JPS6033747A - Large power transmission system having transmission power control function - Google Patents

Large power transmission system having transmission power control function

Info

Publication number
JPS6033747A
JPS6033747A JP58141875A JP14187583A JPS6033747A JP S6033747 A JPS6033747 A JP S6033747A JP 58141875 A JP58141875 A JP 58141875A JP 14187583 A JP14187583 A JP 14187583A JP S6033747 A JPS6033747 A JP S6033747A
Authority
JP
Japan
Prior art keywords
power
power amplifier
transmission
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58141875A
Other languages
Japanese (ja)
Inventor
Takeshi Hatsuda
健 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58141875A priority Critical patent/JPS6033747A/en
Publication of JPS6033747A publication Critical patent/JPS6033747A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Abstract

PURPOSE:To improve the reliability and to reduce power consumption by controlling the number of power amplifiers operated in parallel depending on weather. CONSTITUTION:Only the 1st power amplifier 113 is activated at fine weather and the 2nd power amplifier 114 is not activated and the amplifier current and voltage are interrupted. The transmission output at fine weather is stored in a power amplifier control section 143 in advance comprising a microprocessor, and the control is performed by detecting a part of the output branched by a coupler 140 connected to an output terminal 112 by a detector 141, converting it by a detected current converter 136 and returning it to a power amplifier control section 143 via an A/D converter 142. When the attenuation due to rainfall is large, the 1st power amplifier 113 is operated up to the saturated output and the level does not reach a required rainfall margin, the 2nd power amplifier 114 turned on in advance is operated at a certain rainfall attenuation level and switching devices 117, 118 are connected to the position B to attain parallel operation.

Description

【発明の詳細な説明】 (技術分野) 本発明は降雨減衰の大きい周波数帯において使用する送
信装置で、晴天時には、回線規格値を得るに足るだけの
送信出力とし、降雨減衰量に応じて送信装置出力を増加
するだめの上り回線送信出力制御を有する大電力送信方
式に関するものである。
Detailed Description of the Invention (Technical Field) The present invention is a transmitting device used in a frequency band where rainfall attenuation is large, and when the weather is clear, the transmission output is sufficient to obtain the line standard value, and the transmission is performed according to the amount of rain attenuation. The present invention relates to a high power transmission system having uplink transmission power control to increase device output.

(背景技術) 従来から衛星通信に用いられていたマイクロ波帯におけ
る静止衛星軌道の混雑にともない、降雨減衰の大きな1
0GHz帯以上の周波数帯の使用が盛んになってきてい
る。このような周波数帯の問題点は、降雨マージンを犬
きくとる必要があることで、この結果、送信装置は大電
力のものが必要となる。
(Background technology) As geostationary satellite orbits in the microwave band conventionally used for satellite communications become congested, rainfall attenuation is large.
The use of frequency bands above 0 GHz is becoming popular. The problem with such frequency bands is that they require a tight rain margin, which results in the need for a high-power transmitter.

降雨減衰の厳しい50/20GH2帯の例で説明すると
、回線断を発生させるような大きな減衰は年に例えば0
.5tI6程度しか発生せず、残りの995%の時間は
、はとんど減衰のない(晴天)の状態であると言える。
To explain using the example of the 50/20GH2 band, where rainfall attenuation is severe, large attenuation that can cause line disconnections occurs, for example, 0 per year.
.. Only about 5tI6 occurs, and the remaining 995% of the time can be said to be in a state with almost no attenuation (clear weather).

このため、常に大電力を送信しておくことは地球局消費
電力、送信装置の寿命のためにも不利である。
Therefore, constantly transmitting high power is disadvantageous in terms of earth station power consumption and the lifespan of the transmitter.

また、第1図の2衛星システム干渉経路図において、静
止衛星軌道1上の希望衛星2と干渉衛星3の間の軌道間
隔Oは送信電力制御を行わないと大きな値が必要である
。すなわち、希望地球局(送信)4と、希望地球局(受
信)5の間で通信を行っている場合、希望地球局(送信
)4の上に降雨6が発生し、希望信号波9が減衰し、一
方、干渉衛星6にアクセスしている干渉地球局(送信)
7と干渉地球局(受信)8の回線で、干渉地球局(送信
)7の上には降雨がない場合を考える。このような状態
では、干渉地球局(送信)7からの希望衛星2向きの干
渉波10は減衰しないので、希望衛星2での希望波対干
渉波電力比(C/I)の値は小さな値となるため、これ
を避けるのに、2衛星間の軌道間隔(0は大きな値が必
要である。このような使い方でははソ降雨マージン分の
C/Iの劣化(例えば15〜2odB)となり軌道有効
利用が達成でき々くなる。
In addition, in the two-satellite system interference path diagram of FIG. 1, the orbital interval O between the desired satellite 2 and the interfering satellite 3 on the geostationary satellite orbit 1 needs to be a large value unless transmission power control is performed. That is, when communication is performed between the desired earth station (transmission) 4 and the desired earth station (reception) 5, rain 6 occurs on the desired earth station (transmission) 4, and the desired signal wave 9 is attenuated. On the other hand, the interfering earth station (transmission) accessing the interfering satellite 6
Let us consider a case where there is no rain above the interfering earth station (transmitting) 7 with a line between the interfering earth station (receiving) 7 and the interfering earth station (receiving) 8. In such a state, the interference wave 10 directed toward the desired satellite 2 from the interfering earth station (transmission) 7 is not attenuated, so the value of the desired wave to interference wave power ratio (C/I) at the desired satellite 2 is a small value. Therefore, in order to avoid this, the orbital spacing (0) between the two satellites must be a large value. If used in this way, the C/I will deteriorate by the rain margin (for example, 15 to 2 odB), and the orbit will deteriorate. Effective utilization becomes difficult to achieve.

