JP2017017613A - Communication diagnostic system and communication diagnostic method - Google Patents

Communication diagnostic system and communication diagnostic method Download PDF

Info

Publication number
JP2017017613A
JP2017017613A JP2015134344A JP2015134344A JP2017017613A JP 2017017613 A JP2017017613 A JP 2017017613A JP 2015134344 A JP2015134344 A JP 2015134344A JP 2015134344 A JP2015134344 A JP 2015134344A JP 2017017613 A JP2017017613 A JP 2017017613A
Authority
JP
Japan
Prior art keywords
communication
reception
station
satellite
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015134344A
Other languages
Japanese (ja)
Other versions
JP6504562B2 (en
Inventor
成志 吉田
Shigeji Yoshida
成志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2015134344A priority Critical patent/JP6504562B2/en
Publication of JP2017017613A publication Critical patent/JP2017017613A/en
Application granted granted Critical
Publication of JP6504562B2 publication Critical patent/JP6504562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a communication diagnostic system capable of easily predicting the availability of radio communication under a meteorological condition at the time by calculating the availability of radio communication based on prescribed cumulative meteorological information.SOLUTION: A communication diagnostic system 1 comprises a transmission/reception station BS, a meteorological and hydrographic information acquisition station WS, and a cloud server CS. The transmission/reception station BS transmits an archive AR, such as a reception level when a GX terminal 11 performed radio communication with a GX satellite S, to the cloud server CS via the GX satellite S. A meteorological and hydrographic server 21 in the meteorological and hydrographic information acquisition station WS outputs meteorological information WD to the cloud server CS. A virtual machine 31 in the cloud server CS calculates cumulative rainfall from the archive AR and the meteorological information WD, and calculates a communication unavailability rate by calculating correlative relation between the cumulative rainfall and the reception level. This allows the rate of unavailability of communication between the GX terminal 11 and the GX satellite S to be predicted easily.SELECTED DRAWING: Figure 1

Description

本発明は、衛星通信における通信の可否を予測して通知する通信診断システムおよび通信診断方法に関する。   The present invention relates to a communication diagnosis system and a communication diagnosis method that predict and notify whether or not communication is possible in satellite communication.

近年、船舶通信の高速化要求が急速に高まっているが、それに対応するため、インマルサット社より、Global Xpress(以下、「GX」という。)通信と呼ばれる高速衛星通信システムが提供される予定である。このGX通信は、Ka帯と呼ばれる20GHz〜30GHzの周波数帯域の伝送波を用いて無線通信を行うものである。しかし、このKa帯を使用した無線通信は、降雨等の気象条件により伝送波の出力が減衰して通信できない場合があることが知られている。   In recent years, there has been a rapid increase in demand for high-speed ship communication. In order to respond to this demand, Inmarsat will provide a high-speed satellite communication system called Global Xpress (hereinafter referred to as “GX”) communication. . This GX communication performs wireless communication using a transmission wave in a frequency band of 20 GHz to 30 GHz called a Ka band. However, it is known that wireless communication using the Ka band may not be able to communicate due to attenuation of the output of the transmission wave due to weather conditions such as rainfall.

従来、例えば、気象データサーバの気象予測データから所定時間経過後の予測降雨量を取得するネットワーク監視装置が知られている(例えば、特許文献1等参照。)。このネットワーク監視装置は、現状の回線ルートにおける予測降雨量から、現状の回線ルートに回線エラーが発生するか否かを予測し、回線エラーが発生すると予測した場合、回線エラーが発生しないと予測される回線ルートへ切り替えるものである。   2. Description of the Related Art Conventionally, for example, a network monitoring device that acquires a predicted rainfall amount after a predetermined time from weather prediction data of a weather data server is known (see, for example, Patent Document 1). This network monitoring device predicts whether or not a line error will occur in the current line route from the predicted rainfall in the current line route, and if it is predicted that a line error will occur, it is predicted that no line error will occur. Switch to the line route.

特開2009−049593号公報JP 2009-049593 A

ところで、実際の無線通信では、降雨だけではなく、黄砂、PM2.5、及び火山の噴煙等の微小粒子状物質も伝送波の出力に影響することがある。また、台風等の暴風雨が接近している状況では、海上における波しぶきも影響することがある。これらの全ての要因について、無線通信の可否を理論的に算出するのは容易ではない。   By the way, in actual wireless communication, not only rainfall but also fine particulate matter such as yellow sand, PM2.5, and volcanic plume may affect the output of the transmission wave. In the situation where storms such as typhoons are approaching, wave splashes at sea may also affect. It is not easy to theoretically calculate whether or not wireless communication is possible for all these factors.

そこで本発明は、降雨量や微小粒子状物質等の分布を示す累積気象情報と、伝送波の出力強度との相関関係を算出し、所定の累積気象情報における無線通信の可否を算出することにより、無線通信の可否を容易に予測することを目的とする。   Therefore, the present invention calculates the correlation between cumulative weather information indicating the distribution of rainfall, fine particulate matter, and the like, and the output intensity of the transmission wave, and calculates the availability of wireless communication in the predetermined cumulative weather information. An object is to easily predict whether wireless communication is possible.

上記課題を解決するために、請求項1に記載の発明は、送受信局と衛星との間で無線通信を行う衛星通信における前記無線通信の可否を診断する通信診断システムにおいて、前記送受信局の位置情報と、前記送受信局から前記衛星への方角を示す方位角と、前記送受信局における前記衛星が出力する伝送波の出力強度を示す受信レベルと、を有する送受信局ログ情報を取得するログ情報取得手段と、前記送受信局と前記衛星との間における所定距離毎の地点の気象情報を取得する気象情報取得手段と、前記位置情報と、前記方位角と、前記気象情報とから、前記所定距離毎の地点の累積気象情報を算出する累積算出手段と、前記累積気象情報と前記受信レベルとの相関関係を算出し、前記相関関係に基づき、前記送受信局における過去、現在のまたは予測される累積気象情報から前記送受信局における前記無線通信の可否を診断する診断手段と、を備えたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a communication diagnostic system for diagnosing whether radio communication is possible in satellite communication in which radio communication is performed between a transmission / reception station and a satellite. Log information acquisition for acquiring transmission / reception station log information having information, an azimuth indicating a direction from the transmission / reception station to the satellite, and a reception level indicating an output intensity of a transmission wave output by the satellite in the transmission / reception station Means, weather information acquisition means for acquiring weather information at a predetermined distance between the transmitting / receiving station and the satellite, the position information, the azimuth angle, and the weather information. A cumulative calculation means for calculating cumulative weather information at a point of the vehicle, and calculating a correlation between the cumulative weather information and the reception level, and based on the correlation, past and present at the transmitting and receiving stations Or wherein the expected accumulated weather information, further comprising a diagnostic means for diagnosing whether said wireless communications in the transceiver station.

この発明では、送受信局の位置情報と、送受信局から前記衛星への方角を示す方位角と、気象情報とから、送受信局と衛星との間における所定距離毎の地点の累積気象情報が算出され、累積気象情報と衛星が出力する伝送波の出力強度を示す受信レベルとの相関関係が算出される。また、この相関関係に基づき、送受信局における過去、現在のまたは予測される累積気象情報から送受信局における無線通信の可否が診断される。   In this invention, cumulative weather information at a predetermined distance between the transmission / reception station and the satellite is calculated from the position information of the transmission / reception station, the azimuth indicating the direction from the transmission / reception station to the satellite, and the weather information. The correlation between the cumulative weather information and the reception level indicating the output intensity of the transmission wave output from the satellite is calculated. Based on this correlation, whether or not wireless communication is possible at the transmitting / receiving station is diagnosed from past, present or predicted accumulated weather information at the transmitting / receiving station.

請求項2に記載の発明は、請求項1に記載の通信診断システムにおいて、前記気象情報は、前記所定距離毎の地点の雨量を有し、前記累積気象情報は、前記送受信局から所定の地点までの間における前記所定距離毎の前記雨量を累積した累積雨量を有する、ことを特徴とする。   According to a second aspect of the present invention, in the communication diagnosis system according to the first aspect, the meteorological information includes a rainfall amount at a point for each predetermined distance, and the accumulated meteorological information is a predetermined point from the transmitting / receiving station. And a cumulative rainfall amount obtained by accumulating the rainfall amount for each of the predetermined distances up to a predetermined distance.

請求項3に記載の発明は、請求項1に記載の通信診断システムにおいて、前記気象情報は、前記所定距離毎の地点の雨量と、前記所定距離毎の地点の微小粒子状物質の浮遊量とを有し、前記累積気象情報は、前記送受信局から所定の地点までの間における前記所定距離毎の前記雨量を累積した累積雨量と、前記所定距離毎の前記微小粒子状物質の浮遊量を累積した累積微小物質浮遊量とを有する、ことを特徴とする。   According to a third aspect of the present invention, in the communication diagnosis system according to the first aspect, the meteorological information includes the amount of rainfall at each predetermined distance and the amount of microparticulate matter suspended at each predetermined distance. And the accumulated weather information accumulates the accumulated rain amount obtained by accumulating the rain amount for each predetermined distance between the transmitting / receiving station and the predetermined point, and the suspended amount of the microparticulate matter for each predetermined distance. And having a cumulative amount of minute substance suspended.

請求項4に記載の発明は、請求項1ないし3のいずれか1項に記載の通信診断システムにおいて、前記送受信局ログ情報は、さらに、前記伝送波を受信していない区間における受信強度を示すノイズレベルを有し、前記診断手段は、前記受信レベル及び前記ノイズレベルから前記受信レベルにおける通信可否の閾値を示す判定レベルを算出し、前記受信レベル及び前記判定レベルの回帰直線を算出し、前記回帰直線から前記受信レベルが前記判定レベル以下となる確率分布を算出して前記送受信局における前記無線通信の可否を診断する、ことを特徴とする。   According to a fourth aspect of the present invention, in the communication diagnostic system according to any one of the first to third aspects, the transmission / reception station log information further indicates reception intensity in a section in which the transmission wave is not received. Having a noise level, the diagnostic means calculates a determination level indicating a threshold of communication availability at the reception level from the reception level and the noise level, calculates a regression line of the reception level and the determination level, and A probability distribution in which the reception level is equal to or lower than the determination level is calculated from a regression line to diagnose whether or not the wireless communication is possible in the transmission / reception station.

請求項5に記載の発明は、請求項1ないし4のいずれか1項に記載の通信診断システムにおいて、前記診断手段は、前記所定距離毎の地点毎に前記累積気象情報と前記受信レベルとの相関関係をそれぞれ算出し、前記相関関係の最小二乗誤差をそれぞれ算出し、前記最小二乗誤差が最も小さい前記相関関係に基づき、前記送受信局における前記無線通信の可否を診断する、ことを特徴とする。   According to a fifth aspect of the present invention, in the communication diagnostic system according to any one of the first to fourth aspects, the diagnostic unit calculates the cumulative weather information and the reception level for each point at the predetermined distance. Calculating a correlation, calculating a least square error of the correlation, and diagnosing the wireless communication in the transmitting / receiving station based on the correlation having the smallest minimum square error. .

請求項6に記載の発明は、請求項1ないし5のいずれか1項に記載の通信診断システムにおいて、前記送受信局は、海上を航行している船舶内に設置されている船上局または地上に設置されている地上局である、ことを特徴とする。   According to a sixth aspect of the present invention, in the communication diagnostic system according to any one of the first to fifth aspects, the transmitting / receiving station is installed on a shipboard station or on the ground installed in a ship that is navigating the sea. It is a ground station that is installed.

請求項7に記載の発明は、請求項1ないし5のいずれか1項に記載の通信診断システムにおいて、前記送受信局は、海上を航行して季節及び地域毎に前記累積気象情報及び前記受信レベルを収集し、前記診断手段は、収集された前記累積気象情報及び前記受信レベルからそれぞれ前記相関関係を算出してデータベースを構築し、船舶が海上を航行する際に前記データベースを参照してその船舶が航行する季節及び地域における前記無線通信の可否を診断する、ことを特徴とする。   The invention according to claim 7 is the communication diagnosis system according to any one of claims 1 to 5, wherein the transmission / reception station navigates the sea, and the cumulative weather information and the reception level for each season and region. And the diagnostic means calculates the correlation from the collected cumulative weather information and the received level to construct a database, and refers to the database when the ship sails on the sea. Diagnosing whether or not the wireless communication is possible in the season and area in which the aircraft navigates.

請求項8に記載の発明は、送受信局と衛星との間で無線通信を行う衛星通信において、前記送受信局の位置情報、前記送受信局から前記衛星への方角を示す方位角、及び前記送受信局における前記衛星が出力する伝送波の出力強度を示す受信レベルを有する送受信局ログ情報と、前記送受信局と前記衛星との間における所定距離毎の地点の気象情報と、を取得し、前記無線通信の可否を診断する通信診断方法であって、前記位置情報と、前記方位角と、前記気象情報とから、前記所定距離毎の地点の累積気象情報を算出する累積算出処理と、前記累積気象情報と前記受信レベルとの相関関係を算出し、前記相関関係に基づき、前記送受信局における過去、現在のまたは予測される累積気象情報から前記送受信局における前記無線通信の可否を診断する診断処理と、を有することを特徴とする。   According to an eighth aspect of the present invention, in satellite communication in which wireless communication is performed between a transmission / reception station and a satellite, position information of the transmission / reception station, an azimuth indicating a direction from the transmission / reception station to the satellite, and the transmission / reception station Transmitting / receiving station log information having a reception level indicating an output intensity of a transmission wave output by the satellite and meteorological information at a predetermined distance between the transmitting / receiving station and the satellite, and the wireless communication A communication diagnostic method for diagnosing whether or not the vehicle is capable of accumulating, and a cumulative calculation process for calculating cumulative weather information for each predetermined distance from the position information, the azimuth angle, and the weather information, and the cumulative weather information And the reception level is calculated, and based on the correlation, whether or not the wireless communication at the transmitting / receiving station is possible from the past, current or predicted accumulated weather information at the transmitting / receiving station is determined. Diagnostic process of disconnection, and having a.

請求項1及び請求項8に記載の発明によれば、送受信局における過去、現在のまたは予測される累積気象情報から送受信局における無線通信の可否が診断されることにより、そのときの気象条件における無線通信の可否を容易に予測することが可能となる。そのため、GX通信が出来ない場合、その原因が気象条件によるものか故障によるものかを切り分けることが容易になるため、GX通信を利用する顧客からの無線通信が出来ない旨の問い合わせに対し、迅速に原因を調査して回答することができるようになる。また、気象条件により所定の送受信局と衛星との間の無線通信が不可能になると事前に予測される場合には、他の送受信局が使用可能であるときにはその送受信局を使用して衛星と無線通信を行う等の運用が可能となる。   According to the invention described in claim 1 and claim 8, by diagnosing the possibility of wireless communication in the transmitting / receiving station from the past, current or predicted accumulated weather information in the transmitting / receiving station, in the current weather conditions It becomes possible to easily predict whether wireless communication is possible. For this reason, when GX communication is not possible, it is easy to determine whether the cause is due to weather conditions or due to a failure. Therefore, in response to an inquiry from a customer who uses GX communication that wireless communication is not possible, The cause can be investigated and answered. In addition, when it is predicted in advance that wireless communication between a predetermined transmitting / receiving station and a satellite becomes impossible due to weather conditions, when another transmitting / receiving station is available, the transmitting / receiving station is used to Operation such as performing wireless communication becomes possible.

