009】
この発明の形状保持性のスパイラル管状ヒーター1は、図4に示すように、被加熱体10を挿入可能なまでに形状保持性のスパイラル管状ヒーター間を押し拡げて、図3に示すように、被加熱体10をスパイラル管状ヒーター間に挿入し、次いで、被加熱体10をその状態に維持したままでスパイラル管状ヒーター1を図の矢印の方向に回転し、この回転につれて被加熱体10がスパイラル管状ヒーター1内に取り込まれるので、管状ヒーター1の軸方向に回転させるだけで比較的簡単・迅速に被加熱体10にスパイラル管状ヒーター1を装着することができ、しかも装着した後はスパイラル管状ヒーター1は元の形状に復帰するから、被加熱体10に均等にかつ整然と装着することができる。従って、例えば被加熱体の両端部が大型の装置等に接続されて自由度がほとんどない場合でも、比較的容易にかつ迅速に被加熱体10に巻きつけることができる。また、スパイラル管状ヒーターの径を任意に設定できるため、自由度の少ない被加熱体だけでなく自由度の大きい被加熱体であっても、また径の大小にも制限を受けることなく、棒またはパイプ状であれば任意の被加熱体に適用できるのである。
【0010】
この発明のスパイラル管状ヒーターは、例えば、内側層となる接着剤付きのテープ状耐熱性樹脂フィルムAを接着剤を外側にして金属製、例えばステンレス等の耐熱性の棒またはパイプなどの長尺の形状付与部材にスパイラル状に巻き付け、その上に、好適にはそのほぼ中央に可とう性の導電性基材、好適には平面状基材を巻き付け、さらにその上に外側層となる接着剤付きのテープ状耐熱性樹脂フィルムBを接着剤を内側にしてスパイラル状に重ねて巻き付け、接着剤を硬化して積層一体化し、形成された積層体を棒またはパイプなどの長尺の形状付与部材から外して、スパイラル状に形状保持した成形品として得ることができる。
この発明のスパイラル管状ヒーターは、常温で、好適には200℃程度の高温に加熱した環境下においても、また被加熱体に装着した後もほとんどスパイラル物の外径などの形状や均等・整然さに変化がなく形状保持される。
【0011】
この発明におけるスパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムAとしては、ガラス転移温度あるいは融点が180℃以上である芳香族ポリイミドあるいは芳香族ポリアミドからなり、好適には厚みが35〜200μmで、かつ剛性(下記式に示す)が0.80kg以上、特に1kg以上であり、幅が3〜50mmのテープ状フィルムが使用される。剛性が低いと、図3に示すようにスパイラル管状ヒーターを回転させて被加熱体に装着することが困難であり、また形状付与部材の径よりスパイラル管状ヒーターの径が大きくなり、被加熱体に装着しても、密着性が悪く、被加熱体の加熱を良好に行えない。上記テープ状耐熱性樹脂フィルムAとしては、特に、50〜300℃での線膨張係数(CTE)が60×10-5cm/cm/℃(ppmで表示することもある)以下、その中でも特に3〜50×10-5cm/cm/℃であって、引張弾性率が200〜1400kg/mm2 である芳香族ポリイミドフィルムあるいは芳香族ポリアミドフィルムが好適に使用される。そのなかでも、吸水率が4%以下、特に3%以下である芳香族ポリイミドフィルムが好適に使用される。
剛性(kg)=(厚み(mm))2 ×弾性率(kg/mm2
【0012】
前記の芳香族ポリイミドは、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物とp−フェニレンジアミン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンとを重合、イミド化して得られる。特に、芳香族ポリイミドとして3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を芳香族テトラカルボン酸成分中15モル%以上使用して得られるものが耐熱性、低線膨張係数、低吸水率であることから好ましい。
前記の芳香族ポリアミドは、例えば2−クロロテレフタル酸クロリド、2,5−ジクロロテレフタル酸クロリドなどの芳香族酸クロリドと2−クロロ−p−フェリレンジアミン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンとの反応で得られる。
【0013】
この発明において中間層を形成する接着剤層は、耐熱性の熱可塑性接着剤、熱硬化性接着剤、好適には熱硬化性接着剤からなり、好適には積層した接着剤層の乾燥状態での厚みが2〜100μm、幅が3〜50mmである。
また、この接着剤層は接着剤付きのテープ状フィルムとして設けてもよくあるいはテープ状フィルムを巻きつけた後、接着剤を塗布あるいは接着剤シートを張り合わせて接着剤付きテープを設けてもよい。
【0014】
前記熱硬化性接着剤としては、エポキシ樹脂、NBR−フェノール系樹脂、フェノール−ブチラール系樹脂、エポキシ−NBR系樹脂、エポキシ−フェノール系樹脂、エポキシ−ナイロン系樹脂、エポキシ−ポリエステル系樹脂、エポキシ−アクリル系樹脂、アクリル系樹脂、ポリアミド−エポキシ−フェノール系樹脂、ポリイミド系樹脂、ポリイミドシロキサン−エポキシ樹脂などが挙げられる。前記熱可塑性接着剤としては、ポリイミド系、ポリイミドシロキサン系、ポリアミド系、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)やテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)などのフッ素系などが挙げられる。
前記の接着剤は、テープ状耐熱性樹脂フィルムAの片面とテープ状耐熱性樹脂フィルムBの片面とのそれぞれに設けることが好ましい。
【0015】
この発明における外側層を形成するテープ状耐熱性樹脂フィルムBとしては、ガラス転移温度あるいは融点が180℃以上である芳香族ポリイミド、芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂または芳香族ポリアミドイミドからなり、好適には厚みが35〜200μmで、かつ前記式で示す剛性が0.80kg以上、特に1kg以上であり、幅が3〜50mmのテープ状フィルムが使用される。剛性が低いと、図3に示すようにスパイラル管状ヒーターを回転させて被加熱体に装着することが困難であり、また形状付与部材の径よりスパイラル管状ヒーターの径が大きくなり、被加熱体に装着しても、密着性が悪く、被加熱体の加熱を良好に行えない。上記テープ状耐熱性樹脂フィルムBとしては、特に、50〜250℃での線膨張係数(CTE)が60×10-5cm/cm/℃(ppmで表示することもある)以下、特に3〜50×10-5cm/cm/℃であって、引張弾性率が200〜1400kg/mm2 である芳香族ポリイミドフィルムあるいは芳香族ポリアミドフィルムが好適に使用される。そのなかでも、吸水率が4%以下、特に3%以下である芳香族ポリイミドフィルムが好適に使用される。
【0016】
この発明における可とう性の導電性基材としては、スパイラル状物の長手方向の両端間に導電性の機能を与える金属箔、金属線、帯状の金属、好適には厚みが5〜100μm、幅が0.4〜40mm程度の銅箔、ニクロム箔などの金属箔が使用される。
この可とう性の導電性基材は1本のみを設けてもよく複数本を平行して設けてもよく、また、前記の接着剤によってテープ状耐熱性樹脂フィルムAのほぼ全面に設けてもよいが、ほぼ中央部に設けることが好ましい。
また、可とう性の導電性基材の表面をあらかじめ塗布法などによって耐熱性樹脂で薄く被覆したものを使用してもよい。
【0017】
前記の芳香族ポリイミドフィルムは、例えば以下のようにして製造することができる。まず前記芳香族テトラカルボン酸二無水物と芳香族ジアミンとをN,N−ジメチルアセトアミドやN−メチル−2−ピロリドンなどの有機極性溶媒中で重合して、ポリマーの対数粘度(測定温度:30℃、濃度:0.5g/100ml溶媒、溶媒:N−メチル−2−ピロリドン)が1〜5、ポリマー濃度が15〜25重量%であり、回転粘度(30℃)が500〜4500ポイズであるポリアミック酸(イミド化率:5%以下)溶液を得る。
次いで、好適にはこのポリアミック酸100重量部に対して0.01〜1重量部のリン化合物、例えば(ポリ)リン酸エステルおよび/またはリン酸エステルのアミン塩などの有機系リン化合物あるいは無機リン化合物および、好適にはさらにポリアミック酸100重量部に対して0.02〜6重量部のコロイダルシリカ、窒化珪素、タルク、酸化チタン、燐酸カルシウムなどの無機フィラー(好適には平均粒径0.005〜5μm、特に0.005〜2μm)を添加してポリアミック酸溶液組成物を調製する。
このポリアミック酸溶液組成物をそのままあるいは化学イミド化剤を加えて、平滑な表面を有する支持体表面に流延し、乾燥して固化フィルムを形成し、上記固化フィルムを支持体表面から剥離する。
次いで、固化フィルムの片面または両面にアミノシラン系、エポキシシラン系あるいはチタネート系の表面処理剤を含有する表面処理液を塗布した後、さらに乾燥することもできる。
前記のようにして得られた固化フィルムを、必要であれば両方向に延伸した後乾燥フィルムの幅方向の両端縁を把持した状態で、最高加熱温度:350〜500℃の範囲内の温度で加熱して乾燥およびイミド化して芳香族ポリイミドフィルムとして好適に製造することができる。
上記のようにして得られた芳香族ポリイミドフィルムを、好適には低張力下あるいは無張力下に200〜400℃程度の温度で加熱して応力緩和処理し、巻き取る。
この芳香族ポリイミドフィルムは、そのままあるいはコロナ放電処理、プラズマ処理、紫外線照射、グロー放電処理、火炎処理で表面処理を施した後、接着性を改良した芳香族ポリイミドフィルムとして使用することができる。
【0018】
前記の芳香族ポリアミドフィルムは、例えば以下のようにして製造することができる。芳香族酸クロリドと芳香族ジアミンとを有機極性溶媒中で溶液重合、あるいは水系媒体を使用する界面重合などで合成される。ポリマー溶液は単量体として酸クロリドとジアミンとを使用すると塩化水素が副生するためこれを中和するために水酸化カルシウムなどの無機の中和剤、またはエチレンオキサイドなどの有機の中和剤を添加する。
また、イソシアネートとカルボン酸との反応は非プロトン性有機極性溶媒中、触媒の存在下で行われる。
これらのポリマー溶液はそのままフィルムを形成する製膜原液にしてもよく、またポリマーを一度単離してから上記の溶媒に再溶解して製膜原液を調製してもよい。製膜原液には溶解助剤として無機塩例えば塩化カルシウム、塩化マグネシウムなどを添加してもよい。製膜原液中のポリマー濃度は2〜35重量%が好ましい。
【0019】
この発明の形状保持性のスパイラル管状ヒーターは、例えば、被加熱体と同一外形状を有する(形状は、断面円形または角形等任意の形状を有してよい。)長尺の形状付与部材、例えば耐熱性の棒またはパイプにスパイラル状に巻いた内側層となるテープ状耐熱性樹脂フィルムA、好適にはテープ状芳香族ポリイミドフィルムAと、それと同じ幅か少し幅の狭い外側層となるテープ状耐熱性樹脂フィルムB、好適にはテープ状芳香族ポリイミドフィルムBとの間に、接着剤および長手方向の両端間に導電性を与える可とう性の導電性基材、好適にはテープ状ヒーターのような平面状導電性基材を配置し、接着剤が熱硬化性接着剤の場合には溶媒を乾燥除去してBステージの段階で硬化温度以上の温度に加熱することによって、また接着剤が熱可塑性接着剤の場合には積層体に圧力を加えてガラス転移温度あるいは融点以上の温度に加熱し、冷却することによって、フィルムの内側層と外側層とを重ねたまま接着剤を硬化して積層一体化させた後、スパイラル状の積層体を長尺の形状付与部材から外して得られる。
【0020】
上記の方法は、好適には、例えば次のようにして実施できる。先ず、前記の内側層となる耐熱性樹脂フィルムAおよび外側層となる耐熱性樹脂フィルムBの片面に熱硬化性接着剤を塗布し、接着剤の乾燥厚みが2〜100μmであるフィルムを得る。このフィルムを3〜50mmにスリットし、熱硬化性接着剤付きのテープ状耐熱性樹脂フィルムAおよびBを製造する。このテープ状耐熱性樹脂フィルムAを接着剤面を外側にして直径が5〜50mmの円状の棒またはパイプにスパイラル状に巻きつけ、両端を固定する。次いで、その上に前記のテープよりも幅の狭い可とう性の導電性基材、好適にはテープ状ヒーターをスパイラル状に巻き付ける。次いで、さらにその上に接着剤同士が重なるように、外側層となる熱硬化性接着剤付きテープ状耐熱性樹脂フィルムBを巻き付け、テープ状耐熱性樹脂フィルムA/熱硬化性接着剤/テープ状ヒーター/熱硬化性接着剤/テープ状耐熱性樹脂フィルムBの構成にして、必要であれば周囲をテープ状のものあるいは線状のもので加圧・固定して、150〜400℃の範囲内の温度に加熱して接着剤を硬化して積層一体化し、冷却した後、形成された積層体を棒またはパイプから外し、スパイラル管状ヒーターを得ることができる。
接着剤付きのテープ状耐熱性樹脂フィルムA、テープ状ヒーター、接着剤付きのテープ状耐熱性樹脂フィルムBをそれぞれ巻いた3個のリールから同時にそれぞれのテープを供給し、棒またはパイプにスパイラル状に巻き付ける方法でも良い。
【0021】
この発明のスパイラル管状ヒーターはそのままで被加熱体に適用してもよく、あるいは適当な長さに切断して使用してもよく、さらに最外層に保温の目的で耐熱性発泡シート、耐熱性多孔シートで覆って使用してもよい。
また、形状が複雑な被加熱体の場合には、スパイラル管状ヒーターと平面状ヒーターとを組み合わせて使用して被加熱体を覆ってもよい。
【0022】
【実施例】
以下にこの発明の実施例を示す。
以下の各例において、ポリイミドフィルムの物性測定は以下の方法によって行った。
吸水率:ASTM D570−63に従って測定(23℃×24時間)
引張弾性率:ASTM D882−64Tに従って測定(MD)
線膨張係数(50〜250℃または50〜300℃):300℃で30分加熱して応力緩和したサンプルをTMA装置(引張りモード、2g荷重、試料長10mm、20℃/分)で測定
【0023】
参考例1
内容積100リットルの重合槽に、N,N−ジメチルアセトアミド54.6kgを加え、次いで、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物8.826kgとパラフェニレンジアミン3.243kgとを加え、30℃で10時間重合反応させてポリマーの対数粘度(測定温度:30℃、濃度:0.5g/100ミリリットル溶媒、溶媒:N,N−ジメチルアセトアミド)が1.60、ポリマー濃度が18重量%であるポリアミック酸(イミド化率:5%以下)溶液を得た。
このポリアミック酸溶液に、ポリアミック酸100重量部に対して0.1重量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩および0.5重量部の割合(固形分基準)で平均粒径0.08μmのコロイダルシリカを添加して均一に混合してポリアミック酸溶液組成物を得た。
このポリアミック酸溶液組成物の回転粘度は3000ポイズであった。このポリアミック酸溶液組成物をTダイ金型のスリットから連続的に、キャスティング・乾燥炉の平滑な支持体に押出して前記溶液の薄膜を形成し、130℃で10分間乾燥し、支持体から剥がし、幅方向を把持した状態でキュアー炉内でキュアー(200℃から450℃、約20分間)して、厚み75μmの芳香族ポリイミドフィルムを得た。このフィルムは、引張弾性率が750kg/mm2 、剛性は4.2kg、線膨張係数(50〜300℃)が16ppm、吸水率が1.5%であった。
【0024】
参考例2
パラフェニレンジアミンの代わりに4,4’−ジアミノジフェニルエーテル6.007kgを用い、N,N−ジメチルアセトアミドの使用量を67.6kgにした他は、参考例1と同様にして厚み75μmの芳香族ポリイミドフィルムを得た。
このフィルムは、引張弾性率が370kg/mm2 、剛性は2.1kg、線膨張係数(50〜250℃)が40ppm、吸水率が2.5%であった。
【0025】
参考例3
Tダイ金型のスリットを変えた他は、参考例1と同様にして厚み125μmの芳香族ポリイミドフィルムを得た。
このフィルムは、引張弾性率が690kg/mm2 、剛性は10.8kg、線膨張係数(50〜300℃)が18ppm、吸水率が1.6%であった。
【0026】
参考例4
フィルム厚みを50μmに変えた他は、参考例1と同様にして芳香族ポリイミドフィルムを得た。
このフィルムは、引張弾性率が380kg/mm2 、剛性は0.95kg、線膨張係数(50〜250℃)が38ppm、吸水率が2.5%であった。
【0027】
参考例5
フィルム厚みを25μmに変えた他は、参考例1と同様にして芳香族ポリイミドフィルムを得た。
このフィルムは、引張弾性率が380kg/mm2 、剛性は0.24kg、線膨張係数(50〜250℃)が38ppm、吸水率が2.5%であった。
【0028】
参考例6
パラフェニレンジアミンの代わりに4,4’−ジアミノフェニルエーテル5.005kgを用い、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物の代わりにピロメリト酸二無水物4.362kgを用いた他は、参考例1と同様にして厚み50μmの芳香族ポリイミドフィルムを得た。
このフィルムは、引張弾性率が300kg/mm2 、剛性は0.75kg、線膨張係数(50〜300℃)が41ppm、吸水率が2.7%であった。
【0029】
実施例1
参考例1で製造した75μmの芳香族ポリイミドフィルムにポリイミドシロキサン系の熱硬化性接着剤〔ポリイミドシロキサン、エポキシ樹脂、フェノール樹脂および硬化触媒からなる〕のテトラヒドロフラン溶液(固形分濃度:25重量%)を乾燥後の厚みが30μmになるように塗布し、100℃で乾燥して接着剤付きポリイミドフィルムを得た。このフィルムを10mm幅および9mm幅にスリットして2種類の接着剤付きテープを作製した。10mm幅のテープを接着剤層を外側にして外径10mmのステンレスの丸棒にスパイラル状に巻き付けた後、両端を固定し、その中央にニクロム製の幅2mm、厚み40μm、電気抵抗値14.7Ω/mのテープを巻き付けた後、両端を固定し、さらにその上に、9mm幅の接着剤付きテープの接着剤を内側にしてスパイラル状に巻き付け、両端を固定した。この積層体の上にステンレスワイヤーを隙間なく巻き付け、オーブン中で100℃で1時間、200℃で1時間、250℃で1時間加熱して接着剤を硬化させた後、放冷して積層体であるスパイラル状物をステンンスの丸棒から外し、長さ100cmのスパイラル管状ヒーターを得た。このスパイラル管状ヒーターは、スパイラル間に隙間がないものであった。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えて伸びを測定したところ48%であり、荷重をなくすともとの状態に戻り、また外径10mmの丸棒に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、このスパイラル管状ヒーターを220℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は10.3mm、熱処理後では10.4mmであった。
