JPS6033281B2 - resistor - Google Patents

resistor

Info

Publication number
JPS6033281B2
JPS6033281B2 JP53104054A JP10405478A JPS6033281B2 JP S6033281 B2 JPS6033281 B2 JP S6033281B2 JP 53104054 A JP53104054 A JP 53104054A JP 10405478 A JP10405478 A JP 10405478A JP S6033281 B2 JPS6033281 B2 JP S6033281B2
Authority
JP
Japan
Prior art keywords
resistor
resistance
metal
temperature
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53104054A
Other languages
Japanese (ja)
Other versions
JPS5530856A (en
Inventor
二朗 塩川
吟也 足立
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53104054A priority Critical patent/JPS6033281B2/en
Publication of JPS5530856A publication Critical patent/JPS5530856A/en
Publication of JPS6033281B2 publication Critical patent/JPS6033281B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高安定の抵抗体材料に関するものである。[Detailed description of the invention] The present invention relates to highly stable resistor materials.

特に、高抵抗でかつ抵抗温度係数の小さい抵抗体の形成
に有用な抵抗体材料に関する。高安定高精度の抵抗体素
子は、電子計算機用の構成部品以外に、最近の電子機器
の高精度化と関連して、汎用の電子機器にも広く用いら
れるようになって来た。
In particular, the present invention relates to a resistor material useful for forming a resistor having high resistance and a small temperature coefficient of resistance. Highly stable and highly accurate resistor elements have come to be widely used not only as components for electronic computers but also for general-purpose electronic devices in connection with the recent increase in the precision of electronic devices.

従釆抵抗温度係数の小さい高安定の抵抗体として、窒化
タヮタルのような金属室化物、ニクロムあるいはクロム
・シリコンのような合金が用いられていた。この場合、
抵抗温度係数は1,000ppm/OC以下が広く用い
られ、特に安定度を要求される時は100ppm/℃以
下の素子が用いられる。しかしながら、これらの材料の
抵抗率は1ぴ仏○肌(導電率1びQ‐1肌‐1)程度で
あり、抵抗温度係数を増加させないでこれより導電率を
下げて抵抗率を高めるには、例えば上記材料を薄膜化し
ていたが、この場合抵抗率を高めると抵抗温度係数が大
きくなる傾向にあり、実現される抵抗率は1000r○
肌以下であった。これより高い抵抗率は、金属と絶縁体
の混合体である所謂サーメット材料で実現しているが、
サーメット材料は、組成変化による特性値の変動が大き
く、特性の均一な高精度の抵抗体の製造には必ずしも適
しているとはいえない。このように、従来の技術では高
抵抗高安定でかつ高精度の抵抗体の製造は、本質的に困
難であると考えられていた。本発明はこれらの従来の抵
抗体の欠点を除去し、高抵抗、高安定でかつ高精度の抵
抗体の製造を可能にするものである。以下実施例により
本説明の内容を説明する。本発明はタングステンブロン
ズ型複合酸化物、例えばNb金属とNG金属以外の金属
元素Mの酸化物からなる化学式MXNO03の複合酸化
物の電気特性が、該金属元素Mの含有率Xによって大中
に変化し、含有率Xを適当にすると高安定の抵抗特性が
得られるという本発明者等の発見に基づいている。
As highly stable resistors with small temperature coefficients of resistance, metal nitrides such as nitride and alloys such as nichrome or chromium-silicon have been used. in this case,
A resistance temperature coefficient of 1,000 ppm/OC or less is widely used, and when particularly stability is required, an element with a resistance temperature coefficient of 100 ppm/°C or less is used. However, the resistivity of these materials is about 1 Pt (conductivity 1 and Q-1 skin-1), and it is difficult to lower the conductivity further and increase the resistivity without increasing the temperature coefficient of resistance. For example, the above materials were made into thin films, but in this case, increasing the resistivity tends to increase the temperature coefficient of resistance, and the resistivity achieved is 1000r○
It was below skin level. Higher resistivity is achieved with so-called cermet materials, which are a mixture of metal and insulator.
Cermet materials have large fluctuations in their characteristic values due to changes in composition, and are not necessarily suitable for manufacturing highly accurate resistors with uniform characteristics. As described above, it has been considered that it is essentially difficult to manufacture a resistor with high resistance, high stability, and high precision using conventional techniques. The present invention eliminates these drawbacks of conventional resistors and makes it possible to manufacture resistors with high resistance, high stability, and high precision. The content of this description will be explained below using examples. The present invention provides a tungsten bronze type composite oxide, for example, a composite oxide having the chemical formula MXNO03 consisting of an oxide of Nb metal and a metal element M other than NG metal, whose electrical properties change significantly depending on the content X of the metal element M. However, this is based on the discovery by the present inventors that highly stable resistance characteristics can be obtained by setting the content X appropriately.

第1図は、金属元素MとしてEu元素を用いた場合につ
いて、導電率および抵抗温度特性のEu元素の含有率X
による変化を室温において測定したものである。同図に
おいて、11は導電率を、12は抵抗温度変化率をそれ
ぞれ示す。同図が示すごとく、Eu金属の含有率Xが0
.6〜0.8という一定の範囲において、抵抗温度変化
率が零近僕にあることがわかる。例えば、Xの値を、0
.62<×<0.75に選ぶと、抵抗温度変化は、〜1
,000ppm/00以下になる。この場合導伝率は1
ぴQ‐1肌‐1と小さくその抵抗率は〜1ぴ山○肌であ
ることがわかる。また0.7ミXく0.74あるいは0
.625<×<0.64の範囲では抵抗温度変化はさら
に小さくなって500ppm/OC以下となる。とりわ
け、X30.72あるいはX30.63では零温度特性
が得られる事がわかる。この場合、導伝率が1ぴQ‐1
弧‐1で抵抗率が1ぴ仏Q伽と従来の抵抗材料で得られ
なかった大きい値であるから、この材料が高抵抗材料と
して有効である事がわかる。第2図はこれらの材料の抵
抗温度変化を真空中で測定した結果を示す。
Figure 1 shows the conductivity and resistance temperature characteristics of the Eu element content x when Eu element is used as the metal element M.
This figure shows the changes measured at room temperature. In the figure, 11 indicates the conductivity, and 12 indicates the rate of change in resistance with temperature. As shown in the figure, the Eu metal content X is 0.
.. It can be seen that the resistance temperature change rate is close to zero in a certain range of 6 to 0.8. For example, set the value of X to 0
.. 62<x<0.75, the resistance temperature change is ~1
,000ppm/00 or less. In this case the conductivity is 1
It can be seen that the resistivity is as small as P-Q-1 skin-1 and that the resistivity is ~1 Pi-Q-1 skin. Also 0.7 mi x 0.74 or 0
.. In the range of 625<x<0.64, the resistance temperature change becomes even smaller to 500 ppm/OC or less. In particular, it can be seen that zero temperature characteristics can be obtained at X30.72 or X30.63. In this case, the conductivity is 1 piQ-1
Since the resistivity at arc-1 is 1 pippus Q, a large value that could not be obtained with conventional resistive materials, it can be seen that this material is effective as a high-resistance material. FIG. 2 shows the results of measuring the temperature change in resistance of these materials in vacuum.

同図が示すごとく、零温度特性近傍の材料は−150つ
0の低温から50び0の高温までの広い温度範囲にわた
って零温度特性が見られる。この場合空気中で測定して
も300qo度までは何らの特性変化は認められなかっ
たので、抵抗体として充分実用され得る事がわかる。以
上の実施例では、NbとEuの複合酸化物について示し
たが、Nbと複合化する金属元素として、Euを用いな
くてもSr,Ba、あるいはCaを用いても同様の効果
があり、さらにこれらの金属元素から2種以上選んで用
いても同様の効果がある事を発見した。
As shown in the figure, materials with near zero temperature characteristics exhibit zero temperature characteristics over a wide temperature range from low temperatures of -150 to high temperatures of 50 and 0. In this case, even when measured in air, no change in characteristics was observed up to 300 qo degrees, indicating that it can be fully used as a resistor. In the above example, a composite oxide of Nb and Eu was shown, but even if Sr, Ba, or Ca is used as the metal element to be composited with Nb, the same effect can be obtained without using Eu. It has been discovered that the same effect can be obtained even when two or more of these metal elements are selected and used.

さらに本発明者等は、これらの添加金属元素の種類は、
金属のイオン半径が重要で、その最適のイオン半径が1
〜1.5Aの範囲にある事を発見した。
Furthermore, the inventors have determined that the types of these additional metal elements are:
The ionic radius of the metal is important, and the optimal ionic radius is 1
It was found that it was in the range of ~1.5A.

その理由の詳細は明らかでないが、この最適イオン半径
においてのみ本発明の抵抗材料の特徴であるタングステ
ンブロンズ型の複合酸化物が形成されるためと考えられ
る。この場合の零温度特性が得られる理由の詳細は明ら
かでないが、おおよそ次のように考えられる。
Although the details of the reason are not clear, it is thought that this is because a tungsten bronze type composite oxide, which is a characteristic of the resistance material of the present invention, is formed only at this optimum ionic radius. Although the details of the reason why the zero temperature characteristic is obtained in this case are not clear, it is thought to be roughly as follows.

すなわち、第3図に金属元素Mの含有率と複合酸化物の
結晶構造との関係をEU洲の3について示す。同図から
金属元素の含有率×が大きい時は立方晶型であることが
わかる。この場合Nbと○とにより構成されるNb06
正八面体を基本骨格とし、これが網目状につながりこの
すき間にEuがはいる所謂べロプスカィト構造になって
いる。しかし×が少なくなるとこの立方晶型は保たれな
くなり、正万晶へと構造が変化する。この結晶横造の変
化と電気特性が関連し、立方晶型では金属的電気伝導を
、正万晶型では半導体的電気伝導を示し、この両者の構
造の遷移領域の0.625<×<0.64に零温度特性
が得られると考えられる。また、0.7<×<0.74
範囲の零温度特性は、前述したNの6の八面体骨格の個
有の特性に起因したものであると考えられる。ここで本
発明の抵抗体の製造方法の一例を示す。
That is, FIG. 3 shows the relationship between the content of the metal element M and the crystal structure of the composite oxide for EU state 3. From the same figure, it can be seen that when the metal element content x is large, it is a cubic crystal type. In this case, Nb06 composed of Nb and ○
The basic skeleton is a regular octahedron, which is connected in a network, and Eu enters the gaps in the so-called velopskite structure. However, when the number of x decreases, this cubic crystal type is no longer maintained, and the structure changes to a regular crystal. This change in the horizontal structure of the crystal is related to electrical properties, and the cubic crystal type exhibits metallic electrical conduction, while the seminectral crystal type exhibits semiconductor-like electrical conduction, and the transition region of both structures is 0.625<×<0. It is thought that zero temperature characteristics can be obtained at .64. Also, 0.7<x<0.74
The zero-temperature characteristics in the range are considered to be due to the unique characteristics of the six-octahedral skeleton of N described above. Here, an example of the method for manufacturing the resistor of the present invention will be shown.

例えばEU刈b03を形成する方法を説明する。先ず空
気中で加熱し、充分脱水したEら03粉末、金属ニオブ
(Nb)粉末および五酸化ニオブ(NQ05)を該金属
酸化物の含有率×に見合った比率で秤量し、混合・加圧
成型後真空中で900q02時間仮焼する。さらに、こ
れらの仮焼物を真空中1200〜128000で焼成す
る事によりEUxNの3が形成される。金属元素Mとし
て、Sr,Ba,Caを用いる時は、原料として例えば
Sr203,Ba○あるいはCa○をE舷03の代りに
用いるとよい。本発明の抵抗材料を抵抗素子として用い
る時は焼成された抵抗体を例えば直方体に成型し、直方
体の端面に電極対を設けるとよい。また、この焼成物を
スクリーン印刷法で、厚膜化したり、あるいは、この焼
成物をターゲットに用いて、カソードスパッタリング蒸
着により薄膜化する事により、高抵抗で小型の抵抗素子
が得られる。特にカソードスパツタリング蒸着により薄
膜化すると、抵抗素子の抵抗値ばらつきが少なく、高精
度の素子の形成が可能であり、また小型化されるので電
子計算機等の構成部品として特に有用である。以上の説
明で明らかな如く、本発明にかかる抵抗材料は、従釆実
現困難であった高抵抗・高安定・高精度の抵抗素子の製
造が容易になり、電子計算機・工業計測器等の精密電子
機器をはじめ、汎用電子機器用の抵抗素子の形成に広く
用いる事が出来る。
For example, a method of forming EU cutting b03 will be explained. First, Era 03 powder, metal niobium (Nb) powder, and niobium pentoxide (NQ05), which were heated in air and sufficiently dehydrated, were weighed in a ratio commensurate with the content of the metal oxide x, and mixed and press-molded. Afterwards, it is calcined in a vacuum for 900q02 hours. Furthermore, EUxN 3 is formed by firing these calcined products in a vacuum at a temperature of 1200 to 128000. When Sr, Ba, or Ca is used as the metal element M, it is preferable to use, for example, Sr203, Ba○, or Ca○ as a raw material in place of E-03. When using the resistance material of the present invention as a resistance element, it is preferable to mold the fired resistor into a rectangular parallelepiped, for example, and provide electrode pairs on the end faces of the rectangular parallelepiped. Furthermore, by forming a thick film using this fired product using a screen printing method, or using this fired product as a target to reduce the film thickness by cathode sputtering vapor deposition, a small-sized resistor element with high resistance can be obtained. In particular, when the film is made thin by cathode sputtering vapor deposition, the resistance value of the resistor element has little variation, it is possible to form a highly accurate element, and the resistor element is miniaturized, so it is particularly useful as a component of an electronic computer or the like. As is clear from the above explanation, the resistive material according to the present invention facilitates the manufacture of high resistance, high stability, and high precision resistive elements, which have been difficult to achieve in the past, and enables precision use in electronic computers, industrial measuring instruments, etc. It can be widely used to form resistive elements for general-purpose electronic devices, including electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例における抵抗体
の電気特性図、第3図は同抵抗体の結晶構造と電気特性
との関係を示す説明図である。 第1図第2図 第3図
1 and 2 are electrical characteristic diagrams of a resistor in an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing the relationship between the crystal structure and electrical characteristics of the resistor. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 化学式がMXNbO_3で表わされ、かつMがNb
以外の金属元素であることを特徴とした化学組成を主成
分とする抵抗体。 2 特許請求の範囲第1項において、金属元素Mのイオ
ン半径が、1Aから1.5Aの範囲である事を特徴とす
る抵抗体。 3 特許請求の範囲第2項において、金属元素Mを、E
u,Sr,Ba,Caのうちの一種または二種以上で構
成した抵抗体。 4 特許請求の範囲第1項において、化学式MXNbO
_3のXの値が0.62≦X≦0.75の範囲にあるこ
とを特徴とする抵抗体。 5 特許請求の範囲第1項において、化学式MXNbO
_3のXの値が、0.7≦X≦0.74あるいは、0.
625≦X≦0.64の範囲にあることを特徴とする抵
抗体。
[Claims] 1. The chemical formula is represented by MXNbO_3, and M is Nb
A resistor whose main component is a chemical composition characterized by a metal element other than 2. The resistor according to claim 1, wherein the ionic radius of the metal element M is in the range of 1A to 1.5A. 3 In claim 2, the metal element M is
A resistor made of one or more of u, Sr, Ba, and Ca. 4 In claim 1, the chemical formula MXNbO
A resistor characterized in that the value of X in _3 is in the range of 0.62≦X≦0.75. 5 In claim 1, the chemical formula MXNbO
The value of X of _3 is 0.7≦X≦0.74 or 0.
A resistor characterized by being in the range of 625≦X≦0.64.
JP53104054A 1978-08-25 1978-08-25 resistor Expired JPS6033281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53104054A JPS6033281B2 (en) 1978-08-25 1978-08-25 resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53104054A JPS6033281B2 (en) 1978-08-25 1978-08-25 resistor

Publications (2)

Publication Number Publication Date
JPS5530856A JPS5530856A (en) 1980-03-04
JPS6033281B2 true JPS6033281B2 (en) 1985-08-02

Family

ID=14370478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53104054A Expired JPS6033281B2 (en) 1978-08-25 1978-08-25 resistor

Country Status (1)

Country Link
JP (1) JPS6033281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455913B2 (en) * 2013-05-07 2019-01-23 国立研究開発法人産業技術総合研究所 Resistor material, resistor film and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5530856A (en) 1980-03-04

Similar Documents

Publication Publication Date Title
CN110903087B (en) Low-B high-resistance wide-temperature-zone high-temperature thermistor material and preparation method and application thereof
JP6094422B2 (en) Temperature sensor
CN112334430A (en) NTC material, thermistor and method for producing the thermistor
WO2021210203A1 (en) Thermistor sintered body and temperature sensor element
JPH0229614B2 (en)
JPS6033281B2 (en) resistor
US4587040A (en) Thick film thermistor composition
JPH02143502A (en) Manufacture of ntc thermistor
JPH03214703A (en) Thermistor element
JPH07235405A (en) Thermistor sintered body
US6538318B2 (en) Semiconductor ceramic for thermistors and chip-type thermistor including the same
JPS6036365A (en) Ceramic composition
JPS60208803A (en) Method of producing thin film thermistor
JP2008205384A (en) Thermistor composition and thermistor element
US5002912A (en) Oxide sintered product
WO1995018455A1 (en) Sintered thermistor body and thermistor device using it
CN114409397B (en) Low TCR ceramic chip resistor and material and preparation thereof
JPH0661016A (en) Thick film thermistor composition and manufacture thereof as well as thick film thermistor using same and manufacture thereof
JPH03214702A (en) Composite for thermistor
JPH0343214B2 (en)
JP3245946B2 (en) Resistor
JPS63315554A (en) Thermistor porcelain composition
JPH0677009A (en) Thick film thermistor composition and manufacture thereof, and thick film thermistor using the composition and manufacture thereof
JP6094421B2 (en) Temperature sensor
JPH07122404A (en) Thick film thermistor composition, manufacture thereof, and thick film thermistor using the composition and manufacture thereof