請求項2に記載の発明によれば、累積雨量と受信レベルとの相関関係に基づき、送受信局における無線通信の可否が診断されることにより、具体的な気象条件と無線通信の可否との相関関係を明確にすることが可能となる。   According to the second aspect of the present invention, the correlation between the specific weather conditions and the availability of wireless communication is diagnosed based on the correlation between the accumulated rainfall and the reception level, based on the diagnosis of the availability of wireless communication at the transmitting and receiving stations. It becomes possible to clarify the relationship.

請求項3に記載の発明によれば、累積雨量及び累積微小物質浮遊量と受信レベルとの相関関係に基づき、送受信局における無線通信の可否が診断されることにより、具体的な気象条件及び大気の状態と無線通信の可否との相関関係を明確にすることが可能となる。   According to the third aspect of the invention, based on the correlation between the accumulated rain amount and the accumulated minute matter floating amount and the reception level, whether or not wireless communication is possible in the transmitting and receiving stations is diagnosed, the specific weather conditions and the atmosphere It becomes possible to clarify the correlation between the status of the wireless communication and the availability of wireless communication.

請求項4に記載の発明によれば、受信レベルとノイズレベルとから、受信レベルにおける通信可否の閾値を示す判定レベルが算出され、受信レベルが判定レベル以下となる確率分布が算出されることにより、受信レベルが判定レベル以下の場合は無線通信が不可能であると容易に予測することが可能となる。   According to the fourth aspect of the present invention, by calculating a determination level indicating a threshold of communication availability at the reception level from the reception level and the noise level, and calculating a probability distribution in which the reception level is equal to or lower than the determination level. When the reception level is less than or equal to the determination level, it can be easily predicted that wireless communication is impossible.

請求項5に記載の発明によれば、相関関係の最小二乗誤差が算出され、最小二乗誤差が最も小さい地点の相関関係に基づき、送受信局における無線通信の可否が診断されることにより、より正確に無線通信の可否を算出することが可能となる。   According to the fifth aspect of the present invention, the least square error of the correlation is calculated, and the possibility of wireless communication at the transmitting / receiving station is diagnosed based on the correlation of the point where the least square error is the smallest. It is possible to calculate whether wireless communication is possible.

請求項6に記載の発明によれば、送受信局は、海上を航行している船舶内に設置されている船上局または地上に設置されている地上局のいずれでも良いので、移動中の送受信局であっても本発明を適用することができる。   According to the sixth aspect of the present invention, the transmitting / receiving station may be either an onboard station installed in a ship navigating at sea or a ground station installed on the ground. Even so, the present invention can be applied.

請求項7に記載の発明によれば、季節及び地域毎に相関関係が算出されてデータベースが構築され、船舶が航行する際にそのデータベースが参照されて航行する季節及び地域における無線通信の可否が診断されるため、航行する季節及び地域における無線通信の可否を瞬時に判断することが可能となる。   According to the seventh aspect of the present invention, a correlation is calculated for each season and region, a database is constructed, and whether or not wireless communication is possible in the season and region in which the database is referred to and navigated when the vessel navigates. Since the diagnosis is made, it is possible to instantaneously determine whether or not wireless communication is possible in the season and region of navigation.

この発明の実施の形態に係る通信診断システム1の概略を示す構成図である。It is a lineblock diagram showing the outline of communication diagnostic system 1 concerning an embodiment of this invention. 図1の通信診断システム1における累積雨量を算出する例を示す模式図である。It is a schematic diagram which shows the example which calculates the cumulative rainfall in the communication diagnostic system 1 of FIG. 図1のインスタンス31aが算出した累積雨量と伝送波DWの受信レベルとの相関関係の例を示す図である。It is a figure which shows the example of the correlation with the accumulated rainfall calculated by the instance 31a of FIG. 1, and the reception level of the transmission wave DW. 図3の相関関係から確率分布を算出する例を示す図であり、受信レベル及び判定レベルの確率分布及び分散を算出する例を示す図(a)、及び受信レベルが判定レベル以下となる確率分布を算出する例を示す図(b)である。FIG. 4 is a diagram illustrating an example of calculating a probability distribution from the correlation of FIG. 3, a diagram illustrating an example of calculating a probability distribution and variance of reception levels and determination levels, and a probability distribution in which the reception level is equal to or lower than the determination level. It is a figure (b) showing an example which computes. 図1のGX端末11から0.0°の地点における累積雨量と受信レベル及び判定レベルとの相関関係を示す図である。It is a figure which shows the correlation with the accumulated rainfall in the point of 0.0 degrees from the GX terminal 11 of FIG. 図1のGX端末11から0.1°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the cumulative rainfall, the reception level, and the determination level in the point of 0.1 degree from the GX terminal 11 of FIG. 図1のGX端末11から0.2°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation rainfall in the point of 0.2 degrees from the GX terminal of FIG. 1, a reception level, and a determination level. 図1のGX端末11から0.3°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation rainfall in the point of 0.3 degrees from the GX terminal of FIG. 1, a reception level, and a determination level. 図1のGX端末11から0.4°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the cumulative rainfall in the point of 0.4 degrees from the GX terminal of FIG. 図1のGX端末11から0.5°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation rainfall in the point of 0.5 degrees from the GX terminal of FIG. 1, a reception level, and a determination level. 図1のGX端末11から0.6°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation rainfall in the point of 0.6 degrees from the GX terminal of FIG. 1, a reception level, and a determination level. 図1のGX端末11から0.7°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulated rainfall, the reception level, and the determination level in the point of 0.7 degrees from the GX terminal 11 of FIG. 図1のGX端末11から0.8°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation amount of rainfall in the point of 0.8 degrees from the GX terminal 11 of FIG. 1, a reception level, and a determination level. 図1のGX端末11から0.9°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulation rainfall in the point of 0.9 degrees from GX terminal 11 of FIG. 1, a reception level, and a determination level. 図1のGX端末11から1.0°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the accumulated rainfall, the reception level, and the determination level in the point of 1.0 degree from GX terminal 11 of FIG. 図1のGX端末11から1.1°の地点における累積雨量と受信レベル及び判定レベルとの受信レベルとの相関関係を示す図である。It is a figure which shows the correlation with the reception level of the cumulative rainfall in the point of 1.1 degrees from the GX terminal of FIG. 図10の相関関係から通信が不可能となる確率を算出した例を示す図である。It is a figure which shows the example which calculated the probability that communication was impossible from the correlation of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

この発明の実施の形態に係る通信診断システム1は、GX衛星S(衛星)と送受信局BSとの間の無線通信の可否を診断するシステムであり、主として、図1に示すように、GX衛星Sと、送受信局BSと、気象海象情報取得局WSと、クラウドサーバCSとを備えている。   A communication diagnostic system 1 according to an embodiment of the present invention is a system for diagnosing the availability of wireless communication between a GX satellite S (satellite) and a transmission / reception station BS, and mainly as shown in FIG. S, a transmission / reception station BS, a weather and sea information acquisition station WS, and a cloud server CS.

GX衛星Sは、GX通信を行うための通信衛星であり、送受信局BSとの間でKa帯の周波数帯域の伝送波DWを用いて無線通信を行う人工衛星である。このKa帯は、降雨等の気象条件や、黄砂、PM2.5、及び火山の噴煙等の微小粒子状物質の影響を受けやすい周波数帯域であり、これらの影響により出力が減衰し、無線通信できない場合がある。   The GX satellite S is a communication satellite for performing GX communication, and is an artificial satellite that performs radio communication with the transmission / reception station BS using the transmission wave DW in the Ka band frequency band. This Ka band is a frequency band that is susceptible to weather conditions such as rainfall and fine particulate matter such as yellow sand, PM2.5, and volcanic plume, and the output is attenuated by these effects, and wireless communication is not possible. There is a case.