また、このスパイラル管状ヒーターを径10mmのステンレスパイプにスパイラル状に巻き、両端に50Vの電圧を加えた。パイプの温度は150℃で、均一にその温度に維持されていた。
【0030】
実施例2
参考例1で製造した芳香族ポリイミドフィルムに代えて参考例2で製造した75μmの芳香族ポリイミドフィルムを使用した他は実施例1と同様にしてスパイラル管状ヒーターを得た。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えた後荷重をなくすともとの状態に戻り、また外径10mmの丸棒にスパイラル状に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、このスパイラル管状ヒーターを220℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は10.3mm、熱処理後では10.2mmであった。
また、このスパイラル管状ヒーターを径10mmのステンレスパイプにスパイラル状に巻き、両端に50Vの電圧を加えた。パイプの温度は153℃で、均一にその温度に維持されていた。
【0031】
実施例3
6mmφのスレンレス棒を使用し、接着剤の乾燥後の厚みを20μmに変え、参考例2で製造した芳香族ポリイミドフィルムから得た6mm幅および5.5mm幅のテープを使用し、加熱条件を250℃で2時間、320℃で20分に変えた他は実施例1と同様に実施して、内径6mm、長さ100cmのスパイラル管状ヒーターを得た。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えた後、荷重をなくすともとの状態に戻り、また外径6mmのパイプにスパイラル状に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、6mmφの15Rで直角に曲げたパイプに同様にスパイラル状に巻きつけたところ均等に整然と装着することができた。
また、このスパイラル管状ヒーターを280℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は6.3mm、熱処理後では6.2mmであった。
【0032】
実施例4
内側層に参考例2で製造した芳香族ポリイミドフィルムから得た10mm幅のテープを使用し、外側層に参考例1で製造した芳香族ポリイミドフィルムから得た9mm幅のテープを使用した他は実施例3と同様に実施して、内径6mm、長さ100cmのスパイラル管状ヒーターを得た。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えた後、荷重をなくすともとの状態に戻り、また外径6mmのパイプにスパイラル状に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、このスパイラル管状ヒーターを220℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は5.9mm、熱処理後では6.1mmであった。
【0033】
実施例5
8mmφのスレンレス棒を使用し、接着剤の乾燥後の厚みを30μmに変え、参考例3で製造した芳香族ポリイミドフィルムから得た10mm幅のテープを使用し、加熱条件を250℃で2時間、320℃で30分に変えた他は実施例1と同様に実施して、内径8mm、長さ100cmのスパイラル管状ヒーターを得た。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えて伸びを測定したところ27%であり、荷重をなくすともとの状態に戻り、また外径8mmのパイプにスパイラル状に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、このスパイラル管状ヒーターを220℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は8.3mm、熱処理後では8.4mmであった。
【0034】
実施例6
内側層に参考例3で製造した芳香族ポリイミドフィルムから得た10mm幅のテープを使用し、外側層に参考例1で製造した芳香族ポリイミドフィルムから得た9mm幅のテープを使用した他は実施例5と同様に実施して、内径10mm、長さ100cmのスパイラル管状ヒーターを得た。
このスパイラル管状ヒーターは長尺方向に250gの荷重を加えて伸びを測定したところ40%であり、荷重をなくすともとの状態に戻り、また外径8mmのパイプにスパイラル状に巻き付けることが容易にできた。この際スパイラル管状ヒーターは均等に整然と装着することができた。
また、このスパイラル管状ヒーターを220℃の高温槽に入れ熱処理し、熱処理前後の外径を測定した。熱処理前は10.3mm、熱処理後では10.4mmであった。
【0035】
実施例7
内側層に参考例2で製造した芳香族ポリイミドフィルムから得た6mm幅のテープを使用し、外側層に参考例4で製造した芳香族ポリイミドフィルムから得た5.9mm幅のテープを使用し、外径9.5mmのステンレスパイプに巻き付けた他は実施例1と同様にして、長さ100cmのスパイラル管状ヒーターを得た。このスパイラル管状ヒーターの外径は9.7mmであり、スパイラル間に隙間がないものであった。このスパイラル管状ヒーターは、良好な巻き付け性能およびヒーター性能を示した。
【0036】
実施例8
参考例2で製造した芳香族ポリイミドフィルムに厚み25μmのFEPフィルムを貼り合わせたフィルムから6mm幅のテープをスリットし、これを使用した他は実施例1と同様にして、長さ100cmのスパイラル管状ヒーターを得た。このスパイラル管状ヒーターの外径は9.7mmであり、スパイラル間に隙間がないものであった。このスパイラル管状ヒーターは、良好な巻き付け性能およびヒーター性能を示した。
【0037】
比較例1
参考例5で製造した芳香族ポリイミドフィルムから得た6mm幅のテープを使用し、外径9.5mmのステンレスパイプに巻き付けた他は実施例1と同様にして、長さ100cmのスパイラル管状ヒーターを製造した。このスパイラル管状ヒーターの外径は10.4mmであり、スパイラル間に3.4mmの隙間があるものであった。このスパイラル管状ヒーターを外径9.5mmのステンレスパイプに図3に示すように巻き付けようとしたが、巻き付けることができなかった。さらに、外径9.5mmのステンレスパイプを上記スパイラル管状ヒーターの端部から中空内部に挿通することにより、上記スパイラル管状ヒーターを上記ステンレスパイプに装着し、ヒーターの両端に50Vの電圧を加えたが、上記ステンレスパイプとの密着が悪く、均一に加熱できなかった。
【0038】
比較例2
参考例6で製造した芳香族ポリイミドフィルムに厚み25μmのFEPフィルムを貼り合わせたフィルムから6mm幅のテープをスリットし、外径9.5mmのステンレスパイプに巻き付けた他は実施例1と同様にして、長さ100cmのスパイラル管状ヒーターを得た。このスパイラル管状ヒーターの外径は10.6mmであり、スパイラル間に2.5mmの隙間があるものであった。このスパイラル管状ヒーターを外径9.5mmのステンレスパイプに図3に示すように巻き付けようとしたが、巻き付けることができなかった。さらに、外径9.5mmのステンレスパイプを上記スパイラル管状ヒーターの端部から中空内部に挿通することにより、上記スパイラル管状ヒーターを上記ステンレスパイプに装着し、ヒーターの両端に50Vの電圧を加えたが、上記ステンレスパイプとの密着が悪く、均一に加熱できなかった。
【0039】
【発明の効果】
この発明は以上説明したように構成されているので、以下に記載のような効果を奏する。
この発明のスパイラル管状ヒーターは形状保持性を有し、パイプとの密着性が良く、熱効率が良好である。
また、被加熱体に容易にしかも均等に整然と装着することができる。
【0040】
この発明の製造方法によれば、任意の内径を有し、形状保持性および耐熱性の良好なスパイラル管状ヒーターを得ることができる。
【図面の簡単な説明】
【図1】図1は、この発明のスパイラル管状ヒーターの一例をスパイラル芯に平行に切断した一部断面図である。
【図2】図2は、この発明のスパイラル管状ヒーターの一例を示す斜視図である。
【図3】図3は、この発明のスパイラル管状ヒーターの一例の使用例を示す一部斜視図である。
【図4】図4は、この発明のスパイラル管状ヒーターを長手方向に押し拡げた状態を示す斜視図である。
【符号の説明】
1 スパイラル管状ヒーター
2 内側層を形成するテープ状耐熱性樹脂フィルムA
3 中間層を形成する接着剤層
3a 内側層に接する接着剤層
3b 外側層に接する接着剤層
4 外側層を形成するテープ状耐熱性樹脂フィルムB
5 導電性を付与する可とう性の導電性基材
10 被加熱体
[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for uses such as a heater having good adhesion to a pipe and good thermal efficiency, and in particular, a shape-retaining spiral tubular heater that can be used for heat insulation of a pipe of a semiconductor manufacturing apparatus or an analytical instrument, and the like It relates to the manufacturing method.
More specifically, the present invention relates to a shape-retaining spiral material provided integrally with a flexible conductive substrate, for example, a planar substrate such as a tape heater, between insulating layers. The present invention relates to a spiral tubular heater using a tape-like heat-resistant resin film having a rigidity of 0.80 kg or more as a layer.
The present invention also provides a tape-like heat-resistant resin film with an adhesive that becomes an inner layer wound spirally with an adhesive on the outside, and an outer layer wound spirally with an adhesive on the inner side. It is a shape-retaining spiral material formed by laminating and integrating a flexible conductive base material with a tape-like heat-resistant resin film with an adhesive. The present invention relates to a spiral tubular heater in which at least one of the heat resistant resin films has a rigidity of 0.80 kg or more.
Furthermore, this invention arrange | positions an adhesive agent and a flexible conductive base material between the tape-like heat resistant resin film used as the inner layer wound spirally, and the tape-like heat resistant resin film used as an outer layer. The present invention also relates to a method for manufacturing a spiral tubular heater in which an adhesive is cured and laminated and integrated.
[0002]
[Prior art]
Conventionally, in order to prevent solidification and adhesion of a substance to be transported to a pipe constituting a pipe for an analytical instrument such as a liquid chromatograph apparatus or a mass spectrometer or a chemical solution transport path for a medical instrument, the pipe is heated and kept warm. In some cases, the pipe is heated in order to evaporate the substance adhering to the inner surface and secure a degree of vacuum. Furthermore, the water pipe may be kept warm and heated to prevent the water pipe from freezing.
In such a case, conventionally, a flexible planar heating element such as a ribbon heater is generally formed in a belt shape and wound around a pipe.
[0003]
[Problems to be solved by the invention]
However, the piping system of the pipe is generally provided in a narrow space between devices, and it is difficult to wrap and attach a sheet heating element around the pipe. Has poor adhesion to pipes. For this reason, the thermal efficiency is low, and therefore the temperature cannot be accurately controlled.
An object of the present invention is to provide a heater that is easy to attach to an object to be heated, has good adhesion, and is provided with a flexible conductive substrate integrally between both ends in the longitudinal direction, and a method for manufacturing the same. is there.
[0004]
The present invention relates to any one of the laminates having the structure of the tape-shaped heat-resistant resin film A that forms the inner layer of the spiral-shaped material, the adhesive layer that forms the intermediate layer, and the tape-shaped heat-resistant resin film B that forms the outer layer. A flexible conductive base material that imparts conductivity between both ends in the longitudinal direction is integrally provided on the layer, and the rigidity of at least one of the tape-shaped heat-resistant resin film A and the tape-shaped heat-resistant resin film B is provided. The present invention relates to a shape-retaining spiral tubular heater having a weight of 0.80 kg or more.
In addition, the present invention provides a tape-like heat-resistant resin film A with an adhesive serving as an inner layer, spirally wound around a long shape-giving member with the adhesive on the outside, and a flexible conductive group thereon. A tape-like heat-resistant resin film B with an adhesive serving as an outer layer was further wound on the material in a spiral manner, and the adhesive was cured and laminated and integrated. Shape-holding comprising a spiral product obtained by removing the laminate from the long shape-giving member, and the rigidity of at least one of the tape-like heat-resistant resin film A and the tape-like heat-resistant resin film B is 0.80 kg or more The present invention relates to a spiral tubular heater.
In addition, this invention A method of manufacturing the above spiral tubular heater, wherein a tape-like heat-resistant resin film A with an adhesive serving as an inner layer is spirally wound around a long shape-giving member with the adhesive facing outside, A flexible conductive base material is wound, and a tape-like heat-resistant resin film B with an adhesive, which is an outer layer, is further wound in a spiral shape with the adhesive inside. Between the tape-shaped heat-resistant resin film A serving as the inner layer and the tape-shaped heat-resistant resin film B serving as the outer layer wound around a long shape-giving member having the same outer shape as the object to be heated, the adhesive and the longitudinal Spiral tube characterized in that a flexible conductive base material is provided between both ends in the direction, and the adhesive is cured and laminated and integrated with the inner layer and outer layer of the film being stacked. The present invention relates to a method for manufacturing a heater.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are listed below.
1) The spiral tubular heater as described above, wherein the tape-shaped heat-resistant resin film A forming the inner layer of the spiral-shaped material and the tape-shaped heat-resistant resin film B forming the outer layer each have a thickness of 35 to 200 μm.
2) The spiral tubular heater as described above, wherein the flexible conductive substrate is a planar substrate such as a tape heater.
3) Said spiral tubular heater whose tape-like heat-resistant resin film A and tape-like heat-resistant resin film B are tape-like aromatic polyimide films.
4) The method for producing the spiral tubular heater described above, wherein the solvent in the adhesive is removed by drying and the adhesive is cured at the stage of B stage.
[0006]
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial cross-sectional view of an example of the spiral tubular heater of the present invention cut in parallel to a spiral core.
FIG. 2 is a perspective view showing an example of the spiral tubular heater of the present invention.
FIG. 3 is a partial perspective view showing an example of use of an example of the spiral tubular heater of the present invention.
FIG. 4 is a perspective view showing a state in which the spiral tubular heater of the present invention is expanded in the longitudinal direction.
[0007]
In FIG. 1, a shape-retaining spiral tubular heater 1 is a tape-like heat-resistant resin film A that forms an inner layer of a spiral object 2, an adhesive layer 3 that forms an intermediate layer (an adhesive that contacts the inner layer) Layer 3a and an adhesive layer 3b in contact with the outer layer), and any one of the layers of the laminate having the configuration of 4 which is a tape-like heat-resistant resin film B forming the outer layer, preferably an adhesive A flexible conductive base material 5 that imparts conductivity between both ends in the longitudinal direction is integrally provided between the layer 3a and the adhesive layer 3b.
[0008]
In FIG. 2, a shape-retaining spiral tubular heater 1 is a tape-like heat-resistant resin film A that forms an inner layer of a spiral object 2, an adhesive layer 3 that forms an intermediate layer, and a tape that forms an outer layer A flexible conductive base material 5 that imparts conductivity between both ends in the longitudinal direction is integrally provided on any layer of the laminate having the configuration of 4 which is the heat-resistant resin film B.
[0009]
As shown in FIG. 4, the shape-retaining spiral tubular heater 1 according to the present invention pushes and expands between the shape-retaining spiral tubular heaters until the object to be heated 10 can be inserted. The object to be heated 10 is inserted between the spiral tubular heaters, and then the spiral tubular heater 1 is rotated in the direction of the arrow in the figure while maintaining the object to be heated 10 in this state. Since it is taken into the tubular heater 1, the spiral tubular heater 1 can be attached to the heated object 10 relatively easily and quickly by simply rotating the tubular heater 1 in the axial direction. Since 1 returns to its original shape, it can be mounted evenly and orderly on the heated object 10. Therefore, for example, even when both ends of the heated object are connected to a large apparatus or the like and there is almost no degree of freedom, the object can be wound around the heated object 10 relatively easily and quickly. In addition, since the diameter of the spiral tubular heater can be arbitrarily set, not only a heated object with a small degree of freedom but also a heated object with a large degree of freedom, and without being limited by the size of the rod or If it is a pipe shape, it can be applied to any object to be heated.