このだめ地球局において送信電力制御を行う必要がある
It is necessary to control the transmission power at the earth station.

このような送信電力制御は従来は第2図のように、電力
増幅器63の前に接続された周波数変換器62の入力側
において、■F帯可変減衰器61の減衰量を変えること
で実現できるが電力増幅器は常に一定の電流、電圧で動
作しており、装置の消費電力は一定である。
Conventionally, such transmission power control can be achieved by changing the amount of attenuation of the F-band variable attenuator 61 on the input side of the frequency converter 62 connected before the power amplifier 63, as shown in FIG. However, power amplifiers always operate with constant current and voltage, and the power consumption of the device is constant.

また、電力合成法に関する従来の技術は第5図に示すよ
うに、第1の電力増幅器71、第2の電力増幅器72を
並列に並べ、入力側に電力分配器73、出力側に電力合
成器74を配置し、電力合成を行っている。しかし、電
力増幅器71.72は常時、飽和出力を送信できるよう
に電流、電圧を固定しており、2つの電力増幅器71.
72が同時に動作する例が一般的である。このだめに、
電力増幅器の寿命は従来のMTBFで定まる時間で決ま
り、電子管等の場合はこの取換えが必要で地球局コスト
を増大している。また使用電力も年間で大きな値となる
等の欠点を有していた。
In addition, as shown in FIG. 5, the conventional technology related to the power combining method is to arrange a first power amplifier 71 and a second power amplifier 72 in parallel, a power divider 73 on the input side, and a power combiner on the output side. 74 are arranged to perform power synthesis. However, the current and voltage of the power amplifiers 71.72 are fixed so that they can always transmit saturated outputs, and the two power amplifiers 71.
Generally, 72 units operate at the same time. To this end,
The lifespan of a power amplifier is determined by the time determined by the conventional MTBF, and in the case of an electron tube, etc., this must be replaced, increasing the cost of the earth station. Moreover, it also has the disadvantage that the amount of electricity used is large annually.

(発明の課題) 本発明は従来の技術の欠点を改善するもので、5072
0GH2帯等では激しい降雨の生ずる確率は05〜1%
で、他の時間(90〜95%)はほとんど降雨減衰が少
なく、地球局送信装置は大きな出力を常時必要のないこ
とに着目し、複数本の電力増幅器(例えばヘリフッ形進
行波管)を並列動作させ、晴天時には晴天時回線規格値
を得るに足る本数(例えば1本)で動作し、電力増幅器
の電流(例えば、進行波管のコレクタ電流)等を十分下
げて動作させ干渉軽減、信頼性向上、使用電力低減を図
ることを特徴としている。また、降雨量に応じて上記電
流等を増加させると共に、IF段における可変減衰器の
直を変え、送信電力を増加し、さらに大きな送信電力が
必要な場合は残りの電力増幅器を動作させ、降雨量に応
じてその送信出力を徐々に増加してゆき、大きな送信電
力を得ることを特徴とし、装置信頼性を向上し、コスト
を低下させ、効率的、高精度な上り回線送信電力制御機
能を有した大電力送信方式を実現するにある。
(Problems to be solved by the invention) The present invention is intended to improve the drawbacks of the conventional technology.
The probability of heavy rainfall occurring in the 0GH2 zone is 0.5-1%.
During the rest of the time (90 to 95%), rain attenuation is almost small, and the earth station transmitter does not need a large output all the time. When the sky is clear, the number of lines (for example, one line) is sufficient to obtain the line standard value for clear weather, and the power amplifier current (for example, the collector current of a traveling wave tube) is sufficiently lowered to reduce interference and improve reliability. It is characterized by improving performance and reducing power consumption. In addition to increasing the above-mentioned current etc. according to the amount of rainfall, the power of the variable attenuator in the IF stage is changed to increase the transmission power, and if even greater transmission power is required, the remaining power amplifier is operated, It is characterized by gradually increasing its transmission output according to the amount of transmission, obtaining large transmission power, improving equipment reliability, reducing costs, and providing efficient and highly accurate uplink transmission power control functions. The objective is to realize a high-power transmission system with a high power transmission method.

(発明の構成および作用) 本発明では、従来の技術で述べた問題点を解決するだめ
に、晴天時では地球局送信装置の送信出力として全電力
を送出せず、晴天時回線規格(例えば符号誤シ率(Pe
)−10−8を満足する信号対雑音電力比(C/N)値
等)を得るように、十分出力を下げて送信し、降雨時に
この減衰量に対応して送信電力を増加してゆく送信電力
制御方式を用いる。この送信電力の増減の方法として、
複数本の電力増幅器を用い、降雨減衰滑の大小によシ使
い分けてゆく。
(Structure and operation of the invention) In order to solve the problems described in the prior art, the present invention does not transmit all the power as the transmission output of the earth station transmitter in clear weather, and the clear weather line standard (for example, code Error rate (Pe
) -10-8), the output is sufficiently lowered to obtain a signal-to-noise power ratio (C/N) value that satisfies A transmission power control method is used. As a method to increase or decrease the transmission power,
Multiple power amplifiers are used, and they are used depending on the magnitude of the rain attenuation slippage.

第4図は本発明の一実施例を示しており、2本の電力増
幅器の合成を切替器を用いて行う例を説明している。図
において111は入力端子、112は出力端子、113
,114は電力増幅器、117゜118は切替器、11
9は電力分配器、120は電力合成器、121は振幅可
変回路、123は位相可変回路、125はIF段振幅可
変回路、126は送信周波数変換器、128は励振用増
幅器、16oはIF段振幅可変回路制御回路、131,
132は電力増幅器のコレクタ電流制御回路、166は
検波電流換算器、140はカップラー、141は検波器
、142はA/D変換器、143は電力増幅器制御部、
144〜147はD/A変換器、148はビーコン受信
機を示しギいる。
FIG. 4 shows an embodiment of the present invention, and describes an example in which two power amplifiers are combined using a switch. In the figure, 111 is an input terminal, 112 is an output terminal, 113
, 114 is a power amplifier, 117°, 118 is a switch, 11
9 is a power divider, 120 is a power combiner, 121 is an amplitude variable circuit, 123 is a phase variable circuit, 125 is an IF stage amplitude variable circuit, 126 is a transmission frequency converter, 128 is an excitation amplifier, 16o is an IF stage amplitude variable circuit control circuit, 131,
132 is a power amplifier collector current control circuit, 166 is a detection current converter, 140 is a coupler, 141 is a wave detector, 142 is an A/D converter, 143 is a power amplifier control unit,
144 to 147 are D/A converters, and 148 is a beacon receiver.

これを動作するには、降雨減衰の大小に従って、下記の
ように電力増幅器の使い方を変化させる。
To operate this, the power amplifier is used differently depending on the amount of rain attenuation as described below.

(7)晴天時 第1の電力増幅器113のみを動作状態にしておき、第
2の電力増幅器114は動作させず、増幅器電流、電圧
は断にしておく。切替器117゜118の接点はすべて
A側に接続され、情報信号は第1の電力増幅器のみを通
る構成となっている。
(7) During clear weather, only the first power amplifier 113 is left in operation, the second power amplifier 114 is not operated, and the amplifier current and voltage are turned off. All contacts of the switch 117 and 118 are connected to the A side, and the information signal is configured to pass only through the first power amplifier.

回線設計から決まる晴天時の送信出力は、あらかじめマ
イクロプロセッサより成る電、力増幅器1lil制御部
146に記憶されている。この所定送信出力の調整の方
法は、出力端子112側に接続されたカップラー140
で分岐した一部を検出器141で検出し、これを検波電
流換算器166で換算し、A/D変換器142を通して
電力増幅器制御部143にもどし、所定の出力と一致し
ない場合はその差を計算し、コレクタ電流制御回路13
1、IF段増幅可変回路130を制御する。
The transmission output during clear weather, which is determined by the line design, is stored in advance in the power amplifier 1liil control section 146 consisting of a microprocessor. This method of adjusting the predetermined transmission output is performed using a coupler 140 connected to the output terminal 112 side.
A part of the branched output is detected by the detector 141, converted by the detection current converter 166, and returned to the power amplifier control unit 143 through the A/D converter 142. If the output does not match the predetermined output, the difference is calculated. Calculate the collector current control circuit 13
1. Control the IF stage amplification variable circuit 130.

例えば、コレクタ電流を1 mAずつステップ状に増減
を行い、さらに微調整をIF段振幅可変回路制御回路1
60で制御するような構成とする。
For example, increase or decrease the collector current in steps of 1 mA, and then finely adjust the IF stage amplitude variable circuit control circuit 1.
The configuration is such that it is controlled by 60.

このような動作を可能とするには、電力増幅器113.
114のコレクタ電流等を変化させた時、周波数特性が
出力電力が変化してもはソフラットであることが必要で
ある。進行波管で良く使用されている例として、結合空
胴形TWT、へりジス形TWT等がある。前者は、複数
空胴の同調特性をスタガ的に重畳して、フラットな周波
数特性を得ているため、コレクタ電流等の電流、電圧の
パラメータが変化すると同調特性の差によりフラットな
特性が維持できない。一方、後者のへりジス形TWTに
おいては、周波数特性が良好である。例えばへりジス形
TWTのコレクタ電流を変化させたときの出力電力対周
波数特性の概略を示したも2〜3GH2ある)にわたシ
、平坦な周波数特性が得られる可能性がある。この結果
、現在多く使用されようとしている送信機の帯域幅(斜
線部分で100〜600MH2)に対しては十分な特性
が得られるものと言える。また、ス) IJツブ線路の
ような余シQの高くない伝送線路を使用したトランジス
タ増幅器でも同様の特性が期待できる。
To enable such operation, power amplifier 113 .
When the collector current or the like of 114 is changed, it is necessary that the frequency characteristics remain so flat even if the output power changes. Examples of commonly used traveling wave tubes include coupled cavity type TWTs and edge type TWTs. The former obtains a flat frequency characteristic by superimposing the tuning characteristics of multiple cavities in a staggered manner, so if the current or voltage parameters such as the collector current change, the flat characteristics cannot be maintained due to the difference in the tuning characteristics. . On the other hand, the latter helical TWT has good frequency characteristics. For example, the outline of the output power vs. frequency characteristic when the collector current of a helical TWT is changed shows that a flat frequency characteristic may be obtained over 2 to 3 GH2). As a result, it can be said that sufficient characteristics can be obtained for the bandwidth of the transmitter (100 to 600 MH2 in the shaded area) that is currently being widely used. Furthermore, similar characteristics can be expected from a transistor amplifier using a transmission line with a low residual Q such as an IJ tube line.

しかし、このようなコレクタ電流対出力電流の変化のし
方は必ずしも直線的では々く、同じコレクタ電流1 m
Aの変化に対して、出力電力が大幅に変化する部分と余
り変化しない部分があり高精度の出力電力の増減が出来
ない。このだめこの微調整を行うために、IF段振幅可
変回路125を変化させ、電力増幅器への入力電力を増
減させて出力電力を微調整すれば良い。これにより晴天
時には、十分低いレベルで1本の電力増幅器116のみ
を動作させるので、消費電力はさらに節約される。
However, the way the collector current vs. output current changes is not necessarily linear, and the same collector current 1 m
With respect to changes in A, there are parts where the output power changes significantly and parts where it does not change much, making it impossible to increase or decrease the output power with high precision. In order to make this fine adjustment, the IF stage amplitude variable circuit 125 may be changed to increase or decrease the input power to the power amplifier to finely adjust the output power. As a result, only one power amplifier 116 is operated at a sufficiently low level during sunny weather, resulting in further savings in power consumption.

降雨減衰が生じた場合、20GH2帯ビーコン受信11
4Bでビーコンレベルまたハ信号レベルの減衰を測定し
、この値に応じて30GHz帯送信機出力を増加させる
。一般に20730GH2帯の降雨減衰値には一定の相
関関係がある。測定の1例によると、第6図に示すよう
に、下シ回線(20GH2帯)の約2倍の減衰が上9回
線で生ずることが明らかになっている。このことを勘案
して、20GH2帯ビーコン受信機148の信号を電力
増幅器2本部146に入力し、この値をもとに制御量を
電力増幅器制御部146の処理部で計算し、この結果を
D/A変換器44.45を通してコレクタ電流制御回路
161、IF段可変増幅制御回路 130を動作させ、
出力端子112の出力を調整する。
If rain attenuation occurs, 20GH2 band beacon reception 11
Measure the attenuation of the beacon level or C signal level at 4B, and increase the 30GHz band transmitter output according to this value. Generally, there is a certain correlation between rainfall attenuation values in the 20730GH2 band. According to one example of measurement, as shown in FIG. 6, it has been revealed that attenuation approximately twice as much as the lower line (20GH2 band) occurs in the upper nine lines. Taking this into consideration, the signal from the 20GH 2-band beacon receiver 148 is input to the power amplifier 2 headquarters 146, and based on this value, the control amount is calculated by the processing section of the power amplifier control section 146, and the result is The collector current control circuit 161 and the IF stage variable amplification control circuit 130 are operated through the /A converters 44 and 45,
The output of the output terminal 112 is adjusted.

降雨減衰が大きく、第1の電力増幅器116が飽和出力
まで動作し、まだ所要の降雨マージンに達しない場合に
は、ある降雨減食レベルになった時に予めONしておい
た第2番目の電力増幅器114を動作させる。
If the rain attenuation is large and the first power amplifier 116 operates to the saturation output and the required rain margin is not yet reached, the second power amplifier 116, which has been turned on in advance when a certain rain attenuation level is reached, is activated. 114 is operated.

この第2番目の電力増幅器114を動作するには、20
GH2帯ビ一コン受信機148の情報により、電力増幅
器114を動作する必要のあることを検知し、コレクタ
電流制御回路132を制御し、所定のコレクタ電流とす
る。まだ、切替器117゜118をB側に接続し、電力
合成が可能な状態としておく。
To operate this second power amplifier 114, 20
Based on the information from the GH2 band vicon receiver 148, it is detected that the power amplifier 114 needs to be operated, and the collector current control circuit 132 is controlled to set the collector current to a predetermined value. Switchers 117 and 118 are still connected to the B side so that power can be combined.

使用する電力増幅器113,114の位相特性等はあら
かじめ測定され電力増幅制御部143に記憶されている
が、若干の経年変化等も考えられるので位相調整器12
6の調整により、出力電力をカップラー140、検波器
141等で検出し、出力電力が最大になるように調整す
る。この結果、1本で動作していた増幅器出力の約2倍
の出力が得られる。
The phase characteristics etc. of the power amplifiers 113 and 114 to be used are measured in advance and stored in the power amplification control unit 143, but since there may be slight changes over time, the phase characteristics etc.
Through the adjustment in step 6, the output power is detected by the coupler 140, the detector 141, etc., and adjusted so that the output power is maximized. As a result, an output approximately twice that of the amplifier output when operating with one amplifier can be obtained.

この第2の電力増幅器の動作する時間の大小は装置信頼
四に関連する。例えば30GH2帯における日本の代表
的な降雨による減衰量の分布曲線例を第7図に示される
とすると、上り回線年間不稼動率の設計目標点を例えば
0点1so (0,2% )とした場合、1本の電力増
幅器で動作して約3dB送信電力が低下した0点151
となっても、上り回線不稼動率は約0.1係増加するの
みである。このことは、第2番目の電力増幅器114の
動作する時間の年間の0.1%(すなわち約8時間)の
短い時間であると言える。このだめ、第2の電力増幅器
114の信頼性は非常に良好となる。
The amount of time the second power amplifier operates is related to device reliability. For example, if an example of the distribution curve of the attenuation amount due to typical rainfall in Japan in the 30GH2 band is shown in Figure 7, the design target point for the annual uplink unavailability rate is set to, for example, 0 point 1so (0.2%). In the case of 0 point 151, the transmission power decreased by approximately 3 dB when operating with one power amplifier.
Even so, the uplink downtime rate only increases by about 0.1 factor. This can be said to be a short time of 0.1% (ie, about 8 hours) of the operating time of the second power amplifier 114 per year. As a result, the reliability of the second power amplifier 114 becomes very good.

降雨減衰量が少なくなった場合、20GHz帯ビ一コン
受信機148の信号レベルが増加するため、前述の逆の
経過をたどり出力電力を減少させる。
When the amount of rain attenuation decreases, the signal level of the 20 GHz band vicon receiver 148 increases, so the output power is decreased following the reverse process described above.

また、電力増幅器の障害に対しても従来のように予備装
置を設置せずに障害救済を行うことが可能である。すな
わち第1番目の電力増幅器113が故障した場合、切替
器118をB側に切替えると、電力合成器にマジック−
Tなどを用いた場合は出力は、第2の電力増幅器114
の飽和出力より約3dB減少するが、出力端子112に
は出力が得られる。障害時と降雨が同時に重なる確率は
年間不稼動率に比して十分小さいので、障害時は十分低
い出力電力でも通信が可能である確率が大きく、回線の
全所にはならない。第2の電力増幅器で動作している間
に、障害の生じた第1の電力増幅器116を取換えるこ
とが可能であり、回線断なしに故障修理が行える。
In addition, it is possible to remedy a power amplifier failure without installing a standby device as in the past. In other words, if the first power amplifier 113 fails, switching the switch 118 to the B side will cause the power combiner to have a magic
When using T etc., the output is the second power amplifier 114
An output is obtained at the output terminal 112, although the output is approximately 3 dB lower than the saturated output. Since the probability that a failure occurs at the same time as rain is sufficiently small compared to the annual downtime rate, there is a high probability that communication will be possible even with a sufficiently low output power during a failure, and the line will not reach all locations. It is possible to replace the failed first power amplifier 116 while the second power amplifier is operating, and repair can be performed without disconnecting the line.

第4図で説明した構成法は送信出力の微調整はIF段振
幅可変回路125を用いているが、この微調整の振幅可
変は励振用増幅器128と電力分配器119の間にRF
帯振幅可変器を挿入すればこれによっても出力微調整を
行うことができる。
In the configuration method explained in FIG. 4, the IF stage amplitude variable circuit 125 is used for fine adjustment of the transmission output, but the amplitude variable of this fine adjustment is performed using the RF
If a band amplitude variable device is inserted, the output can also be finely adjusted.

(発明の効果) 以上説明したように、晴天時には電力増幅管の1本しか
使用せず、しかもコレクタ電、流を十分低下させて使用
するため電力増幅装置の消費電力は非常に少なくするこ
とができる。
(Effects of the Invention) As explained above, in sunny weather, only one power amplifier tube is used, and the collector current and current are sufficiently reduced, so the power consumption of the power amplifier device can be extremely reduced. can.

また、第2番目の電力増幅管は年間の非常に少々い割合
(例えば年間0.1%、約8時間)しか使用しないので
、装置の長寿命化に寄与する。
Furthermore, since the second power amplifier tube is used only a very small percentage of the year (for example, 0.1% per year, about 8 hours), it contributes to extending the life of the device.

晴天時に地球局送信出力を十分低下させて使用するため
、他の衛星システムへ与える不要な干渉は減少すること
が出来、軌道間隔を減少するととが可能と々す、軌道有
効利用が可能である。また、地上無線方式等の他の業務
への干渉を軽減することが出来、置局可能な調整範囲を
拡大することが出来る。
Since the earth station transmission output is sufficiently reduced during clear weather, unnecessary interference with other satellite systems can be reduced, and the orbit spacing can be reduced, allowing effective use of orbits. . In addition, interference with other services such as terrestrial wireless systems can be reduced, and the adjustment range in which stations can be placed can be expanded.

また、半分の出力の電力増幅器2本を使用して装置を構
成するので電力増幅器は作りやすく、効率も良好となり
、利得も大きく出来、保護回路等も簡易化出来装置の小
形化、簡易化、高効率化が達成できる。
In addition, since the device is configured using two power amplifiers with half the output, the power amplifier is easy to make, has good efficiency, can have a large gain, and can simplify the protection circuit, etc., making the device smaller and simpler. High efficiency can be achieved.

また、第1番目の電力増幅器が故障した場合は、従来の
方法では予備装置を設置しておき、これに切替えを行う
が、本発明においては、第2番目の電力増幅器を用いる
ことにより年間の犬蔀分の時間は障害救済を行うことが
出来る。
In addition, if the first power amplifier fails, the conventional method installs a backup device and switches to it, but in the present invention, by using the second power amplifier, the annual During Inugyo's time, he can provide disability relief.

本発明の説明では主として電力増幅器として進行波管の
例を示しだが、FET素子などを用いた固体増幅器にお
いても、応用することが出来る。
In the description of the present invention, a traveling wave tube is mainly shown as an example of a power amplifier, but the present invention can also be applied to a solid-state amplifier using an FET element or the like.

まだ、説明では30720GHz帯の衛星通信システム
について述べているが、14/11GH2帯等他の周波
数帯、放送衛星、地上無線など他の業務にも応用するこ
とが可能である。
Although the description is still based on a satellite communication system in the 30720 GHz band, it is also possible to apply it to other frequency bands such as the 14/11 GH2 band, and to other services such as broadcasting satellites and terrestrial radio.

また、降雨減衰のない周波数帯を用いる無線伝送方式に
おいて、例えばトラヒックに応じて送信出力を変化させ
る方式や臨時的に送信電力を増加する方式等にも利用す
ることが可能である。
Furthermore, in a wireless transmission system using a frequency band without rain attenuation, it can also be used, for example, for a system that changes transmission output according to traffic, a system that temporarily increases transmission power, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は他衛星通信システムとの干渉モデル図、第2図
は従来の送信電力制御の方法を示す図、第6図は従来の
電力合成の方法を示す図、第4図は本発明装置の送信電
力11)す御機能を有する大電力送信装置、第5図は進
行波管のコレクタ電流を変化させた時の周波数対進行波
管出力特性の1例、第6図は準ミリ波帯の降雨減衰量の
上り、下り回線の相関関係を示す図、第7図は30GH
z帯の降雨減衰量対との値を越える時間率の1例を示す
図である。 1:静止衛星軌道、2:自システムの衛星、6:他シス
テムの衛星、4.5 :自システムの地球局、7.8:
他システムの地球局、6:降雨、9:自システム上り回
線、10:他システム上り回1腺、61:IF帯可変減
衰器、621周波数変換器、66゛電力増幅器、71.
72 :電力増幅器、73:電力分配器、74゛雷1力
合成器、111:入力端子、112:出力端子、113
:第1の電力増幅器、114:第2の電力増幅器、11
7.118:切替器、119:電力分配器、120:電
力合成器、121:振幅可変回路、123:位相可変回
路、125 : IF段振幅可変回路、126:送信周
波数変換器、128:励振用増幅器、130 : IF
段振幅可変回路制御回路、131,132:電力増幅器
のコレクタ電流制御回路、136:検波電流挽算器、1
40:カップラー、141:検波器、142:A/D変
換器、145:電力増幅器制御部、144.145,1
46,147 :D/A変換器、148:20GHz帯
ビ =+7受信機、150:C点、151:])点 特許出願人 日本電信電話公社 特許出願代理人 弁理士 山 本 恵 − 第5 図 f、fz f− v:tl、 Iff、 ((rHi) #6図 /7q?−Jy即年敗を番(d8) 幕7 凹 た7軸iもえb時間キ(% )
Fig. 1 is an interference model diagram with other satellite communication systems, Fig. 2 is a diagram showing the conventional transmission power control method, Fig. 6 is a diagram showing the conventional power combining method, and Fig. 4 is the device of the present invention. Transmission power 11) High power transmitter with control function, Figure 5 is an example of the frequency versus traveling wave tube output characteristics when changing the collector current of the traveling wave tube, Figure 6 is for the quasi-millimeter wave band. Figure 7 shows the correlation between upstream and downstream lines of rainfall attenuation for 30GH.
It is a figure which shows an example of the time rate which exceeds the value with respect to the rain attenuation amount pair of z band. 1: Geostationary satellite orbit, 2: Satellite of own system, 6: Satellite of other system, 4.5: Earth station of own system, 7.8:
Earth station of other system, 6: Rainfall, 9: Own system uplink, 10: Other system uplink 1 line, 61: IF band variable attenuator, 621 frequency converter, 66゛ power amplifier, 71.
72: Power amplifier, 73: Power divider, 74 Lightning single power combiner, 111: Input terminal, 112: Output terminal, 113
: first power amplifier, 114: second power amplifier, 11
7.118: Switcher, 119: Power divider, 120: Power combiner, 121: Variable amplitude circuit, 123: Variable phase circuit, 125: IF stage variable amplitude circuit, 126: Transmission frequency converter, 128: For excitation Amplifier, 130: IF
Stage amplitude variable circuit control circuit, 131, 132: Collector current control circuit of power amplifier, 136: Detection current balancer, 1
40: Coupler, 141: Detector, 142: A/D converter, 145: Power amplifier control section, 144.145,1
46,147: D/A converter, 148: 20 GHz band V = +7 receiver, 150: C point, 151: ]) point Patent applicant Nippon Telegraph and Telephone Public Corporation patent agent Megumi Yamamoto - Figure 5 f, fz f- v: tl, Iff, ((rHi) #6 Figure/7q?-Jy immediately loses (d8) Act 7 Concave 7 axis i Moe b Time key (%)

Claims (1)

【特許請求の範囲】[Claims] 降雨減衰の大きい衛生通信用周波数帯で使用する送信電
力装置などにおいて、第1、及び第2の電力増幅器を並
列に配置し、各増幅器の入力側に電力分配器、出力側に
電力合成器を設置し、第1、及び第2の電力増幅器で電
力合成が可能な構成とし、晴天時には第1の電力増幅器
のみをON、第2の電力増幅器はOFFとしておき、晴
天時の回線規格値を満足する送信出力が得られるように
、第1の電力増幅器の送信出力に影響を与えるパラメー
タ値を低下させておき、当該電力増幅器の飽和出力よシ
低い送信出力で動作させ、IF帯での可変振幅減衰器又
は電力分配器め前にもうけられるRF帯可変増幅減衰器
の減衰量を調整して、送信出力の微調整を行い、晴天時
の所要送信出力を得、次に、降雨減衰量が増加した場合
には、第1の電力増幅器のコレクタ電流等を増加させて
送信電力を増加させ、IF帯での可変振幅減衰器の減衰
量を減少させて所要送信出力となるように微調整を行い
々から送信出力を増加させてゆき、第1の電力増幅器で
はカバーできないような大きな減衰に達した時、予めあ
る降雨減衰値に達した時にONしておいだ第2の電力増
幅器を、第1の電力増幅器と合成されるような接続とし
、合成出力が最大となるようにいずれかの電力増幅器の
位相を変える制御を行い、降雨減衰が小さくなった時に
は上記と逆の手順で送信出力を減少させてゆくような制
御を行うことを特徴とする送信電力制御機能を有する大
電力送信方式。
In transmission power equipment used in satellite communication frequency bands where rain attenuation is large, first and second power amplifiers are arranged in parallel, and a power divider is installed on the input side of each amplifier, and a power combiner is installed on the output side of each amplifier. The system is installed in a configuration where power can be combined using the first and second power amplifiers, and when the weather is clear, only the first power amplifier is turned on and the second power amplifier is turned off to satisfy the line standard values during fine weather. In order to obtain a transmission output of 100%, the parameter value that affects the transmission output of the first power amplifier is lowered, and the first power amplifier is operated at a transmission output lower than the saturation output of the power amplifier, and a variable amplitude in the IF band is set. Finely adjust the transmission output by adjusting the attenuation of the RF band variable amplification attenuator installed in front of the attenuator or power divider to obtain the required transmission output in clear weather, and then increase the amount of rain attenuation. In this case, increase the collector current of the first power amplifier to increase the transmission power, and reduce the amount of attenuation of the variable amplitude attenuator in the IF band to make fine adjustments to achieve the required transmission output. When the transmission output reaches a large attenuation that cannot be covered by the first power amplifier, the second power amplifier, which was turned on in advance when a certain rain attenuation value is reached, is switched on to the first power amplifier. Connect it so that it is combined with the power amplifier of A high-power transmission method having a transmission power control function that performs control such that the transmission power is increased.
JP58141875A 1983-08-04 1983-08-04 Large power transmission system having transmission power control function Pending JPS6033747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141875A JPS6033747A (en) 1983-08-04 1983-08-04 Large power transmission system having transmission power control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141875A JPS6033747A (en) 1983-08-04 1983-08-04 Large power transmission system having transmission power control function

Publications (1)

Publication Number Publication Date
JPS6033747A true JPS6033747A (en) 1985-02-21

Family

ID=15302190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141875A Pending JPS6033747A (en) 1983-08-04 1983-08-04 Large power transmission system having transmission power control function

Country Status (1)

Country Link
JP (1) JPS6033747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217708A (en) * 1986-03-19 1987-09-25 Fujitsu Ltd High output amplifier
JP2017017613A (en) * 2015-07-03 2017-01-19 日本無線株式会社 Communication diagnostic system and communication diagnostic method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100623A (en) * 1975-03-03 1976-09-06 Nippon Telegraph & Telephone EISEITSUSHI NHOSHIKI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100623A (en) * 1975-03-03 1976-09-06 Nippon Telegraph & Telephone EISEITSUSHI NHOSHIKI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217708A (en) * 1986-03-19 1987-09-25 Fujitsu Ltd High output amplifier
JP2017017613A (en) * 2015-07-03 2017-01-19 日本無線株式会社 Communication diagnostic system and communication diagnostic method

Similar Documents

Publication Publication Date Title
EP0901219B1 (en) Dynamic power allocation system and method for multi-beam satellite amplifiers
US6308080B1 (en) Power control in point-to-multipoint systems
RU2308804C2 (en) Receiving system amps using zero intermediate-frequency architecture
US6253077B1 (en) Downstream power control in point-to-multipoint systems
WO1998009372A1 (en) Method of and apparatus for filtering intermodulation products in a radiocommunication system
WO2005006542A1 (en) Cartesian loop transmitter and method of adjusting an output level of such transmitter
KR20020067636A (en) Receiving device with automatic gain control
US7212796B2 (en) Antenna unit and receiving circuit
US7171159B2 (en) Transmission power control in a satellite communication system
Sun et al. Research on key technologies of C/Ku dual-band satellite communication
JPS6033747A (en) Large power transmission system having transmission power control function
JPH0946264A (en) Linear modulation radio transmitter/receiver and its power control method
US7221907B2 (en) On orbit variable power high power amplifiers for a satellite communications system
EP1343219A1 (en) Alignment of antenna polarization axes
JP2013145991A (en) Large power amplifier for power combining satellite earth station monitoring rainfall attenuation
EP1096700A1 (en) Device for the simultaneous reception/transmission of signals comprising a low-noise amplifier
JPS6358406B2 (en)
CN116073893B (en) Load system and method for calibrating atmospheric transmission characteristics of multi-band millimeter wave signals
JPS61212922A (en) Large power amplifier control system
JP3024970B1 (en) Relay broadcasting equipment
KR20050093086A (en) Interference cancellation repeater using vector modulator
JP2013146036A (en) Large power amplifier for power combining satellite earth station subjected to interlocking control with tdma burst timing
JP3038899B2 (en) Automatic frequency / gain control circuit
Fuketa et al. 30/20-GHz Band Earth Stations
JP2013146018A (en) Large power amplifier for power combining satellite earth station interlocked with reception beacon signal