送受信局BSは、海上を航行している船舶内に設けられ、GX衛星Sと伝送波DWを介して無線通信を行うことにより他の船舶や地上に設けられた送受信局と通信を行うものであり、GX端末11が設置されている。なお、送受信局BSは、地上に設けられたものでも良い。   The transmission / reception station BS is provided in a ship navigating at sea, and communicates with other ships and a transmission / reception station provided on the ground by performing wireless communication with the GX satellite S via the transmission wave DW. Yes, a GX terminal 11 is installed. The transmission / reception station BS may be provided on the ground.

GX端末11は、伝送波DWを送受信する通信インターフェース装置であり、GX衛星Sの方向を自動検知して伝送波DWを送受信する機能を有している。また、GX端末11は、伝送波DWの送受信情報や、送受信局BSの位置情報(緯度及び経度)、送受信局BSからGX衛星Sへの方角を示す方位角、伝送波DWの出力強度を示す受信レベル、及び伝送波DWを受信していない区間における受信強度を示すノイズレベル等の送受信局ログ情報を取得し、アーカイブARに記憶する機能(ログ情報取得手段)を有している。このGX端末11は、アーカイブARを伝送波DW及びGX衛星Sを介してクラウドサーバCSへ送信する。   The GX terminal 11 is a communication interface device that transmits and receives a transmission wave DW, and has a function of automatically detecting the direction of the GX satellite S and transmitting and receiving the transmission wave DW. Further, the GX terminal 11 indicates transmission / reception information of the transmission wave DW, position information (latitude and longitude) of the transmission / reception station BS, an azimuth indicating a direction from the transmission / reception station BS to the GX satellite S, and an output intensity of the transmission wave DW. It has a function (log information acquisition means) for acquiring transmission / reception station log information such as a reception level and a noise level indicating a reception intensity in a section where the transmission wave DW is not received and storing it in the archive AR. The GX terminal 11 transmits the archive AR to the cloud server CS via the transmission wave DW and the GX satellite S.

気象海象情報取得局WSは、気象観測情報及び海象情報を取得する設備であり、気象海象サーバ21が設置されている。気象海象サーバ21は、気象観測情報及び海象情報を取得する機能(気象情報取得手段)を有し、クラウドサーバCSへ送信するサーバコンピュータであり、例えば、気象業務支援センターから取得した気象データである気象情報WDを提供するものである。この気象情報WDは、例えば、GPV形式のファイルであり、図2に示すように、送受信局BS内のGX端末11からGX衛星Sの方向に伸びる矢印L1上の所定距離毎の地点(例えば、緯度及び経度が0.02°毎の地点)P1,P2,・・・,P7の雨量等の各種気象データを有している。   The weather and sea state information acquisition station WS is a facility for acquiring weather observation information and sea state information, and a weather and sea state server 21 is installed. The meteorological and oceanographic server 21 is a server computer that has a function (meteorological information acquisition means) for acquiring meteorological observation information and marine state information, and transmits it to the cloud server CS. It provides weather information WD. This weather information WD is, for example, a GPV format file, and as shown in FIG. 2, for each predetermined distance on the arrow L1 extending from the GX terminal 11 in the transmission / reception station BS in the direction of the GX satellite S (for example, It has various meteorological data such as rainfall of points P1, P2,.

クラウドサーバCSは、インターネットに接続されたPCに対して、各種ソフトウェアやデータを必要に応じてインターネットを介して提供するサーバコンピュータであり、例えば、アマゾン・ドット・コム(登録商標)社が提供するAmazon Web Service(以下、「AWS」という。)(登録商標)を利用するものである。このクラウドサーバCSには、仮想マシン31と、データストレージ32とが設置されている。   The cloud server CS is a server computer that provides various software and data to a PC connected to the Internet as needed via the Internet. For example, the cloud server CS is provided by Amazon.com (registered trademark). Amazon Web Service (hereinafter referred to as “AWS”) (registered trademark) is used. In this cloud server CS, a virtual machine 31 and a data storage 32 are installed.

仮想マシン31は、1台のハードウェア資源を複数のOS(Operating System)及びアプリケーションソフトに共有させ、そのOS及びアプリケーションソフトを複数のユーザに割り当てて独立して動作させる仕組みである。この仮想マシン31は、例えば、AWSのサービスの1つであるAmazon EC2(登録商標)を利用するものである。仮想マシン31は、メモリ上にインスタンス31aと呼ばれるコンピュータプログラム及びデータ構造を実行可能な状態に展開したものを記憶している。データストレージ32は、インスタンス31aが使用するためのデータを格納するためにインターネット上に提供されているデータサーバであり、インスタンス31aからアクセスされるものである。このデータストレージ32は、例えば、AWSのサービスの1つであるAmazon S3を利用するものである。データストレージ32は、各種データを格納するためのバケット32aを有している。インスタンス31aは、バケット32aに格納されている各種データの量に応じて複数のインスタンス31a1,31a2,31a3,・・・を生成するように構成されている。   The virtual machine 31 is a mechanism in which one hardware resource is shared by a plurality of OSs (Operating System) and application software, and the OS and application software are allocated to a plurality of users and operated independently. The virtual machine 31 uses, for example, Amazon EC2 (registered trademark), which is one of AWS services. The virtual machine 31 stores in a memory a computer program called an instance 31a and a data structure expanded into an executable state. The data storage 32 is a data server provided on the Internet to store data for use by the instance 31a, and is accessed from the instance 31a. This data storage 32 uses, for example, Amazon S3, which is one of AWS services. The data storage 32 has a bucket 32a for storing various data. The instance 31a is configured to generate a plurality of instances 31a1, 31a2, 31a3,... According to the amounts of various data stored in the bucket 32a.

インスタンス31aは、GX端末11から送信されたアーカイブARと、気象海象サーバ21から送信された気象情報WDとをバケット32aへ記憶させる機能を有している。また、インスタンス31aは、アーカイブARと気象情報WDとを読み込み、気象情報WD内の図2に示す地点P1,P2,・・・,P7の雨量より、送受信局BS内のGX端末11から地点P1,P2,・・・,P7までの間の累積雨量(累積気象情報)を算出し、累積情報ADに出力する機能(累積算出手段)を有している。さらに、インスタンス31aは、累積情報ADを取得して相関関係を算出し、この相関関係に基づいて、GX衛星Sとの無線通信の可否を診断する機能(診断手段)を有している。累積情報ADは、例えば、CSV形式のファイルである。   The instance 31a has a function of storing the archive AR transmitted from the GX terminal 11 and the weather information WD transmitted from the weather sea state server 21 in the bucket 32a. Further, the instance 31a reads the archive AR and the weather information WD, and the point P1 from the GX terminal 11 in the transmission / reception station BS based on the rainfall at the points P1, P2,..., P7 shown in FIG. , P2,..., P7, and a function (cumulative calculation means) for calculating the cumulative rainfall (cumulative weather information) and outputting it to the cumulative information AD. Further, the instance 31a has a function (diagnostic unit) that acquires the accumulated information AD, calculates a correlation, and diagnoses whether wireless communication with the GX satellite S is possible based on the correlation. The accumulated information AD is, for example, a CSV format file.

次に、このような通信診断システム1における通信診断方法等について説明する。   Next, a communication diagnosis method and the like in such a communication diagnosis system 1 will be described.

この通信診断方法は、インスタンス31aによる累積算出処理及び診断処理を有している。累積算出処理は、アーカイブARと気象情報WDとを読み込み、図2に示す地点P1,P2,・・・,P7の雨量より、GX端末11から地点P1,P2,・・・,P7までの間の累積雨量をそれぞれ算出する処理であり、例えば、図2の地点P3までの累積雨量を算出する場合、地点P1,P2,P3における雨量を累積して算出する処理である。   This communication diagnosis method has a cumulative calculation process and a diagnosis process by the instance 31a. The cumulative calculation process reads the archive AR and the weather information WD, and the distance from the GX terminal 11 to the points P1, P2,..., P7 based on the rainfall at the points P1, P2,. For example, in the case of calculating the cumulative rainfall up to the point P3 in FIG. 2, the cumulative rainfall is calculated at the points P1, P2, and P3.

診断処理は、まず、図3に示すように、インスタンス31aが算出した累積雨量と受信レベルとの相関関係を示す直線L2と、累積雨量と判定レベルとの相関関係を示す破線L3とを算出する。ここで、判定レベルとは、受信レベルがこの値以下の場合にはGX端末11とGX衛星Sとの通信が不可能であると判定するための値であり、ノイズレベルに所定の演算をして算出されるものである。図3における黒丸で示した点は、所定期間(例えば、1月)内に所定間隔(例えば、10秒間隔)で、図2の地点P1,P2,・・・,P7(例えば、GX端末11から緯度及び経度を0.02°毎に、0.8°の範囲)で取得した雨量から算出した累積雨量のときの受信レベルを示す点であり、×で示した点は、同期間の累積雨量のときのノイズレベルを示す点であり、白丸で示した点は、同期間の累積雨量のときの判定レベルを示す点である。直線L2は、図3の受信レベルの点から最小二乗法を用いて算出した回帰直線であり、破線L3は、図3の判定レベルの点から最小二乗法を用いて算出した回帰直線である。この相関関係は、累積雨量を算出した地点P1,P2,・・・,P7ごとに算出される。   In the diagnosis process, first, as shown in FIG. 3, a straight line L2 indicating the correlation between the accumulated rainfall calculated by the instance 31a and the reception level and a broken line L3 indicating the correlation between the accumulated rainfall and the determination level are calculated. . Here, the determination level is a value for determining that communication between the GX terminal 11 and the GX satellite S is impossible when the reception level is less than or equal to this value, and performs a predetermined calculation on the noise level. Is calculated. The points indicated by black circles in FIG. 3 are points P1, P2,..., P7 (for example, GX terminal 11 in FIG. 2) at predetermined intervals (for example, every 10 seconds) within a predetermined period (for example, January). The latitude and longitude are points indicating the reception level when the accumulated rainfall is calculated from the rainfall acquired at every 0.02 ° in the range of 0.8 °). It is a point indicating the noise level at the time of rain, and the point indicated by a white circle is a point indicating the determination level at the cumulative rainfall during the same period. The straight line L2 is a regression line calculated using the least square method from the reception level point in FIG. 3, and the broken line L3 is a regression line calculated using the least square method from the determination level point in FIG. This correlation is calculated for each of the points P1, P2,.

次に、地点P1,P2,・・・,P7毎に算出された累積雨量と受信レベルとの相関関係を示す直線L2について、最小二乗誤差を算出する。この最小二乗誤差が最も少ない場合、GX端末11とGX衛星Sとの間における累積雨量と受信レベルとの相関関係を示していると判断される。この理由を以下に説明する。   Next, the least square error is calculated for the straight line L2 indicating the correlation between the accumulated rainfall calculated for each of the points P1, P2,..., P7 and the reception level. When the least square error is the smallest, it is determined that the correlation between the accumulated rainfall and the reception level between the GX terminal 11 and the GX satellite S is shown. The reason for this will be described below.

図2に示すように、GX端末11とGX衛星Sとの間で無線通信を行う場合、伝送波DWは、雲C1の下及び雲C2の上を通過している。この場合、地点P1〜P4の間の雨量はGX端末11とGX衛星Sとの間の無線通信に影響を与えるが、地点P5〜P7の間の雨量はGX端末11とGX衛星Sとの間の無線通信に影響を与えないと考えられる。すなわち、地点P1,P2,・・・,P7毎に算出された累積雨量の内、地点P1〜P4の間の雨量を累積した地点P4の累積雨量が最も受信レベルとの相関関係があると考えられ、このときの回帰直線の最小二乗誤差は最も少なくなると考えられる。そのため、最小二乗誤差が最も少ない場合をGX端末11とGX衛星Sとの間における累積雨量と受信レベルとの相関関係を示していると判断する。   As shown in FIG. 2, when wireless communication is performed between the GX terminal 11 and the GX satellite S, the transmission wave DW passes below the cloud C1 and above the cloud C2. In this case, the rainfall between the points P1 to P4 affects the wireless communication between the GX terminal 11 and the GX satellite S, but the rainfall between the points P5 and P7 is between the GX terminal 11 and the GX satellite S. It is considered that it does not affect the wireless communication. That is, of the accumulated rainfall calculated for each of the points P1, P2,..., P7, the accumulated rainfall at the point P4 where the rainfall between the points P1 to P4 is accumulated is considered to be most correlated with the reception level. In this case, the least square error of the regression line is considered to be the smallest. Therefore, it is determined that the case where the least square error is the smallest indicates the correlation between the accumulated rainfall and the reception level between the GX terminal 11 and the GX satellite S.

次に、最小二乗誤差が最も少ないときの累積雨量と受信レベルとの相関関係及び累積雨量と判定レベルとの相関関係について、図4(a)に示すように、確率分布曲線及び分散を算出する。図4(a)の直線L4は累積雨量と受信レベルとの相関関係を示し、破線L5は累積雨量と判定レベルとの相関関係を示し、分布曲線WL11,WL12,WL13,WL14は直線L4の所定の点における確率分布曲線を示し、分布曲線WL21,WL22,WL23,WL24は破線L5の所定の点における確率分布曲線を示している。また、直線L4の関係式は、
Y1=An*X+Bn
であり、この受信レベルY1の分散はσ1である。破線L5の関係式は、
Y2=Am*X+Bm
であり、この判定レベルY2の分散はσ2である。
Next, as shown in FIG. 4A, a probability distribution curve and a variance are calculated for the correlation between the accumulated rainfall and the reception level when the least square error is the smallest and the correlation between the accumulated rainfall and the determination level. . The straight line L4 in FIG. 4A shows the correlation between the accumulated rainfall and the reception level, the broken line L5 shows the correlation between the accumulated rainfall and the determination level, and the distribution curves WL11, WL12, WL13, WL14 are predetermined lines L4. The distribution curves WL21, WL22, WL23, and WL24 indicate probability distribution curves at predetermined points indicated by a broken line L5. Moreover, the relational expression of the straight line L4 is
Y1 = An * X + Bn
And the variance of the reception level Y1 is σ1. The relational expression of the broken line L5 is
Y2 = Am * X + Bm
The variance of the determination level Y2 is σ2.

その後、図4(b)に示すように、判定レベルY2と、受信レベルY1との差分を算出する。ここで、判定レベルY2から受信レベルY1を引いた値Yが0より大きい場合とは、判定レベルが受信レベルより大きい場合、すなわちGX端末11とGX衛星Sとの通信が不可能である場合である。そのため、このYが0より大きい値になる確率を、分散σ1,σ2を加算して算出することにより、GX端末11とGX衛星Sとの通信が不可能になる確率を算出し、GX端末11とGX衛星Sとの通信の可否を診断することができる。   Thereafter, as shown in FIG. 4B, the difference between the determination level Y2 and the reception level Y1 is calculated. Here, the case where the value Y obtained by subtracting the reception level Y1 from the determination level Y2 is larger than 0 means that the determination level is larger than the reception level, that is, the communication between the GX terminal 11 and the GX satellite S is impossible. is there. Therefore, the probability that Y is greater than 0 is calculated by adding the variances σ1 and σ2, thereby calculating the probability that the communication between the GX terminal 11 and the GX satellite S is impossible. And the GX satellite S can be diagnosed.

図5ないし図16は、GX端末11から緯度及び経度を0.1°毎に、0.0°〜1.1°の範囲で取得した雨量から算出した累積雨量と、受信レベル及び判定レベルとの相関関係を示す図である。図5ないし図16の直線L11,L12,・・・,L22は累積雨量と受信レベルとの相関関係を示し、破線L31,L32,・・・,L42は累積雨量と判定レベルとの相関関係を示している。また、黒丸で示した点、×で示した点、及び白丸で示した点は、図3と同様に、それぞれ受信レベル、ノイズレベル、判定レベルを示している。さらに、直線L11,L12,・・・,L22の関係式はそれぞれ、
Y=A1*X+B1,Y=A2*X+B2,・・・,Y=A12*X+B12
であり、最小二乗誤差はそれぞれE1,E2,・・・,E12である。破線L31,L32,・・・,L42の関係式はそれぞれ、
Y=C1*X+D1,Y=C2*X+D2,・・・,Y=C12*X+D12
である。
FIG. 5 to FIG. 16 show the cumulative rainfall calculated from the rainfall acquired from the GX terminal 11 in the range of 0.0 ° to 1.1 ° for latitude and longitude every 0.1 °, the reception level and the determination level. It is a figure which shows correlation of these. Lines L11, L12,..., L22 in FIGS. 5 to 16 indicate the correlation between the accumulated rainfall and the reception level, and broken lines L31, L32,..., L42 indicate the correlation between the accumulated rainfall and the determination level. Show. Also, the points indicated by black circles, the points indicated by x, and the points indicated by white circles indicate the reception level, noise level, and determination level, respectively, as in FIG. Furthermore, the relational expressions of the straight lines L11, L12,.
Y = A1 * X + B1, Y = A2 * X + B2,..., Y = A12 * X + B12
And the least square errors are E1, E2,..., E12, respectively. The relational expressions of the broken lines L31, L32,.
Y = C1 * X + D1, Y = C2 * X + D2,..., Y = C12 * X + D12
It is.

最小二乗誤差E1,E2,・・・,E12は、最小二乗誤差E1が最も大きい値であり、GX端末11から離れるに従って、最小二乗誤差E2,E3,・・・,と徐々に小さくなり、最小二乗誤差E6が最も小さい値を示している。その後、最小二乗誤差E7,E8,・・・,と増減を繰り返すが、最小二乗誤差E6より大きい値を示している。そのため、図10に示す、GX端末11から0.5°のときの最小二乗誤差E6に係る直線L16及び破線L36が、GX端末11とGX衛星Sとの間における累積雨量と受信レベルとの相関関係及び累積雨量と判定レベルとの相関関係を示していると判断できる。   The least square error E1, E2,..., E12 is the largest value of the least square error E1, and as the distance from the GX terminal 11, the least square error E2, E3,. The square error E6 shows the smallest value. Thereafter, the increase and decrease are repeated as least square errors E7, E8,..., But a value larger than the least square error E6 is shown. Therefore, the straight line L16 and the broken line L36 related to the least square error E6 at 0.5 ° from the GX terminal 11 shown in FIG. 10 indicate the correlation between the accumulated rainfall and the reception level between the GX terminal 11 and the GX satellite S. It can be determined that the relationship and the correlation between the accumulated rainfall and the determination level are shown.

その後、受信レベルY=A6*X+B6及び判定レベルY=C6*X+D6の確率分布曲線及び分散を算出し、差分を算出する。図17に示す直線L16及び一点鎖線L36は図10に示す直線L16及び破線L36と同じ相関関係を示すものであり、破線L161,L162は、受信レベルY=A6*X+B6の確率分布曲線における分散の平方根である標準偏差F1を加算及び減算した値の推移であり、二点鎖線L361,L362は、判定レベルY=C6*X+D6の確率分布曲線における標準偏差F2を加算及び減算した値の推移である。これらの確率分布曲線から、判定レベルから受信レベルを引いた値が0より大きくなる確率を算出したのが曲線WL4であり、図17の右辺側縦軸がその値を示している。曲線WL4に示すように、判定レベルY=C6*X+D6の値が受信レベルY=A6*X+B6の値に近くなるに従って曲線WL4の確率が増加し、判定レベルの値が受信レベルの値と等しくなると曲線WL4の確率が50%を超える。この値が、GX端末11とGX衛星Sとの通信が不可能になる確率であり、これにより、GX端末11とGX衛星Sとの通信の可否を診断することができる。   Thereafter, the probability distribution curve and variance of the reception level Y = A6 * X + B6 and the determination level Y = C6 * X + D6 are calculated, and the difference is calculated. The straight line L16 and the alternate long and short dash line L36 shown in FIG. 17 show the same correlation as the straight line L16 and the broken line L36 shown in FIG. 10, and the broken lines L161 and L162 show the variance in the probability distribution curve of the reception level Y = A6 * X + B6. The change of the value obtained by adding and subtracting the standard deviation F1 that is the square root, and the two-dot chain lines L361 and L362 are the changes of the value obtained by adding and subtracting the standard deviation F2 in the probability distribution curve of the determination level Y = C6 * X + D6. . From these probability distribution curves, the probability that the value obtained by subtracting the reception level from the determination level is greater than 0 is the curve WL4, and the vertical axis on the right side of FIG. 17 indicates the value. As shown by the curve WL4, the probability of the curve WL4 increases as the value of the determination level Y = C6 * X + D6 approaches the value of the reception level Y = A6 * X + B6, and the determination level value becomes equal to the reception level value. The probability of the curve WL4 exceeds 50%. This value is the probability that communication between the GX terminal 11 and the GX satellite S is impossible, and thus it is possible to diagnose whether communication between the GX terminal 11 and the GX satellite S is possible.

このような累積雨量と受信レベル及び判定レベルとの相関関係は、季節及び地域によって異なる関係になる。例えば、日本及びその周辺地域においては、梅雨の時期と、積乱雲が発生する夏とで雲の高さが異なってくる。また、赤道付近の地域においては、雨期になると一定の時間帯にスコールが発生する。そのため、GX端末11を設置した船舶が世界中の海上を航行する際に、各季節及び各地域における送受信局ログ情報を収集してデータベースを構築し、各季節及び各地域毎の通信不可率を事前に計算する。この通信不可率は、環境の変化によって変化する可能性があるため、定期的(例えば、1月に1回、または1年に2回等)に更新する。これにより、船舶毎の通信不可率は、その船舶が所定の位置を航行する時刻、受信レベル、及び気象情報が分かれば、その季節及び地域における通信不可率計算モデルを参照することにより、瞬時に計算することが可能となる。   The correlation between the accumulated rainfall, the reception level, and the determination level varies depending on the season and the region. For example, in Japan and surrounding areas, the height of the clouds differs between the rainy season and the summer when cumulonimbus clouds occur. In the area near the equator, squalls occur at certain times during the rainy season. Therefore, when a ship equipped with the GX terminal 11 navigates the sea around the world, it collects transmission / reception station log information in each season and each region and builds a database, and determines the communication failure rate for each season and each region. Calculate in advance. Since this communication failure rate may change due to environmental changes, it is updated regularly (for example, once a month or twice a year). As a result, if the time, reception level, and weather information when the ship navigates a predetermined position is known, the communication impossibility rate for each ship is instantaneously determined by referring to the communication impossibility calculation model in that season and region. It becomes possible to calculate.

以上のように、この通信診断システム1及び通信診断方法によれば、GX端末11とGX衛星Sとの間における累積雨量と受信レベルとの相関関係を示す直線L16と、累積雨量と判定レベルとの相関関係を示す破線L36とが算出され、その確率分布からGX端末11とGX衛星Sとの通信が不可能になる確率を示す曲線WL4が算出される。これにより、GX端末11とGX衛星Sとの通信が不可能になる確率が算出されるため、GX端末11とGX衛星Sとの通信の可否を容易に診断することが可能になる。   As described above, according to the communication diagnosis system 1 and the communication diagnosis method, the straight line L16 indicating the correlation between the accumulated rainfall and the reception level between the GX terminal 11 and the GX satellite S, the accumulated rainfall and the determination level, A broken line L36 indicating the correlation between the GX terminal 11 and the GX terminal 11 and the GX satellite S is calculated from the probability distribution, and a curve WL4 indicating the probability that the communication between the GX terminal 11 and the GX satellite S is impossible. Accordingly, since the probability that communication between the GX terminal 11 and the GX satellite S is impossible is calculated, it is possible to easily diagnose whether the communication between the GX terminal 11 and the GX satellite S is possible.

また、GX端末11からの距離を変更して所定距離毎に累積雨量を算出し、それらの最小二乗誤差を算出して最小の場合を判定することにより、GX端末11とGX衛星Sとの通信が不可能になる確率を正確に予測することができる。   Further, the communication between the GX terminal 11 and the GX satellite S is performed by changing the distance from the GX terminal 11, calculating the accumulated rainfall for each predetermined distance, calculating the least square error thereof, and determining the minimum case. It is possible to accurately predict the probability that will be impossible.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、気象情報WDから降雨量を取得して相関関係を算出したが、降雨量だけではなく、例えば、黄砂、PM2.5、及び火山の噴煙等の微小粒子状物質の浮遊量の情報を取得し、累積微小粒子状物質を算出して相関関係を算出しても良い。また、降雨の場合には微小粒子状物質の浮遊量は減少すると考えられるため、降雨量及び微小粒子状物質の浮遊量の両方について相関関係を算出し、降雨量により重みづけをしても良い。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the rainfall is obtained from the weather information WD and the correlation is calculated. However, not only the rainfall, but also fine particulate matter such as yellow sand, PM2.5, and volcanic plume The correlation may be calculated by acquiring information on the amount of suspended particles and calculating the accumulated fine particulate matter. In addition, since it is considered that the amount of suspended particulate matter will decrease in the case of rainfall, the correlation may be calculated for both the amount of rainfall and the amount of suspended particulate matter, and weighted by the amount of rainfall. .

また、上記の実施の形態では、取得した受信レベル及びノイズレベルの全ての値から回帰直線を算出したが、所定の統計処理を用いて一部の値のみを用いても良い。例えば、所定の累積雨量に対応する最頻値を用いる方法、確率分布曲線から所定値(例えば、標準偏差の2倍)以上乖離する値を除外する方法等を用いても良い。   In the above embodiment, the regression line is calculated from all the values of the acquired reception level and noise level. However, only a part of the values may be used by using a predetermined statistical process. For example, a method using a mode value corresponding to a predetermined cumulative rainfall, a method excluding a value that deviates by a predetermined value (for example, twice the standard deviation) or more from a probability distribution curve, or the like may be used.

1 通信診断システム
11 GX端末(ログ情報取得手段)
21 気象海象サーバ(気象情報取得手段)
31 仮想マシン
31a インスタンス(累積算出手段、診断手段)
32 データストレージ
32a バケット
AD 累積情報(累積気象情報)
AR アーカイブ(送受信局ログ情報)
BS 送受信局
CS クラウドサーバ
DW 伝送波
S GX衛星
WD 気象情報
WS 気象海象情報取得局
1 Communication diagnosis system 11 GX terminal (log information acquisition means)
21 Meteorological Oceanographic Server (Meteorological information acquisition means)
31 virtual machine 31a instance (cumulative calculation means, diagnostic means)
32 Data storage 32a Bucket AD Cumulative information (cumulative weather information)
AR archive (transmission / reception station log information)
BS transceiver station CS cloud server DW transmission wave S GX satellite WD weather information WS meteorological information acquisition station

Claims (8)

送受信局と衛星との間で無線通信を行う衛星通信における前記無線通信の可否を診断する通信診断システムにおいて、
前記送受信局の位置情報と、前記送受信局から前記衛星への方角を示す方位角と、前記送受信局における前記衛星が出力する伝送波の出力強度を示す受信レベルと、を有する送受信局ログ情報を取得するログ情報取得手段と、
前記送受信局と前記衛星との間における所定距離毎の地点の気象情報を取得する気象情報取得手段と、
前記位置情報と、前記方位角と、前記気象情報とから、前記所定距離毎の地点の累積気象情報を算出する累積算出手段と、
前記累積気象情報と前記受信レベルとの相関関係を算出し、前記相関関係に基づき、前記送受信局における過去、現在のまたは予測される累積気象情報から前記送受信局における前記無線通信の可否を診断する診断手段と、
を備えたことを特徴とする通信診断システム。
In a communication diagnostic system for diagnosing whether wireless communication is possible in satellite communication for performing wireless communication between a transmission / reception station and a satellite,
Transmission / reception station log information having position information of the transmission / reception station, an azimuth indicating a direction from the transmission / reception station to the satellite, and a reception level indicating an output intensity of a transmission wave output from the satellite in the transmission / reception station. Log information acquisition means to acquire;
Meteorological information acquisition means for acquiring weather information at a predetermined distance between the transmission / reception station and the satellite;
Cumulative calculation means for calculating cumulative weather information at points for each predetermined distance from the position information, the azimuth angle, and the weather information;
A correlation between the accumulated weather information and the reception level is calculated, and based on the correlation, diagnosis is performed on the wireless communication at the transmitting / receiving station based on past, current or predicted accumulated weather information at the transmitting / receiving station. Diagnostic means;
A communication diagnostic system comprising:
前記気象情報は、前記所定距離毎の地点の雨量を有し、
前記累積気象情報は、前記送受信局から所定の地点までの間における前記所定距離毎の前記雨量を累積した累積雨量を有する、
ことを特徴とする請求項1に記載の通信診断システム。
The meteorological information has rainfall at a point for each predetermined distance,
The cumulative weather information has a cumulative rainfall obtained by accumulating the rainfall for each predetermined distance between the transmitting / receiving station and a predetermined point.
The communication diagnostic system according to claim 1.
前記気象情報は、前記所定距離毎の地点の雨量と、前記所定距離毎の地点の微小粒子状物質の浮遊量とを有し、
前記累積気象情報は、前記送受信局から所定の地点までの間における前記所定距離毎の前記雨量を累積した累積雨量と、前記所定距離毎の前記微小粒子状物質の浮遊量を累積した累積微小物質浮遊量とを有する、
ことを特徴とする請求項1に記載の通信診断システム。
The meteorological information includes the amount of rainfall at each predetermined distance and the amount of suspended fine particulate matter at each predetermined distance;
The accumulated meteorological information is a cumulative minute matter obtained by accumulating the amount of rain for each predetermined distance between the transmitting / receiving station and a predetermined point, and a cumulative amount of fine particulate matter accumulated for each predetermined distance. With floating amount,
The communication diagnostic system according to claim 1.
前記送受信局ログ情報は、さらに、前記伝送波を受信していない区間における受信強度を示すノイズレベルを有し、
前記診断手段は、前記受信レベル及び前記ノイズレベルから前記受信レベルにおける通信可否の閾値を示す判定レベルを算出し、前記受信レベル及び前記判定レベルの回帰直線を算出し、前記回帰直線から前記受信レベルが前記判定レベル以下となる確率分布を算出して前記送受信局における前記無線通信の可否を診断する、
ことを特徴とする請求項1ないし3のいずれか1項に記載の通信診断システム。
The transmitting / receiving station log information further includes a noise level indicating a reception intensity in a section where the transmission wave is not received,
The diagnostic means calculates a determination level indicating a threshold of communication availability at the reception level from the reception level and the noise level, calculates a regression line of the reception level and the determination level, and calculates the reception level from the regression line Calculating a probability distribution that is less than or equal to the determination level and diagnosing the availability of the wireless communication in the transceiver station;
The communication diagnostic system according to any one of claims 1 to 3, wherein
前記診断手段は、前記所定距離毎の地点毎に前記累積気象情報と前記受信レベルとの相関関係をそれぞれ算出し、前記相関関係の最小二乗誤差をそれぞれ算出し、前記最小二乗誤差が最も小さい前記相関関係に基づき、前記送受信局における前記無線通信の可否を診断する、
ことを特徴とする請求項1ないし4のいずれか1項に記載の通信診断システム。
The diagnostic means calculates the correlation between the cumulative weather information and the reception level for each point at each predetermined distance, calculates the least square error of the correlation, and the least square error is the smallest. Based on the correlation, diagnoses the availability of the wireless communication in the transceiver station,
The communication diagnostic system according to any one of claims 1 to 4, wherein
前記送受信局は、海上を航行している船舶内に設置されている船上局または地上に設置されている地上局である、
ことを特徴とする請求項1ないし5のいずれか1項に記載の通信診断システム。
The transmitting / receiving station is a shipboard station installed in a ship that is navigating at sea or a ground station installed on the ground.
The communication diagnosis system according to claim 1, wherein
前記送受信局は、海上を航行して季節及び地域毎に前記累積気象情報及び前記受信レベルを収集し、
前記診断手段は、収集された前記累積気象情報及び前記受信レベルからそれぞれ前記相関関係を算出してデータベースを構築し、船舶が海上を航行する際に前記データベースを参照してその船舶が航行する季節及び地域における前記無線通信の可否を診断する、
ことを特徴とする請求項1ないし5のいずれか1項に記載の通信診断システム。
The transceiver station navigates the sea and collects the cumulative weather information and the reception level for each season and region,
The diagnostic means constructs a database by calculating the correlation from the accumulated weather information collected and the received level, and refers to the database when the ship sails on the sea. And diagnosing the availability of the wireless communication in the area,
The communication diagnosis system according to claim 1, wherein
送受信局と衛星との間で無線通信を行う衛星通信において、
前記送受信局の位置情報、前記送受信局から前記衛星への方角を示す方位角、及び前記送受信局における前記衛星が出力する伝送波の出力強度を示す受信レベルを有する送受信局ログ情報と、
前記送受信局と前記衛星との間における所定距離毎の地点の気象情報と、を取得し、前記無線通信の可否を診断する通信診断方法であって、
前記位置情報と、前記方位角と、前記気象情報とから、前記所定距離毎の地点の累積気象情報を算出する累積算出処理と、
前記累積気象情報と前記受信レベルとの相関関係を算出し、前記相関関係に基づき、前記送受信局における過去、現在のまたは予測される累積気象情報から前記送受信局における前記無線通信の可否を診断する診断処理と、
を有することを特徴とする通信診断方法。
In satellite communication that performs wireless communication between a transmitting / receiving station and a satellite,
Transmission / reception station log information having position information of the transmission / reception station, an azimuth indicating a direction from the transmission / reception station to the satellite, and a reception level indicating an output intensity of a transmission wave output by the satellite in the transmission / reception station;
A communication diagnosis method for acquiring weather information at a predetermined distance between the transmission / reception station and the satellite and diagnosing the availability of the wireless communication,
From the position information, the azimuth angle, and the weather information, a cumulative calculation process for calculating cumulative weather information at points for each predetermined distance;
A correlation between the accumulated weather information and the reception level is calculated, and based on the correlation, diagnosis is performed on the wireless communication at the transmitting / receiving station based on past, current or predicted accumulated weather information at the transmitting / receiving station. Diagnostic processing and
A communication diagnostic method characterized by comprising:
JP2015134344A 2015-07-03 2015-07-03 Communication diagnostic system and communication diagnostic method Active JP6504562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134344A JP6504562B2 (en) 2015-07-03 2015-07-03 Communication diagnostic system and communication diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134344A JP6504562B2 (en) 2015-07-03 2015-07-03 Communication diagnostic system and communication diagnostic method

Publications (2)

Publication Number Publication Date
JP2017017613A true JP2017017613A (en) 2017-01-19
JP6504562B2 JP6504562B2 (en) 2019-04-24

Family

ID=57829345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134344A Active JP6504562B2 (en) 2015-07-03 2015-07-03 Communication diagnostic system and communication diagnostic method

Country Status (1)

Country Link
JP (1) JP6504562B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859717A (en) * 1971-11-24 1973-08-22
JPS6033747A (en) * 1983-08-04 1985-02-21 Nippon Telegr & Teleph Corp <Ntt> Large power transmission system having transmission power control function
JPS61283235A (en) * 1985-06-10 1986-12-13 Nec Corp Control system for transmission power of earth station
JP2000091975A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Transmission power control system
US6321065B1 (en) * 1998-10-30 2001-11-20 Trw Inc. Performance enhancement of open-loop power control for satellite communication systems
JP2003348480A (en) * 2002-05-24 2003-12-05 Sony Corp Television receiver and method for notifying of meteorological change using the same
JP2006246375A (en) * 2005-03-07 2006-09-14 Nippon Hoso Kyokai <Nhk> Rainfall attenuation analysis system, division-base attenuation amount analysis system, rainfall attenuation analysis method, and division-base attenuation amount analysis program
JP2015035748A (en) * 2013-08-09 2015-02-19 船井電機株式会社 Receiving device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859717A (en) * 1971-11-24 1973-08-22
JPS6033747A (en) * 1983-08-04 1985-02-21 Nippon Telegr & Teleph Corp <Ntt> Large power transmission system having transmission power control function
JPS61283235A (en) * 1985-06-10 1986-12-13 Nec Corp Control system for transmission power of earth station
JP2000091975A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Transmission power control system
US6321065B1 (en) * 1998-10-30 2001-11-20 Trw Inc. Performance enhancement of open-loop power control for satellite communication systems
JP2003348480A (en) * 2002-05-24 2003-12-05 Sony Corp Television receiver and method for notifying of meteorological change using the same
JP2006246375A (en) * 2005-03-07 2006-09-14 Nippon Hoso Kyokai <Nhk> Rainfall attenuation analysis system, division-base attenuation amount analysis system, rainfall attenuation analysis method, and division-base attenuation amount analysis program
JP2015035748A (en) * 2013-08-09 2015-02-19 船井電機株式会社 Receiving device

Also Published As

Publication number Publication date
JP6504562B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US20220187499A1 (en) Real-time data pipeline techniques for improving a fast weather forecasting system
US11719831B2 (en) System and method for tracking and forecasting the positions of marine vessels
WO2019028333A1 (en) Systems, devices, and methods for generating vehicle routes within signal coverage zones
WO2019028380A1 (en) Systems, devices, and methods for relaying communications using autonomous drones
US11403814B2 (en) Systems, devices, and methods for generating a dynamic three dimensional communication map
JP6998576B2 (en) Navigation support method and navigation support system adapted to the risks on the route
EP3330747B1 (en) Apparatus, method, and computer program product for providing a metocean forecast
JP5435418B2 (en) Ocean current data assimilation method and system
AU2008202173A1 (en) Method and apparatus for real-time polars
KR101789808B1 (en) Ship operation index forecasting apparatus and the method thereof
CN110839208B (en) Method and apparatus for correcting multipath offset and determining wireless station position
WO2019028356A1 (en) Systems, devices, and methods for generating routes within limited
US20180321379A1 (en) Probabilistic weather severity estimation system
US20170003128A1 (en) Information processing system, information processing method, and movable terminal device
JP7334503B2 (en) POSITIONING METHOD, POSITIONING SYSTEM AND MOBILE STATION
JP6601815B2 (en) Satellite communication availability prediction device and satellite communication availability prediction program
US20170031727A1 (en) Task control system
JP2017534526A (en) A method for calculating the surface (water surface) speed of at least one ship, and a method for estimating each drift (floating) vector at all points in the route of the ship.
CN117687125A (en) Method, processor, device and storage medium for constructing icing grid point data set
JP6504562B2 (en) Communication diagnostic system and communication diagnostic method
KR101875906B1 (en) Apparatus of calculating areal precipitation and method thereof
KR102172238B1 (en) Software-defined vehicular sensing device and method thereof
KR102645996B1 (en) Geospatial information platform service system and method for maritime safety based on smart devices
CN116359877B (en) Large fog weather monitoring method and device based on wind profile radar
CN114881543B (en) Road grade determination method and device, electronic equipment and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6504562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150