[0010]
The spiral tubular heater of the present invention is made of, for example, a tape-like heat-resistant resin film A with an adhesive serving as an inner layer made of metal, for example, a long heat-resistant rod or pipe made of stainless steel or the like. A shape-giving member is wound in a spiral shape, and a flexible conductive base material, preferably a planar base material is wound around the center of the shape-imparting member. The tape-like heat-resistant resin film B is spirally stacked with the adhesive inside, and the adhesive is cured and laminated and integrated, and the formed laminate is formed from a long shape-giving member such as a rod or pipe. It can be removed and obtained as a molded product having a spiral shape.
The spiral tubular heater of the present invention is almost uniform in shape and shape, such as the outer diameter of the spiral object, even in an environment heated to a high temperature of about 200 ° C., and even after being mounted on a heated object. The shape is maintained without any change.
[0011]
The tape-like heat-resistant resin film A forming the inner layer of the spiral object in this invention is made of an aromatic polyimide or an aromatic polyamide having a glass transition temperature or a melting point of 180 ° C. or more, and preferably has a thickness of 35 to 35. A tape-like film having a thickness of 200 μm, rigidity (shown in the following formula) of 0.80 kg or more, particularly 1 kg or more and a width of 3 to 50 mm is used. If the rigidity is low, as shown in FIG. 3, it is difficult to rotate the spiral tubular heater and attach it to the object to be heated, and the diameter of the spiral tubular heater becomes larger than the diameter of the shape imparting member. Even if it mounts | wears, adhesiveness is bad and cannot heat a to-be-heated body favorably. As the tape-like heat-resistant resin film A, the coefficient of linear expansion (CTE) at 50 to 300 ° C. is particularly 60 × 10. -Five cm / cm / ° C. (may be expressed in ppm) or less, especially 3 to 50 × 10 -Five cm / cm / ° C. and tensile elastic modulus of 200-1400 kg / mm 2 An aromatic polyimide film or an aromatic polyamide film is preferably used. Among them, an aromatic polyimide film having a water absorption rate of 4% or less, particularly 3% or less is preferably used.
Rigidity (kg) = (Thickness (mm)) 2 × Elastic modulus (kg / mm 2 )
[0012]
Examples of the aromatic polyimide include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. It is obtained by polymerizing and imidizing an aromatic tetracarboxylic dianhydride such as p-phenylenediamine and 4,4′-diaminodiphenyl ether. In particular, what is obtained by using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic polyimide in an amount of 15 mol% or more in the aromatic tetracarboxylic acid component is heat resistance, low linear expansion coefficient, It is preferable because of its low water absorption.
Examples of the aromatic polyamide include aromatic acid chlorides such as 2-chloroterephthalic acid chloride and 2,5-dichloroterephthalic acid chloride, and aromatics such as 2-chloro-p-ferylenediamine and 4,4′-diaminodiphenyl ether. Obtained by reaction with a group diamine.
[0013]
In this invention, the adhesive layer forming the intermediate layer is composed of a heat-resistant thermoplastic adhesive, a thermosetting adhesive, preferably a thermosetting adhesive, and preferably in a dry state of the laminated adhesive layers. Has a thickness of 2 to 100 μm and a width of 3 to 50 mm.
The adhesive layer may be provided as a tape-like film with an adhesive, or after winding the tape-like film, an adhesive may be applied or an adhesive sheet may be attached to provide an adhesive-attached tape.
[0014]
Examples of the thermosetting adhesive include epoxy resin, NBR-phenolic resin, phenol-butyral resin, epoxy-NBR resin, epoxy-phenolic resin, epoxy-nylon resin, epoxy-polyester resin, epoxy- Examples thereof include acrylic resins, acrylic resins, polyamide-epoxy-phenolic resins, polyimide resins, and polyimidesiloxane-epoxy resins. Examples of the thermoplastic adhesive include polyimide, polyimidesiloxane, polyamide, tetrafluoroethylene / hexafluoropropylene copolymer (FEP) and tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA). Examples thereof include fluorine-based ones.
The adhesive is preferably provided on each side of the tape-like heat-resistant resin film A and one side of the tape-like heat-resistant resin film B.
[0015]
The tape-like heat-resistant resin film B forming the outer layer in this invention is composed of aromatic polyimide, aromatic polyamide, aromatic polyester, fluororesin or aromatic polyamideimide having a glass transition temperature or melting point of 180 ° C. or higher. A tape-like film having a thickness of 35 to 200 μm, a rigidity of 0.80 kg or more, particularly 1 kg or more, and a width of 3 to 50 mm is preferably used. If the rigidity is low, as shown in FIG. 3, it is difficult to rotate the spiral tubular heater and attach it to the object to be heated, and the diameter of the spiral tubular heater becomes larger than the diameter of the shape imparting member. Even if it mounts | wears, adhesiveness is bad and cannot heat a to-be-heated body favorably. The tape-like heat resistant resin film B has a linear expansion coefficient (CTE) of 60 × 10 at 50 to 250 ° C. -Five cm / cm / ° C. (may be expressed in ppm) or less, especially 3 to 50 × 10 -Five cm / cm / ° C. and tensile elastic modulus of 200-1400 kg / mm 2 An aromatic polyimide film or an aromatic polyamide film is preferably used. Among them, an aromatic polyimide film having a water absorption rate of 4% or less, particularly 3% or less is preferably used.
[0016]
As a flexible conductive base material in this invention, a metal foil, a metal wire, a strip-like metal which gives a conductive function between both ends in the longitudinal direction of a spiral object, preferably a thickness of 5 to 100 μm, a width A metal foil such as copper foil or nichrome foil having a thickness of about 0.4 to 40 mm is used.
This flexible conductive substrate may be provided alone or in parallel, or may be provided on almost the entire surface of the tape-shaped heat-resistant resin film A by the adhesive. Although it is good, it is preferable to provide it at substantially the center.
In addition, a flexible conductive substrate whose surface is previously thinly coated with a heat resistant resin by a coating method or the like may be used.
[0017]
The aromatic polyimide film can be produced, for example, as follows. First, the aromatic tetracarboxylic dianhydride and an aromatic diamine are polymerized in an organic polar solvent such as N, N-dimethylacetamide or N-methyl-2-pyrrolidone, and the logarithmic viscosity of the polymer (measurement temperature: 30). C, concentration: 0.5 g / 100 ml solvent, solvent: N-methyl-2-pyrrolidone) is 1 to 5, polymer concentration is 15 to 25% by weight, and rotational viscosity (30 ° C.) is 500 to 4500 poise. A polyamic acid (imidation rate: 5% or less) solution is obtained.
Subsequently, 0.01 to 1 part by weight of a phosphorus compound, for example, (poly) phosphate ester and / or an amine salt of phosphate ester or inorganic phosphorus compound is preferably used with respect to 100 parts by weight of this polyamic acid. Compound, and preferably 0.02-6 parts by weight of colloidal silica, silicon nitride, talc, titanium oxide, calcium phosphate and the like (preferably having an average particle size of 0.005 based on 100 parts by weight of polyamic acid) ˜5 μm, especially 0.005 to 2 μm) is added to prepare a polyamic acid solution composition.
This polyamic acid solution composition is cast as it is or added with a chemical imidizing agent, and cast onto a support surface having a smooth surface, dried to form a solidified film, and the solidified film is peeled off from the surface of the support.
Next, after applying a surface treatment liquid containing an aminosilane-based, epoxysilane-based or titanate-based surface treatment agent to one or both sides of the solidified film, it may be further dried.
If necessary, the solidified film obtained as described above is stretched in both directions and then heated at a temperature within the range of 350 to 500 ° C. while holding both edges in the width direction of the dried film. Then, it can be suitably produced as an aromatic polyimide film by drying and imidization.
The aromatic polyimide film obtained as described above is preferably heated at a temperature of about 200 to 400 ° C. under low tension or no tension, and is subjected to stress relaxation treatment and wound.
This aromatic polyimide film can be used as an aromatic polyimide film with improved adhesiveness as it is or after being subjected to surface treatment by corona discharge treatment, plasma treatment, ultraviolet irradiation, glow discharge treatment or flame treatment.
[0018]
The aromatic polyamide film can be manufactured, for example, as follows. An aromatic acid chloride and an aromatic diamine are synthesized by solution polymerization in an organic polar solvent or by interfacial polymerization using an aqueous medium. When acid chloride and diamine are used as monomers in the polymer solution, hydrogen chloride is formed as a by-product, so an inorganic neutralizer such as calcium hydroxide or an organic neutralizer such as ethylene oxide is used to neutralize this. Add.
The reaction between isocyanate and carboxylic acid is carried out in an aprotic organic polar solvent in the presence of a catalyst.
These polymer solutions may be used as a film-forming stock solution for forming a film as it is, or a polymer-forming stock solution may be prepared by isolating the polymer once and then redissolving it in the above solvent. An inorganic salt such as calcium chloride or magnesium chloride may be added as a dissolution aid to the film-forming stock solution. The polymer concentration in the stock solution is preferably 2 to 35% by weight.
[0019]
The shape-retaining spiral tubular heater of the present invention has, for example, the same outer shape as the object to be heated (the shape may have an arbitrary shape such as a circular cross section or a square shape), for example, a long shape imparting member, for example Tape-shaped heat-resistant resin film A, which is an inner layer wound in a spiral shape on a heat-resistant rod or pipe, preferably tape-shaped aromatic polyimide film A, and tape-shaped, which is an outer layer of the same width or slightly narrower width Between the heat-resistant resin film B, preferably the tape-like aromatic polyimide film B, an adhesive and a flexible conductive substrate that imparts conductivity between both ends in the longitudinal direction, preferably a tape-like heater. If the adhesive is a thermosetting adhesive, the solvent is dried and removed and heated to a temperature higher than the curing temperature at the stage of B stage. heat In the case of a plastic adhesive, pressure is applied to the laminate to heat it to a temperature above the glass transition temperature or melting point, and then cool it down to cure and laminate the adhesive with the inner and outer layers of the film overlapped. After the integration, the spiral laminated body is obtained by removing it from the long shape imparting member.
[0020]
The above method can be preferably carried out, for example, as follows. First, a thermosetting adhesive is applied to one side of the heat-resistant resin film A serving as the inner layer and the heat-resistant resin film B serving as the outer layer to obtain a film having a dry thickness of 2 to 100 μm. This film is slit to 3 to 50 mm to produce tape-like heat-resistant resin films A and B with a thermosetting adhesive. This tape-like heat-resistant resin film A is wound spirally around a circular bar or pipe having a diameter of 5 to 50 mm with the adhesive surface facing outward, and both ends are fixed. Next, a flexible conductive substrate having a width smaller than that of the tape, preferably a tape heater, is wound on the tape. Next, a tape-like heat-resistant resin film B with a thermosetting adhesive, which is an outer layer, is wound so that the adhesives overlap with each other, and a tape-like heat-resistant resin film A / thermosetting adhesive / tape Heater / thermosetting adhesive / tape-like heat-resistant resin film B. If necessary, press and fix the surrounding area with tape or wire, within the range of 150-400 ° C. After the adhesive is cured by heating to the temperature of the above, laminated and integrated, and cooled, the formed laminate is removed from the rod or pipe, and a spiral tubular heater can be obtained.
Each tape is supplied simultaneously from three reels each wound with a tape-shaped heat-resistant resin film A with adhesive, a tape-shaped heater, and a tape-shaped heat-resistant resin film B with adhesive. It is also possible to wrap around.
[0021]
The spiral tubular heater of the present invention may be applied to a heated object as it is, or may be used after being cut to an appropriate length. Further, the outermost layer is provided with a heat-resistant foam sheet, a heat-resistant porous sheet for the purpose of keeping warm. It may be used by covering with a sheet.
Further, in the case of a heated object having a complicated shape, the heated object may be covered using a combination of a spiral tubular heater and a planar heater.
[0022]
【Example】
Examples of the present invention will be described below.
In each of the following examples, the physical properties of the polyimide film were measured by the following method.
Water absorption: measured according to ASTM D570-63 (23 ° C. × 24 hours)
Tensile modulus: measured according to ASTM D882-64T (MD)
Linear expansion coefficient (50 to 250 ° C. or 50 to 300 ° C.): A sample subjected to stress relaxation by heating at 300 ° C. for 30 minutes was measured with a TMA apparatus (tensile mode, 2 g load, sample length 10 mm, 20 ° C./min).
[0023]
Reference example 1
To a polymerization tank having an internal volume of 100 liters, 54.6 kg of N, N-dimethylacetamide was added, and then 8.826 kg of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3.243 kg of paraphenylenediamine. The polymer was subjected to a polymerization reaction at 30 ° C. for 10 hours, and the logarithmic viscosity of the polymer (measurement temperature: 30 ° C., concentration: 0.5 g / 100 ml solvent, solvent: N, N-dimethylacetamide) was 1.60, polymer concentration A polyamic acid (imidation rate: 5% or less) solution having a weight of 18% by weight was obtained.
In this polyamic acid solution, 0.1 parts by weight of monostearyl phosphate triethanolamine salt and 100 parts by weight of polyamic acid and 0.5 parts by weight (based on solid content) of an average particle size of 0.001. 08 μm colloidal silica was added and mixed uniformly to obtain a polyamic acid solution composition.
The rotational viscosity of this polyamic acid solution composition was 3000 poise. This polyamic acid solution composition is continuously extruded from the slit of the T-die mold onto a smooth support of a casting / drying furnace to form a thin film of the solution, dried at 130 ° C. for 10 minutes, and peeled off from the support Then, curing was performed in a curing furnace with the width direction held (from 200 ° C. to 450 ° C. for about 20 minutes) to obtain an aromatic polyimide film having a thickness of 75 μm. This film has a tensile modulus of 750 kg / mm. 2 The rigidity was 4.2 kg, the linear expansion coefficient (50 to 300 ° C.) was 16 ppm, and the water absorption was 1.5%.
[0024]
Reference example 2
Aromatic polyimide having a thickness of 75 μm as in Reference Example 1, except that 6.007 kg of 4,4′-diaminodiphenyl ether was used instead of paraphenylenediamine and the amount of N, N-dimethylacetamide used was 67.6 kg. A film was obtained.
This film has a tensile modulus of 370 kg / mm. 2 The rigidity was 2.1 kg, the linear expansion coefficient (50 to 250 ° C.) was 40 ppm, and the water absorption was 2.5%.
[0025]
Reference example 3
An aromatic polyimide film having a thickness of 125 μm was obtained in the same manner as in Reference Example 1 except that the slit of the T-die mold was changed.
This film has a tensile modulus of 690 kg / mm. 2 The rigidity was 10.8 kg, the linear expansion coefficient (50 to 300 ° C.) was 18 ppm, and the water absorption was 1.6%.
[0026]
Reference example 4
An aromatic polyimide film was obtained in the same manner as in Reference Example 1 except that the film thickness was changed to 50 μm.
This film has a tensile modulus of 380 kg / mm. 2 The rigidity was 0.95 kg, the linear expansion coefficient (50 to 250 ° C.) was 38 ppm, and the water absorption was 2.5%.
[0027]
Reference Example 5
An aromatic polyimide film was obtained in the same manner as in Reference Example 1 except that the film thickness was changed to 25 μm.
This film has a tensile modulus of 380 kg / mm. 2 The rigidity was 0.24 kg, the linear expansion coefficient (50 to 250 ° C.) was 38 ppm, and the water absorption was 2.5%.
[0028]
Reference Example 6
Instead of paraphenylenediamine, 5.005 kg of 4,4′-diaminophenyl ether was used, and 4.362 kg of pyromellitic dianhydride was used instead of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. In the same manner as in Reference Example 1, an aromatic polyimide film having a thickness of 50 μm was obtained.
This film has a tensile modulus of 300 kg / mm. 2 The rigidity was 0.75 kg, the linear expansion coefficient (50 to 300 ° C.) was 41 ppm, and the water absorption was 2.7%.
[0029]
Example 1
A tetrahydrofuran solution (solid content concentration: 25% by weight) of a polyimidesiloxane-based thermosetting adhesive [consisting of a polyimidesiloxane, an epoxy resin, a phenolic resin and a curing catalyst] is added to the 75 μm aromatic polyimide film produced in Reference Example 1. It apply | coated so that the thickness after drying might be set to 30 micrometers, and it dried at 100 degreeC, and obtained the polyimide film with an adhesive agent. This film was slit to 10 mm width and 9 mm width to produce two types of tapes with adhesive. A 10 mm wide tape was wound spirally around a stainless steel round bar with an outer diameter of 10 mm with the adhesive layer on the outside, and then fixed at both ends. Nichrome width 2 mm, thickness 40 μm, electrical resistance 14. After winding a 7 Ω / m tape, both ends were fixed, and further, a 9 mm width adhesive tape was wound inside in a spiral shape to fix both ends. A stainless steel wire is wound around the laminate without any gaps, and heated in an oven at 100 ° C. for 1 hour, 200 ° C. for 1 hour, and 250 ° C. for 1 hour to cure the adhesive, and then allowed to cool to laminate. Was removed from the stainless steel round bar to obtain a spiral tubular heater having a length of 100 cm. This spiral tubular heater had no gap between the spirals.
This spiral tubular heater had a load of 250 g in the longitudinal direction and the elongation measured was 48%. It returned to its original state when the load was removed, and could easily be wound around a round bar having an outer diameter of 10 mm. . At this time, the spiral tubular heater could be installed evenly and orderly.
Further, this spiral tubular heater was put in a high-temperature bath at 220 ° C. and heat-treated, and the outer diameter before and after heat treatment was measured. It was 10.3 mm before heat treatment and 10.4 mm after heat treatment.
Moreover, this spiral tubular heater was spirally wound around a stainless steel pipe having a diameter of 10 mm, and a voltage of 50 V was applied to both ends. The temperature of the pipe was 150 ° C., and the temperature was uniformly maintained.
[0030]
Example 2
A spiral tubular heater was obtained in the same manner as in Example 1, except that the 75 μm aromatic polyimide film produced in Reference Example 2 was used instead of the aromatic polyimide film produced in Reference Example 1.
This spiral tubular heater returned to its original state after applying a load of 250 g in the longitudinal direction, and was easily wound in a spiral shape on a round bar having an outer diameter of 10 mm. At this time, the spiral tubular heater could be installed evenly and orderly.
Further, this spiral tubular heater was put in a high-temperature bath at 220 ° C. and heat-treated, and the outer diameter before and after heat treatment was measured. It was 10.3 mm before heat treatment and 10.2 mm after heat treatment.
Moreover, this spiral tubular heater was spirally wound around a stainless steel pipe having a diameter of 10 mm, and a voltage of 50 V was applied to both ends. The temperature of the pipe was 153 ° C., and the temperature was uniformly maintained.
[0031]
Example 3
Using a 6 mmφ slenless rod, changing the thickness of the adhesive after drying to 20 μm, using 6 mm width and 5.5 mm width tapes obtained from the aromatic polyimide film produced in Reference Example 2, and heating conditions of 250 A spiral tubular heater having an inner diameter of 6 mm and a length of 100 cm was obtained in the same manner as in Example 1 except that the temperature was changed to 2 ° C. for 2 hours and 320 ° C. for 20 minutes.
This spiral tubular heater returned to its original state after applying a load of 250 g in the longitudinal direction, and was easily wound in a spiral shape around a pipe having an outer diameter of 6 mm. At this time, the spiral tubular heater could be installed evenly and orderly.
Moreover, when it was similarly spirally wound around a pipe bent at a right angle by 15 mm of 6 mmφ, it was possible to mount it uniformly and orderly.
Moreover, this spiral tubular heater was put into a high temperature bath at 280 ° C. and heat-treated, and the outer diameter before and after the heat treatment was measured. It was 6.3 mm before the heat treatment and 6.2 mm after the heat treatment.
[0032]
Example 4
Other than using the tape of 10mm width obtained from the aromatic polyimide film manufactured in Reference Example 2 for the inner layer and using the tape of 9mm width obtained from the aromatic polyimide film manufactured in Reference Example 1 for the outer layer In the same manner as in Example 3, a spiral tubular heater having an inner diameter of 6 mm and a length of 100 cm was obtained.
This spiral tubular heater returned to its original state after applying a load of 250 g in the longitudinal direction, and was easily wound in a spiral shape around a pipe having an outer diameter of 6 mm. At this time, the spiral tubular heater could be installed evenly and orderly.
Further, this spiral tubular heater was put in a high-temperature bath at 220 ° C. and heat-treated, and the outer diameter before and after the heat treatment was measured. It was 5.9 mm before the heat treatment and 6.1 mm after the heat treatment.
[0033]
Example 5
Using an 8 mmφ slender rod, changing the thickness of the adhesive after drying to 30 μm, using a 10 mm wide tape obtained from the aromatic polyimide film produced in Reference Example 3, and heating conditions at 250 ° C. for 2 hours. A spiral tubular heater having an inner diameter of 8 mm and a length of 100 cm was obtained except that the temperature was changed to 320 ° C. for 30 minutes.
This spiral tubular heater was 27% when measured by applying a load of 250 g in the longitudinal direction, and it returned to its original state when the load was removed, and it was easy to wrap around a pipe with an outer diameter of 8 mm in a spiral shape. did it. At this time, the spiral tubular heater could be installed evenly and orderly.
Further, this spiral tubular heater was put in a high-temperature bath at 220 ° C. and heat-treated, and the outer diameter before and after the heat treatment was measured. It was 8.3 mm before the heat treatment and 8.4 mm after the heat treatment.
[0034]
Example 6
Other than using the tape of 10mm width obtained from the aromatic polyimide film manufactured in Reference Example 3 for the inner layer and using the tape of 9mm width obtained from the aromatic polyimide film manufactured in Reference Example 1 for the outer layer In the same manner as in Example 5, a spiral tubular heater having an inner diameter of 10 mm and a length of 100 cm was obtained.
This spiral tubular heater has a length of 40% when measured by applying a load of 250 g in the longitudinal direction, and returns to its original state when the load is removed, and it can be easily wound around a pipe with an outer diameter of 8 mm in a spiral shape. did it. At this time, the spiral tubular heater could be installed evenly and orderly.
Further, this spiral tubular heater was put in a high-temperature bath at 220 ° C. and heat-treated, and the outer diameter before and after heat treatment was measured. It was 10.3 mm before heat treatment and 10.4 mm after heat treatment.
[0035]
Example 7
Using the 6 mm width tape obtained from the aromatic polyimide film produced in Reference Example 2 for the inner layer, and using the 5.9 mm width tape obtained from the aromatic polyimide film produced in Reference Example 4 for the outer layer, A spiral tubular heater having a length of 100 cm was obtained in the same manner as in Example 1 except that it was wound around a stainless steel pipe having an outer diameter of 9.5 mm. The outer diameter of this spiral tubular heater was 9.7 mm, and there was no gap between the spirals. This spiral tubular heater showed good winding performance and heater performance.
[0036]
Example 8
A tape having a length of 100 cm was formed in the same manner as in Example 1 except that a 6 mm wide tape was slit from a film obtained by laminating a 25 μm thick FEP film to the aromatic polyimide film produced in Reference Example 2. A heater was obtained. The outer diameter of this spiral tubular heater was 9.7 mm, and there was no gap between the spirals. This spiral tubular heater showed good winding performance and heater performance.
[0037]
Comparative Example 1
A spiral tubular heater having a length of 100 cm was prepared in the same manner as in Example 1 except that a 6 mm wide tape obtained from the aromatic polyimide film produced in Reference Example 5 was used and was wound around a stainless steel pipe having an outer diameter of 9.5 mm. Manufactured. The outer diameter of this spiral tubular heater was 10.4 mm, and there was a gap of 3.4 mm between the spirals. This spiral tubular heater was wound around a stainless steel pipe having an outer diameter of 9.5 mm as shown in FIG. 3, but could not be wound. Furthermore, a stainless steel pipe having an outer diameter of 9.5 mm was inserted into the hollow interior from the end of the spiral tubular heater so that the spiral tubular heater was attached to the stainless steel pipe, and a voltage of 50 V was applied to both ends of the heater. The adhesion with the stainless steel pipe was poor and could not be heated uniformly.
[0038]
Comparative Example 2
A 6 mm wide tape was slit from a film obtained by laminating an FEP film having a thickness of 25 μm on the aromatic polyimide film produced in Reference Example 6 and wound around a stainless steel pipe having an outer diameter of 9.5 mm. A spiral tubular heater having a length of 100 cm was obtained. The outer diameter of this spiral tubular heater was 10.6 mm, and there was a gap of 2.5 mm between the spirals. The spiral tubular heater was wound around a stainless steel pipe having an outer diameter of 9.5 mm as shown in FIG. 3, but could not be wound. Further, a stainless steel pipe having an outer diameter of 9.5 mm was inserted into the hollow interior from the end of the spiral tubular heater so that the spiral tubular heater was attached to the stainless steel pipe, and a voltage of 50 V was applied to both ends of the heater. The adhesion with the stainless steel pipe was poor and could not be heated uniformly.
[0039]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
The spiral tubular heater of this invention has shape retention, good adhesion to the pipe, and good thermal efficiency.
Further, it can be easily and evenly mounted on the object to be heated.
[0040]
According to the manufacturing method of the present invention, a spiral tubular heater having an arbitrary inner diameter and good shape retention and heat resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of an example of a spiral tubular heater of the present invention cut in parallel to a spiral core.
FIG. 2 is a perspective view showing an example of a spiral tubular heater according to the present invention.
FIG. 3 is a partial perspective view showing an example of use of an example of a spiral tubular heater of the present invention.
FIG. 4 is a perspective view showing a state in which the spiral tubular heater of the present invention is expanded in the longitudinal direction.
[Explanation of symbols]
1 Spiral tubular heater
2 Tape-shaped heat-resistant resin film A that forms the inner layer
3 Adhesive layer forming the intermediate layer
3a Adhesive layer in contact with inner layer
3b Adhesive layer in contact with outer layer
4 Tape-like heat-resistant resin film B that forms the outer layer
5 Flexible conductive base material that imparts electrical conductivity
10 Object to be heated

Claims (7)

スパイラル状物の内側層を形成するテープ状耐熱性樹脂フィルムA、中間層を形成する接着剤層および外側層を形成するテープ状耐熱性樹脂フィルムBの構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与える可とう性の導電性基材が一体として設けられており、テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBの少なくとも一方の剛性が0.80kg以上である、形状保持性のスパイラル管状ヒーター。  A tape-like heat-resistant resin film A that forms an inner layer of a spiral-shaped material, an adhesive layer that forms an intermediate layer, and a tape-like heat-resistant resin film B that forms an outer layer are laminated on any layer of the laminate. A flexible conductive base material that provides conductivity between both ends in the longitudinal direction is integrally provided, and the rigidity of at least one of the tape-shaped heat-resistant resin film A and the tape-shaped heat-resistant resin film B is 0.80 kg. This is the shape-retaining spiral tubular heater. 内側層となる接着剤付きのテープ状耐熱性樹脂フィルムAを接着剤を外側にして長尺の形状付与部材にスパイラル状に巻き付け、その上に可とう性の導電性基材を巻き付け、さらにその上に外側層となる接着剤付きのテープ状耐熱性樹脂フィルムBを接着剤を内側にしてスパイラル状に重ねて巻き付け、接着剤を硬化して積層一体化し、形成された積層体を長尺の形状付与部材から外して得られるスパイラル状物からなる、請求項1に記載のスパイラル管状ヒーター。A tape-like heat-resistant resin film A with an adhesive serving as an inner layer is spirally wound around a long shape-giving member with the adhesive facing outside, and a flexible conductive base material is wound thereon, and A tape-like heat-resistant resin film B with an adhesive serving as an outer layer is wound in a spiral shape with the adhesive inside, and the adhesive is cured and laminated and integrated, and the formed laminate is elongated. ing from spiral obtained by removing from the shape-imparting member, a spiral tubular heater of claim 1. テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBがそれぞれ厚み35〜200μmである請求項1あるいは2に記載のスパイラル管状ヒーター。  The spiral tubular heater according to claim 1 or 2, wherein each of the tape-shaped heat-resistant resin film A and the tape-shaped heat-resistant resin film B has a thickness of 35 to 200 µm. 可とう性の導電性基材がテープ状ヒーターのような平面状基材である請求項1乃至3のいずれかに記載のスパイラル管状ヒーター。  The spiral tubular heater according to any one of claims 1 to 3, wherein the flexible conductive substrate is a planar substrate such as a tape heater. テープ状耐熱性樹脂フィルムAおよびテープ状耐熱性樹脂フィルムBがそれぞれテープ状芳香族ポリイミドフィルムである請求項1乃至4のいずれかに記載のスパイラル管状ヒーター。  The spiral tubular heater according to any one of claims 1 to 4, wherein each of the tape-shaped heat-resistant resin film A and the tape-shaped heat-resistant resin film B is a tape-shaped aromatic polyimide film. 請求項1乃至5のいずれかに記載のスパイラル管状ヒーターを製造する方法であって、内側層となる接着剤付きのテープ状耐熱性樹脂フィルムAを接着剤を外側にして長尺の形状付与部材にスパイラル状に巻き付け、その上に可とう性の導電性基材を巻き付け、さらにその上に外側層となる接着剤付きのテープ状耐熱性樹脂フィルムBを接着剤を内側にしてスパイラル状に重ねて巻き付け、被加熱体と同一外形状を有する長尺の形状付与部材に巻いた内側層となるテープ状耐熱性樹脂フィルムAと外側層となるテープ状耐熱性樹脂フィルムBとの間に、接着剤および長手方向の両端間に導電性を与える可とう性の導電性基材を配置し、フィルムの内側層と外側層とを重ねたまま接着剤を硬化して積層一体化させることを特徴とするスパイラル管状ヒーターの製造方法。 A method for producing a spiral tubular heater according to any one of claims 1 to 5, wherein the tape-shaped heat-resistant resin film A with an adhesive serving as an inner layer is an adhesive and the elongated shape-giving member. A flexible conductive base material is wound on it, and a tape-like heat-resistant resin film B with an adhesive, which is an outer layer, is further spirally laminated with the adhesive inside. Between the tape-shaped heat-resistant resin film A serving as an inner layer and the tape-shaped heat-resistant resin film B serving as an outer layer, wound around a long shape-giving member having the same outer shape as the object to be heated. A flexible conductive base material that imparts conductivity between both ends of the agent and the longitudinal direction is disposed, and the adhesive is cured and laminated and integrated while the inner layer and the outer layer of the film are stacked. Spiral Manufacturing method of Jo heater. 接着剤が熱硬化性接着剤であり、該接着剤中の溶媒を乾燥除去して接着剤をBステージの段階で硬化させる請求項6記載のスパイラル管状ヒーターの製造方法。 Adhesive is a thermosetting adhesive, the manufacturing method of the spiral tubular heater according to claim 6, wherein curing the solvent in the adhesive dried to remove the adhesive at the stage of B-stage.
JP15302398A 1997-06-17 1998-06-02 Spiral tubular heater and manufacturing method thereof Expired - Fee Related JP3822979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15302398A JP3822979B2 (en) 1997-06-17 1998-06-02 Spiral tubular heater and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19470097 1997-06-17
JP9-194700 1997-06-17
JP15302398A JP3822979B2 (en) 1997-06-17 1998-06-02 Spiral tubular heater and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1174066A JPH1174066A (en) 1999-03-16
JP3822979B2 true JP3822979B2 (en) 2006-09-20

Family

ID=26481760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15302398A Expired - Fee Related JP3822979B2 (en) 1997-06-17 1998-06-02 Spiral tubular heater and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3822979B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957119B2 (en) * 1999-06-18 2007-08-15 株式会社協和エクシオ Drilling method for branch pipe branch
JP2001099363A (en) * 1999-09-29 2001-04-10 Ube Ind Ltd Hot hose
JP2010003487A (en) * 2008-06-19 2010-01-07 Chugoku Kogyo Co Ltd Long strip-shaped resistance heating element and planar heater
EP2701460B1 (en) 2011-04-20 2015-09-16 UBE Industries, Ltd. Spiral tube-like heater
JP6348696B2 (en) 2013-09-30 2018-06-27 ニチアス株式会社 Tape heater
WO2023188955A1 (en) * 2022-03-30 2023-10-05 株式会社巴川製紙所 Sheet-shaped heater

Also Published As

Publication number Publication date
JPH1174066A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3054010B2 (en) Polyimide composite tubular article and method and apparatus for producing the same
EP2701460B1 (en) Spiral tube-like heater
JP2000319442A (en) Porous insulation material and laminate thereof
JP3103084B2 (en) Manufacturing method for tubular objects
JP4536335B2 (en) Polyimide heater
JP3822979B2 (en) Spiral tubular heater and manufacturing method thereof
WO2009032290A1 (en) Polyimide films comprising fluoropolymer coating and methods
JP3757548B2 (en) Spiral tubular product and method for producing the same
JP3822967B2 (en) Spiral tubular heater and manufacturing method thereof
JPS601888B2 (en) Manufacturing method of polyimide tubes
JPH1158543A (en) Spiral tubular article with good insulating characteristics and its manufacture
JP4031888B2 (en) Tape heater manufacturing method
JPH11176562A (en) Spiral tubular heater and manufacture thereof
JP7247038B2 (en) Covered conductor and its manufacturing method
JP3758336B2 (en) Spiral tubular heater
JP2912922B2 (en) Manufacturing method for tubular objects
JP3525744B2 (en) Heat resistant polymer tape with adhesive for spiral tubular heater
JPH11121151A (en) Manufacture of spiral tubular heater
JP2007197696A (en) Low heat-shrinking and highly adhesive polyimide film
JPH11102773A (en) Spiral tubular heater and manufacture thereof
JP2000097780A (en) Tape-like or spiral temperature sensor, its manufacture and using method and forming material
JP2000094563A (en) Material for forming long tapelike functional product and its use method
JP2007197697A (en) Low heat-shrinking and highly adhesive polyimide film
JP2004203545A (en) Polyimide film roll and its manufacturing method
JP2004014178A (en) Sheet-shaped heater module and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees