JP3758336B2 - Spiral tubular heater - Google Patents

Spiral tubular heater Download PDF

Info

Publication number
JP3758336B2
JP3758336B2 JP30076097A JP30076097A JP3758336B2 JP 3758336 B2 JP3758336 B2 JP 3758336B2 JP 30076097 A JP30076097 A JP 30076097A JP 30076097 A JP30076097 A JP 30076097A JP 3758336 B2 JP3758336 B2 JP 3758336B2
Authority
JP
Japan
Prior art keywords
polyimide
adhesive
tubular heater
tape
spiral tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30076097A
Other languages
Japanese (ja)
Other versions
JPH11135236A (en
Inventor
浩 井上
誠一郎 高林
卓二 高橋
忠雄 村松
研二 園山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP30076097A priority Critical patent/JP3758336B2/en
Publication of JPH11135236A publication Critical patent/JPH11135236A/en
Application granted granted Critical
Publication of JP3758336B2 publication Critical patent/JP3758336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、パイプとの密着性が良く、熱効率の良好なヒ−タ−などの用途に好適で、特に半導体製造装置や分析機器などのパイプの保温などの目的に使用できる、絶縁層の間に可とう性の導電性基材、例えばヒ−タ−のような平面状基材を挟んで一体として設けた、内側層となるテ−プ状高分子材料と外側層となる接着剤付きの耐熱性高分子材料との間に可とう性の導電性基材がポリイミド系接着剤によって積層一体化されてなるスパイラル管状ヒ−タ−に関する。
【0002】
【従来の技術】
従来、液体クロマトグラフ装置あるいは質量分析装置などの分析機器におけるパイプや医療用機器における薬液等の搬送路を構成するパイプへの搬送対象物質の凝固や付着を防止するためにパイプを加熱して保温することが必要であり、また内面に付着した物質を蒸発させて真空度を確保するためにパイプを加熱する場合がある。さらには、水道管の凍結防止のために水道管を保温・加熱する場合がある。
このような場合、従来は、リボンヒ−タ−のような可とう性の面状発熱体を帯状にしてパイプに巻きつけることが一般的に行われている。
【0003】
【発明が解決しようとする課題】
しかし、上記のパイプの配管系は一般的に装置と装置との間の狭いところに設けられる場合が多く、パイプに面状発熱体を巻きつけて装着することが困難であり、しかも面状発熱体はパイプとの密着性が悪い。このため熱効率が低く、従って温度の制御も正確に行うことができない。
この発明の目的は、被加熱体に装着が容易で密着性が良いヒ−タ−を提供することである。
【0004】
【課題を解決するための手段】
この発明は、スパイラル状物の内側層を形成するテ−プ状耐熱性高分子材料A、中間層を形成するポリイミド系接着剤層および外側層を形成するテ−プ状耐熱性高分子材料Bの構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与える可とう性の導電性基材が一体として設けられている形状保持性のスパイラル管状ヒ−タ−に関する。
【0005】
【発明の実施の形態】
以下に本発明の好ましい態様を列記する。
1)スパイラル状物の内層側を形成するテ−プ状耐熱性高分子材料Aおよび外側層を形成するテ−プ状耐熱性高分子材料Bがそれぞれ厚み25−200μmである上記のスパイラル管状ヒ−タ−。
2)可とう性の導電性基材がテ−プ状ヒ−タ−のような平面状基材である上記のスパイラル管状ヒ−タ−。
3)テ−プ状耐熱性高分子材料Aおよびテ−プ状耐熱性高分子材料Bがテ−プ状芳香族ポリイミドフィルムである上記のスパイラル管状ヒ−タ−。
4)可とう性の導電性基材が積層体の長手方向と平行に一体として設けられており、この導電性基材は少なくとも1回折り返しされて両端部がスパイラル状物の片方から取り出されている上記のスパイラル管状ヒ−タ−。
【0006】
以下、この発明について、図面も参考にして、詳しく説明する。
図1は、この発明のスパイラル管状ヒ−タ−の一例をスパイラル芯に平行に切断した一部断面図である。
図2は、この発明のスパイラル管状ヒ−タ−の一例を示す斜視図である。
図3は、この発明のスパイラル管状ヒ−タ−の一例の使用例を示す一部斜視図である。
【0007】
図1において、形状保持性のスパイラル管状ヒ−タ−1は、スパイラル状物の内側層を形成するテ−プ状耐熱性高分子材料Aである2、中間層を形成するポリイミド系接着剤層3(内側層に接するポリイミド系接着剤層3aと外側層に接するポリイミド系接着剤層3bとからなる)および外側層を形成するテ−プ状耐熱性高分子材料Bである4の構成を有する積層体のいずれかの層、好適にはポリイミド系接着剤層3aとポリイミド系接着剤層3bとの間に長手方向の両端間に導電性を与える可とう性の導電性基材5が一体として設けられている。
【0008】
図2において、形状保持性のスパイラル管状ヒ−タ−1は、スパイラル状物の内側層を形成するテ−プ状耐熱性高分子材料Aである2、中間層を形成するポリイミド系接着剤層(図示せず)および外側層を形成するテ−プ状耐熱性高分子材料Bである4の構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与え可とう性の導電性基材5が一体として設けられている。
【0009】
図3において、被加熱体10を挿入可能なまでに形状保持性のスパイラル管状ヒ−タ−間を押し拡げて被加熱体10をスパイラル管状ヒ−タ−間に挿入し、次いで、被加熱体10をその状態に維持したままでスパイラル管状ヒ−タ−1を図の矢印の方向に回転し、この回転につれて被加熱体10がスパイラル管状ヒ−タ−1内に取り込まれるので、管状ヒ−タ−1の軸方向に回転させるだけで比較的簡単・迅速に被加熱体10にスパイラル管状ヒ−タ−1を装着することができ、しかも装着した後はスパイラル管状ヒ−タ−1は元の形状に復帰するから、被加熱体10に均等にかつ整然と装着することができる。従って、例えば被加熱体の両端部が大型の装置等に接続されて自由度がほとんどない場合でも、比較的容易にかつ迅速に被加熱体10に巻きつけることができる。また、スパイラル管状ヒ−タ−の径を任意に設定できるため、自由度の少ない被加熱体だけでなく自由度の大きい被加熱体であっても、また径の大小にも制限を受けることなく、棒またはパイプ状であれば任意の被加熱体に適用できるのである。
【0010】
この発明のスパイラル管状ヒ−タ−は、例えば、内側層となるポリイミド系接着剤付きのテ−プ状耐熱性高分子材料Aを接着剤を外側にして金属製、例えばステンレス等の耐熱性の棒またはパイプなどの長尺の形状付与部材にスパイラル状に巻き付け、その上に、好適にはそのほぼ中央に可とう性の導電性基材、好適には平面状基材を巻き付け、さらにその上に外側層となる接着剤付きのテ−プ状耐熱性高分子材料Bをポリイミド系接着剤を内側にしてスパイラル状に重ねて巻き付け、接着剤を硬化して積層一体化(このプロセス中、形状付与部材に巻いた巻き付け物はほどけないように圧力を加えておく)し、形成された積層体を棒またはパイプなどの長尺の形状付与部材から外して、スパイラル状に形状保持した成形品として得ることができる。
この発明のスパイラル管状ヒ−タ−は、常温で、好適には200℃程度の高温に加熱した環境下においても、また被加熱体に装着した後もほとんどスパイラル物の外径などの形状や均等・整然さに変化がなく形状保持される。
【0011】
この発明におけるスパイラル状物の内側層を形成するシ−ト状耐熱性高分子材料Aとしては、ガラス転移温度あるいは融点が180℃以上である芳香族ポリイミドあるいは芳香族ポリアミドからなり、好適には厚みが25−200μm、幅が3−50mmのテ−プ状フィルムが使用される。特に、50−300℃での線膨張係数(CTE)が60×10-5cm/cm/℃(ppmで表示することもある)以下、その中でも特に3−50×10-5cm/cm/℃であって、引張弾性率が200−1400kg/mm2 である芳香族ポリイミドフィルムあるいは芳香族ポリアミドフィルムや、シリコンラバ−のような耐熱性ゴムが好適に使用される。そのなかでも、吸水率が4%以下、特に3%以下である芳香族ポリイミドフィルムが好適に使用される。
【0012】
前記の芳香族ポリイミドは、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物とp−フェニレンジアミン、4,4’−ジアミノジフェニルエ−テルなどの芳香族ジアミンとを重合、イミド化して得られる。特に、芳香族ポリイミドとして3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を芳香族テトラカルボン酸成分中15モル%以上使用して得られるものが耐熱性、低線膨張係数、低吸水率であることから好ましい。
前記の芳香族ポリアミドは、例えば2−クロロテレフタル酸クロリド、2,5−ジクロロテレフタル酸クロリドなどの芳香族酸クロリドと2−クロロ−p−フェリレンジアミン、4,4’−ジアミノジフェニルエ−テルなどの芳香族ジアミンとの反応で得られる。
【0013】
この発明において中間層を形成するポリイミド系接着剤層は、耐熱性のポリイミド系の熱可塑性接着剤あるいはポリイミド系の熱硬化性接着剤からなり、好適には積層した接着剤層の乾燥状態での厚みが2−100μm、幅が3−50mmである。
また、この接着剤層は接着剤付きのテ−プ状フィルムとして設けてもよくあるいはテ−プ状フィルムを巻きつけた後、接着剤を塗布あるいは接着剤シ−トを張り合わせて接着剤付きテ−プを設けてもよい。
【0014】
前記ポリイミド系熱可塑性接着剤としては、ポリイミド、ポリアミドイミド、ポリエ−テルイミド、ポリエステルイミド等のポリマ−鎖中にイミド結合を含有するポリイミド系ポリマ−が挙げられる。
前記ポリイミド系熱硬化性接着剤としては、ポリイミド、ポリアミドイミド、ポリエ−テルイミド、ポリエステルイミド、ポリイミドシロキサン等のポリマ−鎖中にイミド結合を含有するポリマ−と熱硬化樹脂との組み合わせが一般的である。熱硬化性樹脂としては、エポキシ樹脂、フェノ−ル樹脂、アクリレ−ト樹脂等の熱硬化性樹脂、さらにビスマレイミド樹脂のように末端または側鎖に反応性の官能基を有するポリイミドオリゴマ−等が挙げられる。
前記ポリイミド系熱可塑性接着剤および硬化後のポリイミド系熱硬化性接着剤のTgが20−380℃であることが好ましく、特に30−340℃であることが好ましい。
【0015】
前記ポリイミド系熱可塑性接着剤および硬化後のポリイミド系熱硬化性接着剤の引張弾性率(25℃)が5−450kg/mm2 であることが好ましい。さらに好ましくは10−400kg/mm2 である。
前記ポリイミド系熱可塑性接着剤および硬化後のポリイミド系熱硬化性接着剤はポリイミドを5−100重量部使用することが好ましい。さらに好ましくはポリイミドを10重量%以上である。
ポリイミド系接着剤がシランカップリング剤またはチタネ−ト系カップリング剤を含んでも良い。シランカップリング剤の混合量は接着剤100重量部に対して、0.1−6重量部が好適である。さらに好適には、0.3−5重量である。シランカップリング剤の種類としては、アミノシラン、エポキシシラン、チオ−ルシラン等が好適である。
前記のポリイミド系接着剤は、テ−プ状耐熱性樹脂フィルムAの片面とテ−プ状耐熱性樹脂フィルムBの片面とのそれぞれに設けることが好ましい。
【0016】
この発明における外側層を形成する耐熱性樹脂フィルムBとしては、ガラス転移温度あるいは融点が180℃以上である芳香族ポリイミド、芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂または芳香族ポリアミドイミドからなり、好適には厚みが25−200μm、幅が3−50mmのシ−ト状フィルムが使用される。特に、50−250℃での線膨張係数(CTE)が60×10-5cm/cm/℃(ppmで表示することもある)以下、特に3−50×10-5cm/cm/℃であって、引張弾性率が200−1400kg/mm2 である芳香族ポリイミドフィルムあるいは芳香族ポリアミドフィルムが好適に使用される。そのなかでも、吸水率が4%以下、特に3%以下である芳香族ポリイミドフィルムが好適に使用される。
【0017】
この発明における可とう性の導電性基材としては、スパイラル状物の長手方向の両端間に導電性の機能を与える金属箔、金属線、帯状の金属、好適には厚みが5−100μm、幅が0.4−40mm程度の銅箔、ニクロム箔などの金属箔が使用される。
この可とう性の導電性基材は1本のみを設けてもよく複数本を平行して設けてもよく、また、前記のポリイミド系接着剤によってテ−プ状耐熱性樹脂フィルムBのほぼ全面に設けてもよいが、ほぼ中央部に設けることが好ましい。
また、可とう性の導電性基材の表面をあらかじめ塗布法などによって耐熱性樹脂で薄く被覆したものを使用してもよい。
【0018】
前記の芳香族ポリイミドフィルムは、例えば、次のようにして得られる。
先ず、ピロメリット酸二無水物や3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物と芳香族ジアミンとをN,N−ジメチルアセトアミドやN−メチル−2−ピロリドンなどの有機極性溶媒中で重合して、ポリマ−の対数粘度(測定温度:30℃、濃度:0.5g/100ml溶媒、溶媒:N−メチル−2−ピロリドン)が1−5、ポリマ−濃度が15−40重量%程度であるポリアミック酸溶液を得る。
次いで、好適にはこのポリアミック酸100重量部に対して0.01−1重量%のリン化合物、例えば(ポリ)リン酸エステルおよび/またはリン酸エステルのアミン塩などの有機系リン化合物あるいは無機リン化合物および、好適にはさらにポリアミック酸100重量部に対して0.02−6重量部のコロイダルシリカ、窒化珪素、タルク、酸化チタンなどの無機フィラ−(好適には平均粒径0.005−5μm、特に0.005−2μm)を添加してポリアミック酸溶液組成物を調製する。
このポリアミック酸溶液組成物をそのままあるいは化学イミド化剤を加えて、平滑な表面を有する支持体表面に流延し、乾燥して固化フィルムを形成し、上記固化フィルムを支持体表面から剥離する。
次いで、固化フィルムの片面または両面にアミノシラン系、エポキシシラン系あるいはチタネ−ト系の表面処理剤を含有する表面処理液を塗布した後、さらに乾燥することもできる。
前記のようにして得られた固化フィルムを、必要であれば両方向に延伸した後乾燥フィルムの幅方向の両端縁を把持した状態で、最高加熱温度:350〜500℃の範囲内の温度で加熱して乾燥およびイミド化して芳香族ポリイミドフィルムとして好適に製造することができる。
上記のようにして得られた芳香族ポリイミドフィルムを、好適には低張力下あるいは無張力下に200〜400℃程度の温度で加熱して応力緩和処理し、巻き取る。
この芳香族ポリイミドフィルムは、そのままあるいはコロナ放電処理、プラズマ処理、紫外線照射、グロ−放電処理、火炎処理で表面処理を施した後、接着性を改良した芳香族ポリイミドフィルムとして使用することができる。
【0019】
前記の芳香族ポリアミドフィルムは、例えば以下のようにして製造することができる。芳香族酸クロリドと芳香族ジアミンとを有機極性溶媒中で溶液重合、あるいは水系媒体を使用する界面重合などで合成される。ポリマ−溶液は単量体として酸クロリドとジアミンとを使用すると塩化水素が副生するためこれを中和するために水酸化カルシウムなどの無機の中和剤、またはエチレンオキサイドなどの有機の中和剤を添加する。
また、イソシアネ−トとカルボン酸との反応は非プロトン性有機極性溶媒中、触媒の存在下で行われる。
これらのポリマ−溶液はそのままフィルムを形成する製膜原液にしてもよく、またポリマ−を一度単離してから上記の溶媒に再溶解して製膜原液を調製してもよい。製膜原液には溶解助剤として無機塩例えば塩化カルシウム、塩化マグネシウムなどを添加してもよい。製膜原液中のポリマ−濃度は2−35重量%が好ましい。
【0020】
この発明の形状保持性のスパイラル管状ヒ−タ−は、例えば、被加熱体と同一外形状を有する(形状は、断面円形または角形等任意の形状を有してよい。)長尺の形状付与部材、例えば耐熱性の棒またはパイプにスパイラル状に巻いた内側層となるテ−プ状耐熱性高分子材料A、好適にはテ−プ状芳香族ポリイミドフィルムAとそれと同じ幅か少し幅の狭い外側層となるテ−プ状耐熱性高分子材料B、好適にはテ−プ状芳香族ポリイミドフィルムBとその間にポリイミド系接着剤および長手方向の両端間に導電性を与える可とう性の導電性基材、好適にはテ−プ状ヒ−タ−のような平面状導電性基材を配置し、ポリイミド系熱硬化性接着剤の場合には溶媒を乾燥してBステ−ジの段階で、ポリイミド系熱可塑性接着剤の場合には積層体に圧力を加えてガラス転移温度あるいは融点以上の温度に加熱することによって、フィルムの内側層と外側層とを重ねたまま、ポリイミド系熱硬化性接着剤の場合には硬化温度以上の温度に加熱して、あるいはポリイミド系熱可塑性接着剤の場合には冷却して、ポリイミド系接着剤を硬化して積層一体化させた後、スパイラル状の積層体を長尺の形状付与部材から外して得られる。
【0021】
上記の方法は、好適には、例えば次のようにして実施できる。先ず、前記の内側層となる耐熱性高分子材料Aおよび耐熱性高分子材料Bの片面にポリイミド系接着剤を塗布し、ポリイミド系接着剤の乾燥厚みが2−100μmであるフィルムを得る。このフィルムを3−50mmにスリットし、ポリイミド系熱硬化性接着剤付きのテ−プ状耐熱性高分子材料を製造する。このテ−プ状耐熱性高分子材料Aをポリイミド系接着剤面を外側にして直径が5−50mmの円状の棒またはパイプにスパイラル状に巻きつけ、両端を固定する。次いで、その上に前記のテ−プよりも幅の狭い導電性基材、好適にはテ−プ状ヒ−タ−をスパイラル状に巻きつける。次いで、さらにその上にポリイミド系接着剤同士が重なるように、外側層となるポリイミド系熱硬化性接着剤付きテ−プ状耐熱性高分子材料Bを巻き付け、テ−プ状耐熱性高分子材料A/ポリイミド系熱硬化性接着剤/ヒ−タ−/ポリイミド系熱硬化性接着剤/テ−プ状耐熱性高分子材料Bの構成にして、周囲をポリエチレンテレフタレ−トやポリイミドなどの熱収縮性の繊維や組紐で加圧・固定して、150−400℃の範囲内の温度に加熱してポリイミド系接着剤を硬化して積層一体化し、冷却した後、形成された積層体を棒またはパイプから外し、スパイラル管状ヒ−タ−を得ることができる。
【0022】
この発明のスパイラル管状ヒ−タ−はそのままで被加熱体に適用してもよく、あるいは適当な長さに切断して使用してもよく(この場合、端子を別途設けて使用する)、さらに最外層に保温の目的で耐熱性発砲シ−ト、耐熱性多孔シ−トで覆って使用してもよい。
また、形状が複雑な被加熱体の場合には、スパイラル管状ヒ−タ−と平面状ヒ−タ−とを組み合わせて使用して被加熱体を覆ってもよい。
【0023】
【実施例】
以下にこの発明の実施例を示す。
以下の記載において、部は重量部を、%は重量%を意味する。
以下の各例において、ポリイミドフィルム等の物性測定は以下の方法によって行った。
吸水率:ASTM D570−63に従って測定(23℃×24時間)
引張弾性率:ASTM D882−64Tに従って測定(MD)
線膨張係数(50−250℃または50−300℃):300℃で30分加熱して応力緩和したサンプルをTMA装置(引張りモ−ド:2g荷重、試料長さ10mm、20℃/分)で測定
【0024】
参考例1
内容積100リットルの重合槽に、N,N−ジメチルアセトアミド54.6kgを加え、次いで、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物8.826kgとパラフェニレンジアミン3.243kgとを加え、30℃で10時間重合反応させてポリマ−の対数粘度(測定温度:30℃、濃度:0.5g/100ミリリットル溶媒、溶媒:N,N−ジメチルアセトアミド)が1.60、ポリマ−濃度が18重量%であるポリアミック酸(イミド化率:5%以下)溶液を得た。
このポリアミック酸溶液に、ポリアミック酸100重量部に対して0.1重量部の割合でモノステアリルリン酸エステルトリエタノ−ルアミン塩および0.5重量部の割合(固形分基準)で平均粒子0.08μmのコロイダルシリカを添加して均一に混合してポリアミック酸溶液組成物を得た。
このポリアミック酸溶液組成物の回転粘度は3000ポイズであった。このポリアミック酸溶液組成物をTダイ金型のスリットから連続的に、キャスティング・乾燥炉の平滑な支持体に押出して前記溶液の薄膜を形成し、130℃で10分間乾燥し、支持体から剥がし、幅方向を把持した状態でキュア炉内でキュア−(200℃から450℃、約20分間)して、厚み75μmの芳香族ポリイミドフィルムを得た。このフィルムは、弾性率が750kg/mm2 、線膨張係数(50−300℃)が16ppm、吸水率が1.5%であった。
【0025】
参考例2
パラフェニレンジアミンの代わりに、4,4’−ジアミノジフェニルエ−テル6.007kgにし、N,N−ジメチルアセトアミド67.6kgにした他は、参考例1と同様にして厚み75μmの芳香族ポリイミドフィルムを得た。
このフィルムは、弾性率が370kg/mm2 、線膨張係数(50℃から250℃)が40ppm、吸水率が2.5%であった。
【0026】
参考例3
容量2リットルのガラス製のセパラブルフラスコに、N−メチル−2−ピロリドン(NMP)1000gを入れ、その溶液中に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)73.56g(250ミリモル)と、ジアミノポリシロキサン(DAPS)(東レ・ダウコ−ニング・シリコ−ン株式会社、BY16−853U)88g(100ミリモル)と、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)61.58g(150ミリモル)とを加え、60℃で2時間窒素雰囲気下で攪拌する。その後さらに温度を200℃に昇温させ水を除去させながら3時間重合反応を行った。最後に、その反応液を10リットル水中に添加して、ホモミキサ−を使用して、30分間で析出させポリマ−を濾過させ、ポリマ−粉末を単離した。このポリマ−粉末について5リットルの2−プロパノ−ル中でホモミキサ−を使用して80℃で1時間洗浄を2回行い、120℃で5時間熱風乾燥後、120℃で24時間真空乾燥してポリイミドシロキサン粉末210gを得た。このポリイミドシロキサンは、対数粘度(30℃)が0.32であり、イミド化率が実質的に100%であった。
このポリイミドシロキサン粉末のTHF溶液からフィルムを作製した。このフィルムの引張弾性率は57kg/mm2 、Tgが190℃であった。
【0027】
参考例4
a−BPDAを450ミリモル、DAPSを100ミリモル、BAPPを350ミリモルにそれぞれ変えた他は参考例3と同様にしてポリイミドシロキサン粉末を得た。
このポリイミドシロキサン粉末のTHF溶液からフィルムを作製した。このフィルムの引張弾性率は115kg/mm2 、Tgが235℃であった。
【0028】
参考例5
容量300ミリリットルのガラス製のセパラブルフラスコに、N,N−ジメチルアセトアミド(DMAc)175.76gを入れ、その溶液中に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)14.71g(0.05モル)と、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)29.23g(0.1モル)とを加え、50℃で1時間窒素雰囲気下で攪拌して、アミック酸オリゴマ−を生成させ、次いで、その反応液を約165℃に昇温し、その温度で3時間攪拌して、末端にアミノ基を有するイミドオリゴマ−を生成させた。
その反応液を50℃まで冷却した後、無水マレイン酸11.77g(0.12モル)およびキシレン35gを添加し、その反応液を160℃に昇温し、キシレンを発生する水と共に除去しながら4時間攪拌して、末端に不飽和基を有するイミドオリゴマ−を生成し、最後に、その反応液を室温(約20℃)に冷却した後水中に投じて粉末状のイミドオリゴマ−を析出させ、その析出したイミドオリゴマ−粉末を濾別した後、25℃のメタノ−ルで2回洗浄し、減圧状態で乾燥して末端変性イミドオリゴマ−を製造した。
この末端変性イミドオリゴマ−は、イミド化率が95%以上であり、その対数粘度が0.04であった。
【0029】
一方、容量300ミリリットルのガラス製のフラスコに、N−メチル−2−ピロリドン300g、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)29.42g(0.1モル)と、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)41.07g(0.1モル)とを加え、50℃で1時間窒素雰囲気下で攪拌して、ポリアミック酸を生成させ、その反応液を約190℃に昇温し、その温度で5時間攪拌して芳香族ポリイミドを生成させた。
その反応液を室温(約20℃)で繊維状に押出して、室温以下の水中に投じる湿式紡糸法により繊維を形成し、その繊維を25℃のメタノ−ルで2回洗浄した後、減圧下に乾燥して芳香族ポリイミド製繊維(径:200μm)を製造した。
この芳香族ポリイミド繊維のポリイミドは、イミド化率が95%以上、対数粘度が0.41であった。
このようにして得たイミドオリゴマ−50g、芳香族ポリイミド製繊維50gおよび1,4−ジオキサン400gを1リットルのガラス容器に仕込み、室温(約25℃)で約2時間攪拌して均一な接着剤溶液である、熱硬化性樹脂溶液を調製した。
この溶液組成物は室温に1週間放置しても均一な溶液の状態を保持していた。
前記の溶液組成物をガラス板上に流延して薄膜を形成した後、90℃で30分間および140℃で30分間加熱・乾燥し、ガラス板から引き剥がして、熱硬化性を有する厚さ20μmのフィルム状接着剤であるドライフィルムを製造した。
このフィルムは、引張弾性率が200kg/mm2 であり、Tgが260℃であった。
【0030】
実施例1
参考例1で製造した75μmの芳香族ポリイミドフィルムにポリイミドシロキサン系の熱硬化性接着剤〔参考例3で得られたポリイミドシロキサン85部、エポキシ樹脂(油化シェル社製、エピコ−ト828)10部、BTレジン(三菱ガス化学社製、BT2170)5部〕のテトラヒドロフラン溶液(固形分濃度:25%)を乾燥後の厚みが30μmになるように塗布し、100℃で乾燥して接着剤付きポリイミドフィルムを得た。このフィルムを10mm幅および9.8mm幅にスリットして2種類の接着剤付きテ−プを作製した。10mm幅のテ−プを接着剤層を外側にして外径10mmのステンレスの丸棒にスパイラル状に巻き付けた後、両端を固定し、その中央にニクロム製の幅2mm、厚み40μm、電気抵抗値14.7Ω/mのテ−プを巻き付けた後、両端を固定し、さらにその上に、9mm幅の接着剤付きテ−プを、接着剤層を内側にしてスパイラル状に巻き付け、両端を固定した。
さらにその上にテトロン製(中外製紐社製、TCT−02545)熱収縮テ−プ(組紐、巾4mm)をスパイラル状に巻き付け、オ−ブン中で100℃で1時間、200℃で1時間加熱後、テトロン熱収縮テ−プを外した後、250℃で1時間加熱して硬化させた後、放冷して積層体であるスパイラル状物をステンレスの丸棒から外し、長さ100cmのスパイラル管状ヒ−タ−を得た。
また、このスパイラル管状ヒ−タ−で径10mmのステンレスパイプを巻いて両端に50Vの電圧を加えた。パイプの温度は150℃で、均一にその温度に維持されていた。
【0031】
実施例2
参考例1で製造した芳香族ポリイミドフィルムに代えて参考例2で製造した75μmの芳香族ポリイミドフィルムを使用し、接着剤としてポリイミドシロキサン系の熱硬化性接着剤〔参考例4で得られたポリイミドシロキサン85部、エポキシ樹脂(油化シェル社製、エピコ−ト828)10部、BTレジン(三菱ガス化学社製、BT2170)5部、シランカップリング剤(東レ・ダウコ−ニング・シリコ−ン社製、SH6040)1部〕を使用した他は実施例1と同様にして長さ100cmのスパイラル管状ヒ−タ−を得た。
また、このスパイラル管状ヒ−タ−で径10mmのステンレスパイプを巻いて両端に50Vの電圧を加えた。パイプの温度は153℃で、均一にその温度に維持されていた。
【0032】
実施例3
参考例2で製造した75μmの芳香族ポリイミドフィルムに参考例5で得られた接着剤溶液〔イミドオリゴマ−5部、芳香族ポリイミド製繊維5部、1,4−ジオキサン40部)を乾燥後の厚みが25μmになるように塗布し、150℃で乾燥して接着剤付きポリイミドフィルムを得た。このフィルムを10mm幅および9.8mm幅にスリットして2種類の接着剤付きテ−プを作製した。10mm幅のテ−プを接着剤層を外側にして外径10mmのステンレスの丸棒にスパイラル状に巻き付けた後、両端を固定し、その中央にニクロム製の幅2mm、厚み40μm、電気抵抗値14.7Ω/mのテ−プを巻き付けた後、両端を固定し、さらにその上に、9.8mm幅の接着剤付きテ−プを、接着剤層を内側にしてスパイラル状に巻き付け、両端を固定した。
さらにその上にポリイミド繊維の組紐(レンチング社製のポリイミド繊維P84を使用、幅4mm)をスパイラル状に巻き付け、オ−ブン中で100℃で1時間、200℃で1時間、300℃で1時間加熱後、組紐を外し、さらに340℃で1時間加熱して硬化させた後、放冷して積層体であるスパイラル状物をステンレスの丸棒から外し、長さ100cmのスパイラル管状ヒ−タ−を得た。
また、このスパイラル管状ヒ−タ−で径10mmのステンレスパイプを巻いて両端に50Vの電圧を加えた。パイプの温度は150℃で、均一にその温度に維持されていた。
【0033】
【発明の効果】
この発明は以上説明したように構成されているので、以下に記載のような効果を奏する。
この発明のスパイラル管状ヒ−タ−は形状保持性を有し、パイプとの密着性が良く、熱効率が良好である。
さらに、ポリイミド系接着剤を使用しているので、耐熱性が高く、電気絶縁性にも優れたスパイラル管状ヒ−タ−である。
また、被加熱体に容易にしかも均等に整然と装着することができる。
【図面の簡単な説明】
【図1】図1は、この発明のスパイラル管状ヒ−タ−の一例をスパイラル芯に平行に切断した一部断面図である。
【図2】図2は、この発明のスパイラル管状ヒ−タ−の一例を示す斜視図である。
【図3】図3は、この発明のスパイラル管状ヒ−タ−の一例の使用例を示す一部斜視図である。
1 スパイラル管状ヒ−タ−
2 内側層を形成するテ−プ状耐熱性高分子材料A
3 中間層を形成するポリイミド系接着剤層
3a 内側層に接するポリイミド系接着剤層
3b 外側層に接するポリイミド系接着剤層
4 外側層を形成するテ−プ状耐熱性高分子材料B
5 導電性を付与する可とう性の導電性基材
10 被加熱体
[0001]
BACKGROUND OF THE INVENTION
This invention is suitable for applications such as a heater having good adhesion to a pipe and good thermal efficiency, and is particularly suitable for the purpose of heat insulation of pipes of semiconductor manufacturing equipment and analytical instruments. A flexible conductive base material, for example, a tape-like polymer material as an inner layer and an adhesive as an outer layer provided integrally with a flat base material such as a heater. The present invention relates to a spiral tubular heater in which a flexible conductive base material is laminated and integrated with a heat-resistant polymer material by a polyimide adhesive.
[0002]
[Prior art]
Conventionally, in order to prevent solidification and adhesion of a substance to be transported to a pipe constituting a pipe for an analytical instrument such as a liquid chromatograph apparatus or a mass spectrometer or a chemical solution transport path for a medical instrument, the pipe is heated and kept warm. In some cases, the pipe is heated in order to evaporate the substance adhering to the inner surface and secure a degree of vacuum. Furthermore, the water pipe may be kept warm and heated to prevent the water pipe from freezing.
In such a case, conventionally, a flexible sheet heating element such as a ribbon heater is generally formed in a belt shape and wound around a pipe.
[0003]
[Problems to be solved by the invention]
However, the piping system of the above pipe is generally provided in a narrow space between devices, and it is difficult to wrap a pipe with a sheet heating element, and the sheet heating The body has poor adhesion to the pipe. For this reason, the thermal efficiency is low, and therefore the temperature cannot be accurately controlled.
An object of the present invention is to provide a heater that is easy to attach to an object to be heated and has good adhesion.
[0004]
[Means for Solving the Problems]
The present invention includes a tape-like heat-resistant polymer material A that forms an inner layer of a spiral material, a polyimide-based adhesive layer that forms an intermediate layer, and a tape-like heat-resistant polymer material B that forms an outer layer. The present invention relates to a shape-retaining spiral tubular heater in which a flexible conductive base material that imparts conductivity between both ends in the longitudinal direction is integrally provided on any layer of a laminate having the structure described above.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are listed below.
1) The above-described spiral tubular heat resistant polymer material A that forms the inner layer side of the spiral-shaped material and the tape-shaped heat resistant polymer material B that forms the outer layer each have a thickness of 25 to 200 μm. -Ta-.
2) The spiral tubular heater as described above, wherein the flexible conductive substrate is a planar substrate such as a tape heater.
3) The spiral tubular heater as described above, wherein the tape-shaped heat-resistant polymer material A and the tape-shaped heat-resistant polymer material B are tape-shaped aromatic polyimide films.
4) A flexible conductive substrate is integrally provided in parallel with the longitudinal direction of the laminate, and the conductive substrate is folded at least once and both ends are taken out from one of the spiral objects. The above spiral tubular heater.
[0006]
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial sectional view of an example of a spiral tubular heater according to the present invention cut in parallel to a spiral core.
FIG. 2 is a perspective view showing an example of a spiral tubular heater of the present invention.
FIG. 3 is a partial perspective view showing an example of use of an example of the spiral tubular heater of the present invention.
[0007]
In FIG. 1, a shape-retaining spiral tubular heater-1 is a tape-like heat-resistant polymer material A that forms an inner layer of a spiral object, and a polyimide-based adhesive layer that forms an intermediate layer. 3 (consisting of a polyimide-based adhesive layer 3a in contact with the inner layer and a polyimide-based adhesive layer 3b in contact with the outer layer) and a tape-like heat-resistant polymer material B forming the outer layer 4 A flexible conductive base material 5 that imparts conductivity between both ends in the longitudinal direction is integrally formed between any layer of the laminate, preferably between the polyimide-based adhesive layer 3a and the polyimide-based adhesive layer 3b. Is provided.
[0008]
In FIG. 2, a shape-retaining spiral tubular heater-1 is a tape-like heat-resistant polymer material A that forms an inner layer of a spiral object, and a polyimide-based adhesive layer that forms an intermediate layer. (Not shown) and a flexible material which imparts conductivity between both ends in the longitudinal direction to any layer of the laminate having a structure of 4 which is a tape-like heat-resistant polymer material B forming the outer layer. The conductive substrate 5 is provided integrally.
[0009]
In FIG. 3, the heated object 10 is inserted between the spiral tubular heaters by expanding the space between the shape-retaining spiral tubular heaters until the heated object 10 can be inserted, and then the heated object. The spiral tubular heater-1 is rotated in the direction of the arrow in the figure while maintaining 10 in that state, and the object to be heated 10 is taken into the spiral tubular heater-1 with this rotation. The spiral tubular heater-1 can be attached to the object to be heated 10 relatively easily and quickly simply by rotating it in the axial direction of the heater-1, and after the attachment, the spiral tubular heater-1 is Since it returns to the shape, it can be mounted evenly and orderly on the body 10 to be heated. Therefore, for example, even when both ends of the heated object are connected to a large apparatus or the like and there is almost no degree of freedom, the object can be wound around the heated object 10 relatively easily and quickly. In addition, since the diameter of the spiral tubular heater can be set arbitrarily, not only the object to be heated with a small degree of freedom but also the object to be heated with a large degree of freedom is not limited by the size of the diameter. As long as it is in the shape of a rod or pipe, it can be applied to any object to be heated.
[0010]
The spiral tubular heater of the present invention is made of, for example, a tape-like heat-resistant polymer material A with a polyimide-based adhesive serving as an inner layer made of metal, for example, heat-resistant such as stainless steel. A long shape-imparting member such as a rod or pipe is wound in a spiral shape, and a flexible conductive substrate, preferably a planar substrate, is wound around the center of the long shape-imparting member. Tape-like heat-resistant polymer material B with adhesive, which will be the outer layer, is spirally stacked with the polyimide-based adhesive on the inside, and the adhesive is cured and laminated and integrated (in this process, shape Apply pressure so as not to unwind the wound material wrapped around the imparting member), and remove the formed laminate from the long shape imparting member such as a rod or pipe, as a molded product holding the shape in a spiral shape To get Kill.
The spiral tubular heater of the present invention is almost uniform in shape, such as the outer diameter of the spiral object, even in an environment heated to a normal temperature, preferably about 200 ° C.・ There is no change in order and the shape is maintained.
[0011]
The sheet-like heat-resistant polymer material A forming the inner layer of the spiral material in the present invention is made of an aromatic polyimide or an aromatic polyamide having a glass transition temperature or a melting point of 180 ° C. or more, and preferably has a thickness. Is a tape-like film having a width of 25 to 200 μm and a width of 3 to 50 mm. In particular, the coefficient of linear expansion (CTE) at 50-300 ° C. is 60 × 10 -Five cm / cm / ° C. (may be expressed in ppm) or less, especially 3-50 × 10 -Five cm / cm / ° C. and tensile modulus of 200-1400 kg / mm 2 An aromatic polyimide film, an aromatic polyamide film, or a heat resistant rubber such as silicon rubber is preferably used. Among them, an aromatic polyimide film having a water absorption rate of 4% or less, particularly 3% or less is preferably used.
[0012]
Examples of the aromatic polyimide include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. It is obtained by polymerizing and imidizing an aromatic tetracarboxylic dianhydride such as p-phenylenediamine and 4,4′-diaminodiphenyl ether. In particular, what is obtained by using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic polyimide in an amount of 15 mol% or more in the aromatic tetracarboxylic acid component is heat resistance, low linear expansion coefficient, It is preferable because of its low water absorption.
Examples of the aromatic polyamide include aromatic acid chlorides such as 2-chloroterephthalic acid chloride and 2,5-dichloroterephthalic acid chloride, 2-chloro-p-ferylenediamine, and 4,4′-diaminodiphenyl ether. Obtained by reaction with an aromatic diamine.
[0013]
In this invention, the polyimide-based adhesive layer forming the intermediate layer is composed of a heat-resistant polyimide-based thermoplastic adhesive or a polyimide-based thermosetting adhesive, and preferably in a dry state of the laminated adhesive layers. The thickness is 2-100 μm and the width is 3-50 mm.
The adhesive layer may be provided as a tape-like film with an adhesive, or after the tape-like film is wound, the adhesive is applied or the adhesive sheet is laminated and the adhesive-attached tape is attached. -You may provide a loop.
[0014]
Examples of the polyimide thermoplastic adhesive include polyimide polymers containing an imide bond in a polymer chain such as polyimide, polyamideimide, polyetherimide, and polyesterimide.
As the polyimide-based thermosetting adhesive, a combination of a polymer containing an imide bond in a polymer chain such as polyimide, polyamideimide, polyetherimide, polyesterimide, polyimidesiloxane, and thermosetting resin is generally used. is there. Examples of the thermosetting resin include thermosetting resins such as epoxy resins, phenol resins and acrylate resins, and polyimide oligomers having a reactive functional group at the terminal or side chain such as bismaleimide resins. Can be mentioned.
It is preferable that Tg of the said polyimide-type thermoplastic adhesive and the polyimide-type thermosetting adhesive after hardening is 20-380 degreeC, and it is especially preferable that it is 30-340 degreeC.
[0015]
The tensile modulus (25 ° C.) of the polyimide-based thermoplastic adhesive and the cured polyimide-based thermosetting adhesive is 5-450 kg / mm. 2 It is preferable that More preferably, 10-400 kg / mm 2 It is.
The polyimide-based thermoplastic adhesive and the cured polyimide-based thermosetting adhesive preferably use 5 to 100 parts by weight of polyimide. More preferably, the polyimide is 10% by weight or more.
The polyimide adhesive may contain a silane coupling agent or a titanate coupling agent. The mixing amount of the silane coupling agent is preferably 0.1-6 parts by weight with respect to 100 parts by weight of the adhesive. More preferably, it is 0.3-5 weight. As the type of silane coupling agent, aminosilane, epoxysilane, thiolsilane and the like are suitable.
The polyimide adhesive is preferably provided on one side of the tape-like heat resistant resin film A and one side of the tape-like heat resistant resin film B.
[0016]
The heat-resistant resin film B forming the outer layer in the present invention is preferably composed of an aromatic polyimide, aromatic polyamide, aromatic polyester, fluororesin or aromatic polyamideimide having a glass transition temperature or melting point of 180 ° C. or higher. A sheet-like film having a thickness of 25 to 200 μm and a width of 3 to 50 mm is used. In particular, the coefficient of linear expansion (CTE) at 50-250 ° C. is 60 × 10 -Five cm / cm / ° C. (may be expressed in ppm) or less, especially 3-50 × 10 -Five cm / cm / ° C. and tensile modulus of 200-1400 kg / mm 2 An aromatic polyimide film or an aromatic polyamide film is preferably used. Among them, an aromatic polyimide film having a water absorption rate of 4% or less, particularly 3% or less is preferably used.
[0017]
As a flexible conductive base material in the present invention, a metal foil, a metal wire, a strip-like metal which imparts a conductive function between both ends in the longitudinal direction of a spiral object, preferably a thickness of 5 to 100 μm, a width A metal foil such as a copper foil or nichrome foil having a thickness of about 0.4 to 40 mm is used.
This flexible conductive substrate may be provided alone or in parallel, and the tape-like heat-resistant resin film B is almost entirely covered with the polyimide adhesive. However, it is preferable to be provided almost at the center.
In addition, a flexible conductive substrate whose surface is previously thinly coated with a heat resistant resin by a coating method or the like may be used.
[0018]
The aromatic polyimide film is obtained as follows, for example.
First, an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and an aromatic diamine are mixed with N, N-dimethylacetamide or N -Polymerized in an organic polar solvent such as methyl-2-pyrrolidone, and the logarithmic viscosity of the polymer (measurement temperature: 30 ° C., concentration: 0.5 g / 100 ml solvent, solvent: N-methyl-2-pyrrolidone) is 1 -5. A polyamic acid solution having a polymer concentration of about 15-40% by weight is obtained.
Then, 0.01 to 1% by weight of a phosphorus compound, preferably an organic phosphorus compound such as (poly) phosphate ester and / or an amine salt of phosphate ester, or inorganic phosphorus with respect to 100 parts by weight of this polyamic acid. Compound, and preferably 0.02-6 parts by weight of colloidal silica, silicon nitride, talc, titanium oxide and other inorganic fillers (preferably having an average particle size of 0.005-5 μm with respect to 100 parts by weight of polyamic acid In particular, 0.005-2 μm) is added to prepare a polyamic acid solution composition.
This polyamic acid solution composition is cast as it is or added with a chemical imidizing agent, and cast onto a support surface having a smooth surface, dried to form a solidified film, and the solidified film is peeled off from the surface of the support.
Next, after applying a surface treatment liquid containing an aminosilane-based, epoxysilane-based or titanate-based surface treatment agent to one or both sides of the solidified film, it can be further dried.
If necessary, the solidified film obtained as described above is stretched in both directions and then heated at a temperature within the range of 350 to 500 ° C. while holding both edges in the width direction of the dried film. Then, it can be suitably produced as an aromatic polyimide film by drying and imidization.
The aromatic polyimide film obtained as described above is preferably heated at a temperature of about 200 to 400 ° C. under low tension or no tension, and is subjected to stress relaxation treatment and wound.
This aromatic polyimide film can be used as an aromatic polyimide film with improved adhesiveness, as it is or after being subjected to surface treatment by corona discharge treatment, plasma treatment, ultraviolet irradiation, glow discharge treatment or flame treatment.
[0019]
The aromatic polyamide film can be manufactured, for example, as follows. An aromatic acid chloride and an aromatic diamine are synthesized by solution polymerization in an organic polar solvent or by interfacial polymerization using an aqueous medium. Polymer solutions use acid chloride and diamine as monomers, and hydrogen chloride is by-produced. In order to neutralize this, inorganic neutralizers such as calcium hydroxide, or organic neutralization such as ethylene oxide Add agent.
The reaction between isocyanate and carboxylic acid is carried out in an aprotic organic polar solvent in the presence of a catalyst.
These polymer solutions may be used as a film-forming stock solution for forming a film as it is, or the polymer may be isolated once and then redissolved in the above solvent to prepare a film-forming stock solution. An inorganic salt such as calcium chloride or magnesium chloride may be added as a dissolution aid to the film-forming stock solution. The polymer concentration in the stock solution is preferably 2 to 35% by weight.
[0020]
The shape-retaining spiral tubular heater of the present invention has, for example, the same outer shape as that of the object to be heated (the shape may have an arbitrary shape such as a circular cross section or a square shape). Tape-like heat-resistant polymeric material A, preferably tape-like aromatic polyimide film A, which is an inner layer wound in a spiral shape on a member, for example, a heat-resistant rod or pipe, and the tape-like aromatic polyimide film A and the same width or a little width Tape-like heat-resistant polymer material B to be a narrow outer layer, preferably a tape-like aromatic polyimide film B, and a polyimide-based adhesive therebetween, and a flexible material that provides conductivity between both ends in the longitudinal direction. A conductive base material, preferably a planar conductive base material such as a tape heater, is disposed. In the case of a polyimide thermosetting adhesive, the solvent is dried and the B stage In the stage, in the case of polyimide-based thermoplastic adhesive, pressure on the laminate In addition, by heating to a temperature above the glass transition temperature or melting point, with the inner layer and outer layer of the film being stacked, in the case of a polyimide thermosetting adhesive, it is heated to a temperature above the curing temperature, Or in the case of a polyimide-type thermoplastic adhesive, it cools, and after hardening a polyimide-type adhesive and carrying out lamination | stacking integration, it removes a spiral-shaped laminated body from a elongate shape provision member, and is obtained.
[0021]
The above method can be preferably carried out, for example, as follows. First, a polyimide-based adhesive is applied to one side of the heat-resistant polymer material A and the heat-resistant polymer material B to be the inner layer, and a film having a dry thickness of 2-100 μm of the polyimide-based adhesive is obtained. This film is slit to 3-50 mm to produce a tape-like heat-resistant polymer material with a polyimide thermosetting adhesive. The tape-like heat-resistant polymer material A is spirally wound around a circular rod or pipe having a diameter of 5 to 50 mm with the polyimide adhesive surface facing outward, and both ends are fixed. Next, a conductive substrate having a width smaller than that of the tape, preferably a tape-like heater, is wound on the tape. Next, a tape-shaped heat-resistant polymer material B with a polyimide-based thermosetting adhesive that becomes an outer layer is wound around the tape so that the polyimide-based adhesives overlap each other. A / polyimide-based thermosetting adhesive / heater / polyimide-based thermosetting adhesive / tape-like heat-resistant polymer material B, and heat around polyethylene terephthalate, polyimide, etc. Pressurize and fix with shrinkable fibers and braids, heat to a temperature in the range of 150-400 ° C, cure and integrate the polyimide adhesive, cool, then stick the formed laminate Alternatively, it can be removed from the pipe to obtain a spiral tubular heater.
[0022]
The spiral tubular heater of the present invention may be applied to a heated object as it is, or may be used after being cut to an appropriate length (in this case, a terminal is provided separately). The outermost layer may be covered with a heat-resistant foaming sheet or a heat-resistant porous sheet for the purpose of keeping heat.
Further, in the case of a heated object having a complicated shape, the heated object may be covered using a combination of a spiral tubular heater and a planar heater.
[0023]
【Example】
Examples of the present invention will be described below.
In the following description, “part” means “part by weight” and “%” means “% by weight”.
In each of the following examples, the physical properties of the polyimide film and the like were measured by the following method.
Water absorption: measured according to ASTM D570-63 (23 ° C. × 24 hours)
Tensile modulus: measured according to ASTM D882-64T (MD)
Linear expansion coefficient (50-250 ° C. or 50-300 ° C.): A sample subjected to stress relaxation by heating at 300 ° C. for 30 minutes with a TMA apparatus (tensile mode: 2 g load, sample length 10 mm, 20 ° C./min) Measurement
[0024]
Reference example 1
To a polymerization tank having an internal volume of 100 liters, 54.6 kg of N, N-dimethylacetamide was added, and then 8.826 kg of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3.243 kg of paraphenylenediamine. And a polymerization reaction at 30 ° C. for 10 hours to obtain a polymer having a logarithmic viscosity (measurement temperature: 30 ° C., concentration: 0.5 g / 100 ml solvent, solvent: N, N-dimethylacetamide) of 1.60, polymer -A polyamic acid (imidation rate: 5% or less) solution having a concentration of 18% by weight was obtained.
In this polyamic acid solution, 0.1% by weight of monostearyl phosphate ester triethanolamine salt and 0.5 parts by weight (based on solid content) of 0.1% by weight of the polyamic acid and 0.1% by weight of the average particles. 08 μm colloidal silica was added and mixed uniformly to obtain a polyamic acid solution composition.
The rotational viscosity of this polyamic acid solution composition was 3000 poise. This polyamic acid solution composition is continuously extruded from the slit of the T-die mold onto a smooth support of a casting / drying furnace to form a thin film of the solution, dried at 130 ° C. for 10 minutes, and peeled off from the support Then, curing was performed in a curing furnace with the width direction held (from 200 ° C. to 450 ° C. for about 20 minutes) to obtain an aromatic polyimide film having a thickness of 75 μm. This film has an elastic modulus of 750 kg / mm. 2 The linear expansion coefficient (50-300 ° C.) was 16 ppm, and the water absorption was 1.5%.
[0025]
Reference example 2
An aromatic polyimide film having a thickness of 75 μm as in Reference Example 1 except that 4,4′-diaminodiphenyl ether is 6.007 kg and N, N-dimethylacetamide is 67.6 kg instead of paraphenylenediamine. Got.
This film has an elastic modulus of 370 kg / mm. 2 The linear expansion coefficient (50 ° C. to 250 ° C.) was 40 ppm, and the water absorption was 2.5%.
[0026]
Reference example 3
In a separable flask made of glass having a volume of 2 liters, 1000 g of N-methyl-2-pyrrolidone (NMP) was put, and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a -BPDA), 73.56 g (250 mmol), diaminopolysiloxane (DAPS) (Toray Dow Corning Silicon Co., BY16-853U), 88 g (100 mmol), 2,2-bis [4- Add 61.58 g (150 mmol) of (4-aminophenoxy) phenyl] propane (BAPP) and stir at 60 ° C. for 2 hours under nitrogen atmosphere. Thereafter, the temperature was further raised to 200 ° C., and the polymerization reaction was carried out for 3 hours while removing water. Finally, the reaction solution was added to 10 liters of water, and using a homomixer, the polymer was precipitated by precipitation for 30 minutes and the polymer powder was isolated. This polymer powder was washed twice at 80 ° C. for 1 hour using a homomixer in 5 liters of 2-propanol, dried with hot air at 120 ° C. for 5 hours, and then vacuum dried at 120 ° C. for 24 hours. 210 g of polyimide siloxane powder was obtained. This polyimidesiloxane had a logarithmic viscosity (30 ° C.) of 0.32 and an imidization rate of substantially 100%.
A film was prepared from a THF solution of this polyimidesiloxane powder. This film has a tensile modulus of 57 kg / mm. 2 , Tg was 190 ° C.
[0027]
Reference example 4
A polyimidesiloxane powder was obtained in the same manner as in Reference Example 3 except that a-BPDA was changed to 450 mmol, DAPS was changed to 100 mmol, and BAPP was changed to 350 mmol.
A film was prepared from a THF solution of this polyimidesiloxane powder. This film has a tensile modulus of 115 kg / mm. 2 , Tg was 235 ° C.
[0028]
Reference Example 5
175.76 g of N, N-dimethylacetamide (DMAc) was placed in a separable flask made of glass having a volume of 300 ml, and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride ( a-BPDA) 14.71 g (0.05 mol) and 1,3-bis (4-aminophenoxy) benzene (TPE-R) 29.23 g (0.1 mol) were added, and the mixture was stirred at 50 ° C. for 1 hour. The mixture is stirred under a nitrogen atmosphere to form an amic acid oligomer, and then the reaction solution is heated to about 165 ° C. and stirred at that temperature for 3 hours to form an imide oligomer having an amino group at the terminal. It was.
After cooling the reaction solution to 50 ° C., 11.77 g (0.12 mol) of maleic anhydride and 35 g of xylene are added, and the reaction solution is heated to 160 ° C. while removing xylene together with water that generates xylene. The mixture is stirred for 4 hours to produce an imide oligomer having an unsaturated group at the end. Finally, the reaction solution is cooled to room temperature (about 20 ° C.) and then poured into water to precipitate a powdered imide oligomer. The precipitated imide oligomer powder was separated by filtration, washed twice with methanol at 25 ° C., and dried under reduced pressure to produce a terminal-modified imide oligomer.
This terminal-modified imide oligomer had an imidation ratio of 95% or more and a logarithmic viscosity of 0.04.
[0029]
On the other hand, in a glass flask having a volume of 300 ml, N-methyl-2-pyrrolidone 300 g, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) 29.42 g (0.1 Mol) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) 41.07 g (0.1 mol), and stirred at 50 ° C. for 1 hour under a nitrogen atmosphere. A polyamic acid was generated, and the reaction solution was heated to about 190 ° C. and stirred at that temperature for 5 hours to generate an aromatic polyimide.
The reaction solution is extruded into a fiber at room temperature (about 20 ° C.) to form a fiber by a wet spinning method in which the fiber is poured into water at room temperature or lower. The fiber is washed twice with methanol at 25 ° C. To produce an aromatic polyimide fiber (diameter: 200 μm).
The polyimide of this aromatic polyimide fiber had an imidization ratio of 95% or more and a logarithmic viscosity of 0.41.
50 g of the imide oligomer thus obtained, 50 g of aromatic polyimide fiber and 400 g of 1,4-dioxane were charged into a 1 liter glass container and stirred at room temperature (about 25 ° C.) for about 2 hours to obtain a uniform adhesive solution. A thermosetting resin solution was prepared.
This solution composition maintained a uniform solution state even when left at room temperature for 1 week.
After the above solution composition is cast on a glass plate to form a thin film, it is heated and dried at 90 ° C. for 30 minutes and 140 ° C. for 30 minutes, peeled off from the glass plate, and has a thermosetting thickness. A dry film which is a 20 μm film adhesive was produced.
This film has a tensile modulus of 200 kg / mm. 2 And Tg was 260 ° C.
[0030]
Example 1
A polyimidesiloxane thermosetting adhesive [85 parts of polyimidesiloxane obtained in Reference Example 3; epoxy resin (Epicoat 828, Epicoat 828)] 10 on the 75 μm aromatic polyimide film produced in Reference Example 1 Part, BT resin (Mitsubishi Gas Chemical Co., Ltd., BT2170) 5 parts tetrahydrofuran solution (solid content concentration: 25%) was applied so that the thickness after drying was 30 μm, dried at 100 ° C. with adhesive A polyimide film was obtained. This film was slit to 10 mm width and 9.8 mm width to prepare two types of tapes with adhesive. A tape with a width of 10 mm was wound around a stainless steel round bar with an outer diameter of 10 mm with the adhesive layer on the outside, and then fixed at both ends. Nichrome width 2 mm, thickness 40 μm, electrical resistance at the center After winding a tape of 14.7 Ω / m, both ends are fixed, and then a tape with an adhesive of 9 mm width is wound on it in a spiral shape with the adhesive layer inside, and both ends are fixed. did.
Further, a Tetoron (made by Chugai String Corp., TCT-02545) heat-shrink tape (braid, width 4 mm) is spirally wound on the tape, and then in an oven at 100 ° C. for 1 hour and at 200 ° C. for 1 hour. After heating, the Tetoron heat-shrink tape was removed, and after heating and curing at 250 ° C. for 1 hour, the laminate was allowed to cool and the spiral product as a laminate was removed from the stainless steel round bar. A spiral tubular heater was obtained.
Further, a stainless pipe having a diameter of 10 mm was wound with this spiral tubular heater, and a voltage of 50 V was applied to both ends. The temperature of the pipe was 150 ° C., and the temperature was uniformly maintained.
[0031]
Example 2
Instead of the aromatic polyimide film produced in Reference Example 1, the 75 μm aromatic polyimide film produced in Reference Example 2 was used, and a polyimidesiloxane thermosetting adhesive [the polyimide obtained in Reference Example 4 was used as the adhesive. 85 parts of siloxane, 10 parts of epoxy resin (manufactured by Yuka Shell, Epicoat 828), 5 parts of BT resin (BT2170, manufactured by Mitsubishi Gas Chemical Company), silane coupling agent (Toray Dow Corning Silicone Co., Ltd.) A spiral tubular heater having a length of 100 cm was obtained in the same manner as in Example 1 except that 1 part of SH6040) was used.
Further, a stainless pipe having a diameter of 10 mm was wound with this spiral tubular heater, and a voltage of 50 V was applied to both ends. The temperature of the pipe was 153 ° C., and the temperature was uniformly maintained.
[0032]
Example 3
Thickness after drying the adhesive solution (5 parts of imide oligomer, 5 parts of aromatic polyimide fiber, 40 parts of 1,4-dioxane) obtained in Reference Example 5 on the 75 μm aromatic polyimide film produced in Reference Example 2 Was applied to a thickness of 25 μm and dried at 150 ° C. to obtain a polyimide film with an adhesive. This film was slit to 10 mm width and 9.8 mm width to prepare two types of tapes with adhesive. A tape with a width of 10 mm was wound around a stainless steel round bar with an outer diameter of 10 mm with the adhesive layer on the outside, and then fixed at both ends. Nichrome width 2 mm, thickness 40 μm, electrical resistance at the center After winding a tape of 14.7 Ω / m, both ends are fixed, and further, a tape with adhesive having a width of 9.8 mm is wound on it in a spiral shape with the adhesive layer inside. Fixed.
Furthermore, a braid of polyimide fibers (using polyimide fiber P84 made by Lenzing Co., width 4 mm) is spirally wound on it, and in an oven at 100 ° C. for 1 hour, 200 ° C. for 1 hour, and 300 ° C. for 1 hour. After heating, the braid is removed, and further cured by heating at 340 ° C. for 1 hour, allowed to cool, and the spiral material as a laminate is removed from the stainless steel round bar, and the spiral tubular heater having a length of 100 cm is removed. Got.
Further, a stainless pipe having a diameter of 10 mm was wound with this spiral tubular heater, and a voltage of 50 V was applied to both ends. The temperature of the pipe was 150 ° C., and the temperature was uniformly maintained.
[0033]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
The spiral tubular heater of the present invention has shape retention, good adhesion to the pipe, and good thermal efficiency.
Furthermore, since a polyimide-based adhesive is used, the spiral tubular heater has high heat resistance and excellent electrical insulation.
Further, it can be easily and evenly mounted on the object to be heated.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of an example of a spiral tubular heater of the present invention cut in parallel to a spiral core.
FIG. 2 is a perspective view showing an example of a spiral tubular heater of the present invention.
FIG. 3 is a partial perspective view showing an example of use of an example of a spiral tubular heater of the present invention.
1 Spiral tubular heater
2 Tape-shaped heat-resistant polymer material A forming the inner layer
3 Polyimide adhesive layer that forms the intermediate layer
3a Polyimide adhesive layer in contact with inner layer
3b Polyimide adhesive layer in contact with outer layer
4 Tape-shaped heat-resistant polymer material B forming the outer layer
5 Flexible conductive base material that imparts electrical conductivity
10 Object to be heated

Claims (6)

スパイラル状物の内側層を形成するテ−プ状耐熱性高分子材料A、中間層を形成するポリイミド系接着剤層および外側層を形成するテ−プ状耐熱性高分子材料Bの構成を有する積層体のいずれかの層に長手方向の両端間に導電性を与える可とう性の導電性基材が一体として設けられている形状保持性のスパイラル管状ヒ−タ−において、
前記可とう性の導電性基材が平面状基材であり、前記可とう性の導電性基材が積層体の長手方向と平行に一体として設けられており、さらに、この導電性基材が少なくとも1回折り返しされて両端部がスパイラル状物の片方から取り出されていることを特徴とする形状保持性のスパイラル管状ヒ−タ−。
The tape-like heat-resistant polymer material A for forming the inner layer of the spiral material, the polyimide adhesive layer for forming the intermediate layer, and the tape-like heat-resistant polymer material B for forming the outer layer are included. In a shape-retaining spiral tubular heater in which a flexible conductive base material that imparts conductivity between both ends in the longitudinal direction is integrally provided on any layer of the laminate,
The flexible conductive substrate is a planar substrate, the flexible conductive substrate is integrally provided in parallel to the longitudinal direction of the laminate, and the conductive substrate is A shape-retaining spiral tubular heater, wherein both ends are taken out from at least one of the spiral-shaped objects after being folded at least once.
ガラス転移温度(Tg)が20−380℃であるポリイミド系ポリマ−を主成分として使用したポリイミド系接着剤である請求項1に記載のスパイラル管状ヒ−タ−。2. The spiral tubular heater according to claim 1, which is a polyimide adhesive using as a main component a polyimide polymer having a glass transition temperature (Tg) of 20 to 380 ° C. 引張弾性率(25℃)が5−450kg/mmであるポリイミド系ポリマ−を主成分として使用したポリイミド系接着剤である請求項1あるいは2に記載のスパイラル管状ヒ−タ−。The spiral tubular heater according to claim 1 or 2, which is a polyimide adhesive using a polyimide polymer having a tensile modulus (25 ° C) of 5-450 kg / mm 2 as a main component. ポリイミド系ポリマ−を5−100重量%使用するポリイミド系接着剤である請求項1あるいは2に記載のスパイラル管状ヒ−タ−。3. A spiral tubular heater according to claim 1 or 2, which is a polyimide adhesive using 5 to 100% by weight of a polyimide polymer. シランカップリング剤を含むポリイミド系接着剤である請求項1あるいは2に記載のスパイラル管状ヒ−タ−。The spiral tubular heater according to claim 1 or 2, which is a polyimide adhesive containing a silane coupling agent. 熱硬化性接着剤付きテ−プ状耐熱性高分子材料Aを接着剤面を外側にして円状の棒またはパイプにスパイラル状に巻き付け、次いで、その上に前記テープよりも幅の狭い平面状可とう性の導電性基材を巻き付け、次いで、熱硬化性接着剤付きテ−プ状耐熱性高分子材料Bを接着剤同士が重なるように巻き付け、次いで、その周囲を熱収縮性の繊維、組紐、又はフィルムで加圧・固定し、150−400℃の範囲内の温度に加熱して接着剤を硬化して積層一体化することを特徴とする、請求項1に記載のスパイラル管状ヒーターの製造方法。Tape-shaped heat-resistant polymer material A with thermosetting adhesive is wound spirally around a circular rod or pipe with the adhesive surface facing outward, and then a flat surface having a width narrower than that of the tape is formed thereon. A flexible conductive base material is wound, and then a tape-like heat-resistant polymer material B with a thermosetting adhesive is wound so that the adhesives are overlapped with each other. The spiral tubular heater according to claim 1, wherein the spiral tubular heater is laminated and integrated by pressing and fixing with a braid or a film, and heating to a temperature within a range of 150 to 400 ° C to cure the adhesive. Production method.
JP30076097A 1997-10-31 1997-10-31 Spiral tubular heater Expired - Fee Related JP3758336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30076097A JP3758336B2 (en) 1997-10-31 1997-10-31 Spiral tubular heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30076097A JP3758336B2 (en) 1997-10-31 1997-10-31 Spiral tubular heater

Publications (2)

Publication Number Publication Date
JPH11135236A JPH11135236A (en) 1999-05-21
JP3758336B2 true JP3758336B2 (en) 2006-03-22

Family

ID=17888776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30076097A Expired - Fee Related JP3758336B2 (en) 1997-10-31 1997-10-31 Spiral tubular heater

Country Status (1)

Country Link
JP (1) JP3758336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348696B2 (en) 2013-09-30 2018-06-27 ニチアス株式会社 Tape heater

Also Published As

Publication number Publication date
JPH11135236A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
JP5796628B2 (en) Polyimide film
WO2014192733A1 (en) Insulated coating material and use of same
JP3482723B2 (en) Multi-layer aromatic polyimide film
JP2004355882A (en) Polyamide heater
JP2004322441A (en) Method for producing polyimide film
JP3757548B2 (en) Spiral tubular product and method for producing the same
JP3758336B2 (en) Spiral tubular heater
JP3822979B2 (en) Spiral tubular heater and manufacturing method thereof
JP4250792B2 (en) Aromatic polyimide film with adhesive, metal-clad laminate and circuit board
JPH10114823A (en) Modified polyimide film
JP2004255845A (en) Gas barrier polyimide film and metal laminate using same
JPS62236732A (en) Manufacture of substrate for flexible printed circuit
JP3822967B2 (en) Spiral tubular heater and manufacturing method thereof
JP3525744B2 (en) Heat resistant polymer tape with adhesive for spiral tubular heater
JP2730652B2 (en) Protective coating-coated wiring member and its manufacturing method
JPH0423879A (en) Heat-resistant imide adhesive
JPH11176562A (en) Spiral tubular heater and manufacture thereof
JP3552477B2 (en) Film carrier tape and method for producing the same
JPH1158543A (en) Spiral tubular article with good insulating characteristics and its manufacture
JP3295952B2 (en) Method for manufacturing flexible wiring board
JP2004014178A (en) Sheet-shaped heater module and manufacturing method of the same
JP7247038B2 (en) Covered conductor and its manufacturing method
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor
JPH047384A (en) Heat-resistant resin adhesive
JP2004203545A (en) Polyimide film roll and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees